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rods coupling them in pairs. On the lower ends of the shafts are keyed
four horizontal driving wheels, 1 foot 4 inches in diameter, which, as
arranged, grip between them the mid-rail. This rail is the ordinary
double-headed variety, bolted to suitable sleepers. The eccentrics for
working the valve of the leading cylinder are keyed one on each of the
forward grip wheel shafts. Those for working the valve of the after
cylinder are in like manner keyed one on each of the trailing shafts.
A flat iron table is bolted to the frame to support each link. The links
are provided with suitable bosses to slide on these tables. Reversing
is simply effected in the usual way from the foot-plate. The eccentrics
for the outside cylinders are keyed on the leading horizontal axle, as
they could not be provided for elsewhere.

(To be continued.)

For the Journal of the Franklin Institute.

Moment of Inertia of Surfaces. By DE Vonson Woob, Prof. C.E.,
University of Michigan. :

In the investigation of the resistance of beams or columns, the moment
of inertia of the transverse sections plays a very important part. We
may always deduce the moment of inertia of a surface from the well

known expression J:/'.yz dy dz; but we may often facilitate operations

by deducing from it some general rules. It is my purpose in the fol-
lowing article to give a general discussion of the subject, and apply
each principle in the development to the solution of a problem.

GENERAL EXPRESSION.

The moment of inertia of a surface is the sum of the products found
by multiplying each elementary area by the square of its distance from
any assumed axis.

Let da = an elementary area. Fig1
y =1its distance from the axis.
and 1= the moment of inertia of
the surface,
Then, according to the definition, i
. . x
y°dA = the moment of inertia of an element, v

and 1 =fy2dA, . . . (1)

Let the surface be referred to rectangular co-ordinates. Then

da=dydz;
oI 21/]';/2 dy dz, . . . . 2)
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A ExaMprLE.—To find the moment of inertia of a
171;'?,2, rectangle about an axis passing through the centre
and parallel to the ends.
d Let b ==the breadth, d = the depth; then we
i have

b plid " b
X 1:f Ty dydw:ld:/ldzzlbd’(ﬁ.)
o —3d 12 12

ForMuLa oF REDUCTION.
To find the relation between the mo-

Fig.3 m mwents of inertia about two paraliel axes,
J/,

‘ one of which passes through the centre
. of gravity.
' J Let » = the distance between them,
__ y' = the ordinate from the axis
which passes through the
centre.

Let y = the ordinate from the other axis.
1! = the moment of inertia about the axis through the centre.
We have y=0 +3'; hence (1) becomes

ﬁz dA = f y‘sz -+ ﬁn y'dA +p? fda.

Baut, because 2! passes through the centre, we have 2vf y' da =0,

when it is integrated so as to include the whole area, and f dA=4;

J;ﬂ da =ﬁ‘2 da -+ D? A,

or1=1'-|Da4, . . . 4.)

This is called the formula of reduction, and may thus be enunciated:

The moment of inertia of a surface about any axis, equals the moment

of inertia about an axis parallel to it which passes through the centre,
plus the area into the square of the distance between them.

hence, we find

ExaMrLE.—To find the moment of inertia of a rectangle abouf an axis which
coincides with one end. The distance between the axes willbe 3d =, and A = bd;
hence, (4) and (8) will give

1
I={5bds ]t bd=3bd3, . . . . . (5)

From (4) we find
I' =1 — D4, . . . . (6,)
which is sometimes very convenient.

For instance, it is easier to find the moment of inertia of a triangle,
about an axis which passes through its apex, and parallel to the base,
than about any other axis; but having found this, we may easily find
it about an axis parallel to it which passes through the centre.
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To illustrate,

Let & = the base, and Frg &
d==the altitude of the triangle. R S
Then, taking the origin at the vertex, and we have \
) ;
x:y::b:d.'.x:::ly, \
— S—
and (2) becomes L

d b d 7___1:_“”
I=—= Yylrdy = f o8 dy == 1bd?, (7)) o
0 deJ 0

The area — %b(l == A.
D= §d - the distance from the vertex to the centre; hence, () becomes

11:%3bd—%bd><3d2:3%bd5, N (B
If the base be the axis, (8) and (4) give
1 1 1
I=—= b bd3 - % bd ><‘J d3 - i ba?, . . . . q (9)

RELATION BETWEEN RECTANGULAR AXES.

We will now find the relation between the moments of inertia about
the axes of two systems of rectan- ,
gular co-ordinates, having the same , Fig5. |7 /¥
origin, but inclined to each other. X

Let o, Fig. 5, be the origin, and

yoy' =w0z' = f. X X
Also, I; = the moment of inertia \
about zoz. ,
I, = the moment of inertia X
about yoy. ! K

I, ==the moment of inertia
about 2’02,
I,: = the moment of inertia about y'oy*.
Then, by the definition, we have

Ix :’/:'7/2d‘41 Iy =ﬁ2dA7 . . (107)

2 2
Lo :ﬁ‘ da, 1,0 = fz'ds, . . (11)
For the transformation of rectangular co-ordinates, we have
z'=zcos3—ysinpJ (12).

y =wzsin 3+ ycos g3
Hence, we have
x12 _{,_2/12 — xz __'_!/z,
which is called an dsotropic function, (from the Greek Isws equal,
and 7Pora, turning, 4.e. the distance from the origin to any point 18
the same for all inclinations of the systems of co-ordinate axes.)

Let 3 = fayda and ;= fzpds, . . . . (18)

[) L4

Then, by combining (10), (11), (12),'and (13), we readily find the
following equations:
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T == I €08% 8 + Iy sin® 8 — 2B cos B sin 3
Iy =1Iysin? g + I, cos? B |- 2B cos B sin 8 (14).
B1 == (Ix — Iy ) cos 3 sin B - B (cos® g — sin’ B)
By adding the 1st and 2d of (14), we find
Ig 4 Iy =1Ix + Iy, . . . (15,)
which is Zsotropie; and from which we see that the sum of the moments
of inertia about pairs of rectangular axes having the same origin 18

constant.
Vrom (10) and (15) we readily find that

L=t t i =f@ ) da=frds, . (16)

in which 2? + #* = p* = a variable distarce; and hence, from the de-
finition, equation (16) is the moment of inertia about an axis perpen-
dicular to the plane of the surface. 'This is called the polar moment
of inertia. We see that it equals the sum
of the moments about two rectangular
axes which lie in the surface, and whose
origin is on the polar axis.
Let ¢ == the variable angle; then will
pdpdd = an elementary polar area ==
dA; hence, (16) becomes

ﬁ’ dp d9 =1° == the polar

moment of inertia, . . (17)

Examrres.—1. To find the polar moment of inertia of a circle, about an axis
passing through its centre. we have only to integrate (17) between the limits 0 and
7 for p, and 0 and 27 for6; hence, we have

n gor
Ip :f f pPdpdy —=nrt, . . . . (18.)
0 0

2. We may find in the same way that we found equation (3) that the moment of
inertia of a rectangle about an axis passing through its centre and parallel to its

sides, is le %% ; hence, the polar moment of a rectangle about an axis passing through
its centre is, by equation (16},
1
Ty =9 bd (0% 4 d?) = 11_2 A(diagonal)r, . . . (19)

that is, it equals one-twelfth the area multiplied by the square of the diagonal.
Knowing the polar moment, it is easy, in some cases, to find the
moment about an axis in the surface. ‘
For instance, if the moments about the rectangular axes are equal,
equation (16) will give

2 x’dA:ﬁﬂdA;
ST =31, . . . . (20.)
Hence, equations (20) and (18) give, for the moment of inertia of a

circle, about an axis in the surface, and passing through the centre,
I=}mri . . . . (21,)
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and, for the moment of a square about an axis in the surface, parallel
to one side and passing through the centre, (20) and (19) will give
1 , 1
I= (6" + b= 15"

If the polar moment and one of the rectangular moments are known,
the other rectangular moment may be easily found; for equation (16)
gives—

y=I,—1Iy, . . . . (21)
MaxiMuMm aNp MiniMum MoMENTS.

To find the position of the axes (for any assumed origin) which shall
give a maximum moment about one axis and minimum about the other,
we will suppose that I, Iy, and B, have been found for any assumed
position of the axis,

. By differentiating the first of (14), and placing it equal zero, we
nd

Dg=—2(1x —1y) cos 4 sin - 2 B(sin®* 8 — cos?B) =0;

—2B 2cos_fiﬂf,li=mnzp, . (22)

The second derivative, placed equal zero, gives tan 28 =+ 1 ; hence,
of the two values of 8 found from (22), one will give the position of T,:
for & maximum, and the other the position for a minimum.

Proceeding in a similar way with the second of (14), and we find
that when I is a maximum, I,: is a minimum, and vice versa. Equa-
tion (22) in the third of (14) gives B' = 0.

Let g, be the value of .g found by equation (22), and z, y, the cor-
responding axes, called principal azes.

B' = B, == 0, and (14) becomes

Ir,= I cos2 §, 4 I, 8in% B, — 2 B cos g, sin g,
Iy, ==1Ix 8in® B, + 1y cos® g, --- 2 B cos By sin B, (23.)
0 = (1x — 1y ) cos B, sin' B, + B (cos® B, — sin2B,)
By adding the 1st and 2d of (23), and then multiplying them to-
gether, using the 3d in the reduction, we find
I, T Iy, =Lk + Iy,
Ix, Iy, = Ix Iy — B%
ol =3+ 1)+ 1 F (I — 1, P+ B
;=3I + L) —1 s — 1 ) + B,
by means of which the principal moments may be found without know-
ing A,

ExampLE.—~To find the principal axes of a rectangle, origin at the centre. We
bave already found, equation (3), that

1 1
T Ix=qp bd% and Iy = T bxd; we also have

id 30 15
B=— f zydydx:(id'——}d“l/) z dr =0,
—3d ¢ 15 — 36
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which in (22) gives g =0, and these in (23) give
Ixq == Ix == ll.zbds
Tyy == Ty = 7y b%d;

hence, those axes which are parallel to the sides and ends of the rectangle are prin-
cipal axes.

MoMENTS IN REFERENCE TO ANY SYSTEM OF RECTANGULAR AXES,
THE PRINCIPAL MOMEXTS BEING KNOWN.

Suppose that the principal moments Ix, and Iy, are known, then we
may easily find the moments about axes inclined at any angle; for we
have only to make 1;=1;, I; =1, , and B=01in (14). This done
and we have

Ia = Iy, cos® B + Iy, sin? B
Iyi == I, 8in®8 + Iy, cos?f . . (24.)
B! == (Ix, —Iy,) cos 8 sin B

If 1;, = 1y,, then I ==Ty, and the figure may be said to have its
moments of inertia perfectly 7sotropic. This is the case with the cir-
cle, regular polygons, and many other symmetrical figures.

Examrres.—1. Take the case of a rectangle whose sides are inclined at a angle §

Fio. 7, with the axis of x1. Then
AR , B8 =190° —4, and (24) gives
Y| |y Ixt = Ix; 8in%¢ + Ty, cos? i =1, bd (d?sin%i 4
. bt cos?q),
Tyl ==Ix; €082 - Iy, sin? i — 1, bd (d? cos?i
b2sin? 4).
\ If d=10, then 1x1 == Iy, — L,d*% thesame as
= / x’  before found.
2, Let the section be Fro. 8. 1%
~X, an equilateral triangle, £G, 9. (7 o
with the axis of sym- ¥\
metry inclined at an /
angle i with the axis of

== g 5%, and we have

found 1x =% 5d% See equation (8).
Hence, (24) becomes

Ixt == bd (3 d?sin? i+ 302 cos? i), . (25.)

Iyt = & bd (§ d?cos? i {bsin? 1), . . (26.)

MoMENT oF INERTIA OF A REGULAR POLYGON.

Xl. Thon B: 90° —7:. xl
‘We ensily find that 1y, _X\

To find the moment of inertia of a regular polygon, let the axis of
X pass through a vertex and the centre.

X

Let A, A, &c., Fig. 9, be the polygoun; o its centre; o, 05, &c., the
centres of the triangles; oa,, oa,, &c., the altitudes.
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Let b=1a, 4, =4, A, = &ec.
d = oa, = oa, == the altitude.
k=0, ¢, h,= 0, ¢, &c.
a = A,0A, = 4,04, = &c. = angle at the vortex of each triangle.
i, = @,04,, 7, = ,04,, &c., = the inclination of the axis of sym-
metry of each triangle to the axis of a.
k,, kyy kyy &c., = the moment of inertia of the successive triangles about
an axis passing through their centres and parallel
to XoX. .
I,, L, I, &c., = the moments of inertia of the corresponding triangles
about X0X.
n == the number of sides in the polygon.
a=1bd = the area of each triangle.
A= na = the area of the polygon.

We have
360 ¥ ..
@=—c i, =1a h, = %d sin 1,
b=2a tan }a 7, =3a h,= %d sin 4,
. 2n—1 ..
=y 5o = $d sin 2

By (25) we have )
(3 d?sin® 4, + } 8% cos® 7))

ki=*%a

1 6 N ! ]
ky=13%a(} d*sin® §, + } b cos®,)
ky=1% a (% d? sin®4, + 0% cos®iy)

tn=1a(}d*sin? ¢, +} b cos’sy)
By equation (4) we have
I, =k, +ah?=1%a(d’sin® { + {; 6" cos’4,)
1, =k, + ah? =} a (d*sin’® ¢, + 5 8° cos?s,)
1, =k, -+ aht =1} a (d*sin® 4, + {5 6% cos® &)

In=ky+ ahy?=2% a (d"sin? &y -+ 5 B*cos®én ).
For any portion of the polygon we have
1=} a(d? zsin’c 4 5 B 5 cos?i), . . (27,
s e . . P |
in which = sin?{ =sin’} « -}-sin® 3 ¢ +-sin® § @ . . . -} sin? —g—a
2 2 2 2 5 g 2n—1
scos’¢=cos’la-tcos*ta+cos®Sa. .. +cos v—2~a
For the whole polygon = sin*¢= 3 cos® ¢; hence, by adding the pre-
ceding expressions, we find
ssin’i=3%cos’i =} n;
hence, for the whole polygon, equation (27) becomes
1=3}a(d+ 5 ), . . . (28,
For the square, d=13b, A=2b"; .. I= ;8"
Yor. LI.—TaIRD SERIES,—No.2.—~FEBRUARY, 1866, 9
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For the hexagon, d= 15 cot 80°, A=388d; .. 1==096214 g%

For the octagon, d = 3b cot 224°,A=4bd ; ... 1==0-875776d"%

Let R == the radius of the circumscribing circle.

7 ==the radius of the inscribed circle.
Then
}¥=r"—d*; r=d;
<. (28) becomes 1= 1; A(R + 27).

If r =g, then A =7*; -, 1= }ar%, which is the moment of inertia

of a circle as before found.

For the Journal of the Franklin Institute.
A Mode of Determining Graphically the Correction for the Reduction
to Centre of Station, and also for Oblique Illumigation on Signals
in @ Geodesic Survey. By JoBN R. Maver, C.E.

Reduction to the Centre of Station.
¢ being the centre of a trigonometrical station, o the angle observed
between two objects A and B, y the angle between ¢ and B, the left
hand object, » the distance o0 ¢, D the distance
A ¢, and G the distance BcC.
Correction expressed in seconds
=z‘sin (_0 + ) v sin y R
D @ :
In the first term call sin (0 4 g), e, and we

. . swtr.. D RV ..
have for this term D: B/ :: 1000° 1000 °

4 (]
{r @): correction for the first term.

The quantity r « is obtained by a fourth proportional between 90°
or radius, 7 and a the value of this last quantity being taken from the
table of natural sines.

Thus we construct a sectoral figure a b ¢, (Fig. 2,) having a & for ra-

dius, and the transverse & ¢=r, on which the natural sine of a is
marked on the lines a b and ac at d and e from the centre @, which
gives d ¢ for the quantity r a.
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Then, on the same figure a b ¢, describe an arc fg, with a radius
- "
E%U’ and intersect this arc at ¢ with the quantity 1»3—00, and
draw the line a g 2. Then, from « as a centre, describe an arc with
d e as radins whieh intersects the lines a & and @ % at A and ¢, the dis-
tance 4 ¢ will represent the number of seconds for the correction of the
first term,
The same operation is required for the second term,

equal to

rsin y R”
T e 1007
1000

The rule of signs is to make the first term positive when (04 y) is
less than 180°, and apply the negative sign with sin y.

The same scale of equal parts is used for the quantities #, i(;)OO’

¢ and X R7—200264"8
1000 **“1000° * T '

ExampLE.—Suppose 0 =51° 46/ 38", y ="T9° 24/, =1550 feet,
D = 276596 feet, and ¢ = 222454 feet,

The graphical computation gives:

First term, + 80"75; second term, — 50705, Correction = —
197-30.

The computation with the table of logarithms gives:

First term, -+ 80"-87 ; second term, — 50”-12, Correction = —
19":25.

Correction for Phase when a Tin Cone or Cylinder vs used as Signal.

z being the angle observed at the station between the sun and the
signal, » the radius of the signal, and » the distance.

. recos® Lz
* Correction = 4;~———f— B/,

Substituting 4 (cos z -+ 1) to cos’ %z and calling 8 the value of }
(cos z +4-1) from the table of natural cosines, the quantity »} (cos
2+ 1) or 7 3, will be the fourth proportional between 90° or radius, »
and 8. Then, dividing » and =" by 1000, we have

D !
10007 1900°

The construction of the sectoral figure to solve this problem is like
the above-mentioned, (Fig. 2.)

With a radius of about siz inches, this mode of graphical compu-
tation gives results which can approximate to less than @ five-hun-
dredth of an unit.

17 3 : correction.



