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rods coupling them in pairs. On the lower ends of the shafts are keyed 
four horizontal driving wheels, 1 foot 4 inches in diameter, which, as 
arranged, grip between them the mid-rail. This rail is the ordinary 
double-headed variety, bolted to suitable sleepers. The eccentrics for 
working the valve of the leading cylinder are keyed one on each of the 
forward grip wheel shafts. Those for working the valve of the after 
cylinder are in like manner keyed one on each of the trailing shahs. 
A flat iron table is bolted to the frame to support each link. The links 
are provided with suitable bosses to slide on these tables. Reversing 
is simply effected in the usual way from the foot-plate. The eccentrics 
for the outside cylinders are keyed on the leading horizontal axle, as 
they could not be provided for elsewhere. 

(To be continued.) 
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Moment of Inertia of Surfaces. By DE VoLsoN Wood s Prof. C.E., 
University of Michigan. 

In the investigation of the resistance of beams or columns, the moment 
of inertia of the transverse sections plays a very important part. We 
may always deduce the moment of inertia of a surface from the well 

expression J~.y2 dy dx; but we may often facilitate operations known 

by deducing from it some general rules. It  is my purpose in the fol- 
lowing article to give a general discussion of the subject, and apply 
each principle in the development to the solution of a problem. 

GENERAL EXPRESSION. 

Tile moment of inertia of a surface is the sum of the products found 
by multiplying each elementary area b2/ the square of its distance from 
any assumed axis. 

Let dx ~ an elementary area. 
y : i t s  distance from the axis. 

and I ~ t h e  moment of inertia of 
the surface. 

Then, according to the definition, 
y~dA-~ the moment of inertia of an element, 

(1.) a n d  

Let the surface be referred to rectangular co-ordinates. Then 
dA = dy dx ; 

. . .  = dy ax, (2.) 
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Civil Engineering. 
E~AMI'LE.--To find the moment of inertia of a 

rectangle about an axis passing through the centre 
and parallel to the ends. 

Let b- - the  breadth~ d ~ the depth; then we 
have 

I dx--~sdafoda~- 5d8 (8.1 
- J  o - ½ d  du 12 " 

FOR)IULA OF REDUCTION. 

To find the relation between the mo- 
ments of inertia about two parallel axes, 
one of which passes through the centre 
of gravity.  

Let  D = the distance between them. 
y ~ - t h e  ordinate from the axis 

which passes through the 
centre. 

Let  y = the ordinate from the other axis. 
I ~ --~ the moment of inertia about the axis through the centre. 

We have y-~- D + y~ ix hence (1) becomes 

fU~ & = f y" dA + f ~D ,' & + v~ f dA. 

But, because x ' passes through the centre, we have 2,fy' dA ----- 0, 

~hen it is integrated so as to include the whole area, and f d . ( =  A 

hence, we find 

t /~2 dA = j } "  dA --}- D' A. 

er I = 11 + D A, • (4.) 

This is called the formula of reduction, and may thus be enunciated: 
The moment of inertia of a surface about any axis, equals the moment 
of inertia about an axis parallel to it which passes through the centre, 
pht8 the area into the square of the distance between them. 

EXXMPLE.--To find the moment of inertia of a rectangle about an axis which 
coincides with one end. The distance between the axes will be ~d ~ I), and ~. ~-- bd; 
hence, (4) and (8) will give 

1 
I~-~2bdS-~ ~d~. bd=~bd a, (5.) 

From (4) we find 
11 = I - -  . %  . ( 6 , )  

~bieh is sometimes very convenient. 
For  instance, it is easier to find the moment of inertia of a triangle, 

about an axis which passes through its apex, and parallel to the base, 
than about any ether axis ; but having found this, we may easily find 
it about an axis parallel to it which passes through the centre. 
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To illustrat% 
:Let b ~ the base, and 

d ~-the altitude of the triangle. 
Then, taking the origin at the vertex, and we have 

b 
x : y : :  b:d  .'.x_--- d y, 

and (2) becomes 

~ f o cl b [,(t I y~xd~j~-_ I yS&/ =~bd'~, (7.) 
dcI 0 " 

The area-- {bd- - A. 

o 
, ,3, 

1,'aq. 4 

b 

1) ~ ~d - -  the distance from the vertex to the centre ; hence, (!~) becomes 

II =-13 bd-- ~b(.t X ~(ll-- ~ boZ s, (~. ) 

I f  the base be the axis, (8) and (4) give 
1 1 1 

RELATION BETWEEN RECTANGULAR AXES. 

We will now find the relation between the moments  of inert ia about 
the axes of  two systems of rectan-  
gular co-ordinates,  having the same 
origin, but  inclined to each other.  

Le t  o, :Fig. 5, be the m'igin, and 
yOy I ~--- Z 0 X  1 = ~ ,  

Also, Ix ~ the moment  of  inert ia  
about  xox.  

ly =--the moment  of inert ia  
about ~do~d. 

Ix~---~the moment  of  inert ia 
about x~ox ~. 

, .Fij.  5. 

X ' 

.Y 

Iyi =:-the moment  of inertia about ~jloyl. 
Then, by  the definition, we have 

i=_--_fd*dA, iy = f * * & ,  . (10,) 

= f ~  = f x '  
I~  ~ dA, Iyl , dA, (11.) 

For  the t ransformat ion  of rec tangular  co-ordinates, we have 
x '  - -  a: cos ~:? - -  ~ sin t9 } (12). 
y~ = x sin i~ + y c o s  ,8 

Hence,  we have 
x12 -[- yl~ = x ~ +~j:~ 

which is called an isotroplc funct ion,  (from the Greek  I~o~, equal, 
and ~{)on~, turning,  i.e. the distance fl'om the origin to any  point is 
the same for all inclinations of the systems of co-ordinate axes.)  

Lc t  u --fxya  and ~'  =fx>,a, ¢1a) 
Then, by combining (10), (11), (12) , 'and (13), we readi ly  find the 

following equations : 



94 Civil Engineering. 
I~, - ~  I~ c o s  ~ f1-4- Iy sin ~ ~3 ~ on cos j3 sin fl 
Iy~ = Iy sin ~ j3 + Iy cos 2 ~ + 2B cos/3 sin 
B, = (r~ - -  I~ ) c o s  9 s i n  ~ - ?  n ( c o s  ~/3 - -  s i n '  ~)  

:By adding the 1st and 2d of (14), we find 
Ix1 ~-  Iyl = Ix "4- Iy , 

(14). 

(15,) 
which is isotropic; 'rod from which we see that t)~e sum of the moments 
of inertia about pairs of rectangular axes having the same origin is 
constant. 

From (10) and (15) we readily find that 

+ = + : j i x ,  + ¢) d 

in which x 2 + y2 _--- p~ = a variable distance ; and hence, from the de- 
finition, equation (16) is the moment of inertia about an axis perpen- 
dicular to the plane of the surface. This is called the polar moment 

of inertia. We see that it equals the sum 
of the moments about two rectangular 
axes which lie in the surface, and whose 
origin is on the polar axis. 

Let  o ~ the variable angle ; then will 
pdpd~ ~ an elementary polar area 

dx ; hence, (16) becomes 

~ 3  dp do -= IP -~ the polar 

moment of inertia, (17.) 
:Ex&MPLES.--1. To find the polar moment  of inertia of  a circle, about an axis 

passing through its centre, we have only to integrate  (17) between the limits 0 and 
r for p, and 0 and 2n for 0 ; hence, we have 

on r 

~10 *] 0 
2. ~Ve may find in the same way that  we found equation (3) that  the moment  of 

inert ia of a rectangle about an axis passing tllrough its centre and parallel to its 

is ~'2 bad; llence, the polar moment  of a rectangle about an axis passing through sides, 

its centre is, by equation (16), 
1 , 1 

Ip - - i 2  bd (b~ ~ d~) - :  ~ ~, (diagonal) 2, (19,) 

that  is, it  equals one-twelfth the area multiplied by the square of the diagonal. 

Knowing the polar moment, it is easy, in some eases, to find the 
moment about an axis in the surface. 

For  instance, if the moments about the rectangular axes are equal, 
equation (16) will give 

2 f x' dA = f , '  dA ; 
.'. - -  , . ( 2 0 . )  

Hence, equations (20) and (1.8) give, for the moment of inertia of a 
circle, about an axis in the surface, and passing through the centre, 

I = ¼r~ r ' ,  . , . (21,) 
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and, for the moment of a square about an axis in the surface, parallel 
to one side and passing through the centre, (20) and (19) will give 

1 b~ +D~)=A~4.  

I f  the polar moment and one of the rectangular moments are known, 
the other rectangular moment may be easily found; for equation (16) 
gives-- 

Iy = Ip - -  Ix, . (21.) 

MAXIMUM AND MrNI~UM MOMENTS. 

To find the position of the axes (for any assumed origin) which shall 
give a maximum moment about one axis and minimum about the other, 
we will suppose that I~, Iy, and B, have been found for any assumed 
position of the axis. 

By differentiating the first of (14), and placing it equal zero, we 
find 

D/~ = - -  2 (Ix - -  Iy ) cos  fl sin ~3 + 2 B (sin 2 ~1 - -  eos~)  = 0 ; 
2 B 2 cos ~ sin ~3 • ° - -  

• I x - -  Iy sin~ $ ~ cos~ ~ tan 2 j3, . (22.) 

Thesecond derivative, placed equal zero, gives tall 2~ ~ +__ 1 ; hence, 
of the two values of ~3 found from (22), one will give the position of Ix~ 
for a maximum, and the other the position for a minimum. 

Proceeding in a similar way with the second of (14), and we find 
that when Ix~ is a maximum, iy~ is a minimum, and vice versa. Equa- 
tion (22) in the third of (14) gives B ~ ~ 0. 

Let ~t be the value of~# found by equation (22), and x 1/6 the cor- 
responding axes, called principal axes. 

B t = ]3 t ~ O, and (14) becomes 

I x ~  Ix COSa/3 t --}- Iy sin g ;3~ ~ 2 S cos ~ sin ~, "} 
Iy~-~--- Ix sin ~ ~t + Iy eos'~ t + 2 B COS ~, sin 5t ~ (23.) 
0 = (I~ - -  Iy ) Cos ~1 sin. ~ + r (cos j ~1 ~ sinful) 

By adding the 1st and 2d of (23), and then multiplying them to- 
gether, using the 8d in the reduction, we find 

I x  1 -~ -  I y  1 = I x - ~  I y  

I x  1 I y  i ~ Ix  I y ~ : B  2, 

.'. I=~ = ½ (~ + ~ ) +  v'~ ( ~ - -  I~)~ + B~; 

by means of which the principal moments may be found without know- 
ing/~t. 

EX:AMPLE.~To find the principal axes of a rectangle, origin at the centre. W e  
have already found, equation (8),  that  

Ix = ~2 bd~' and Iy ~ b~d ; we also have 
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~vhich in (22) gives 13 =_0: and  these in (23)  g ive  
Ix1  : - - I x  : lt,2bt~ 3 
Iy  1 ly  ~ ~12D3g; 

hence,  those axes wh ich  are paral le l  to the  sides and  ends of the rec tang le  are  Trln- 
c~pal axes. 

~0ME~TS I~ I ~ E F E R E H C E  TO ANY SYSTEM OF I~ECTANGULAR AXES~ 
THE ~ R I N C I P A L  ~ [ O M E ~ T S  ]~EINO KbIOWN. 

Suppose that the principal moments I~  and Iy~ are known, then we 
may easily find the moments about axes inclined at any angle ; for we 
have only to make ~ - ~  I~,  Iy = ~y~, and ~ == 0 in (14). This done 
and we have 

Ix l  ~ Ix 1 c o s  2 ~3 -3 I- Iy~ s i n  2 ~3 "] 
~y~ ==~x~ sin~z ~- ~y~ e o s 2 ~  . . (24.) 

:B l = (Ix1 - - I y l )  COS/3 SiIl ]3 ) 

If  ~ = ~y~, then ~ ,  =~y~, and the figure may be said to have its 
moments of inertia perfectly isotropic. This is the case with the cir- 
cle, regular polygons, and many ether symmetrical figures. 

:Ex*MrLES.--1.  Take  the  case of  a rec tangle  whose  sides are incl ined at  a angle  i 
w i th  the  axis o f x  1. T h e n  .F¢y. 7. ~3 ~ 90 ° - -  i, and  (24) g ives  
lxX ~ Ix1 sin21 + I y  1 cos 2 i : ~ s b d  (d2sin~i + 

b 2 eos~ i) ,  
Iy ~ ~ Ix1 cos~ i -~- Iy 1 sin~ i ~ l~  bd (d 2 cos ~ i -4- 

b 2 sin '2 i).  
I f  d ~-  b, then  Ix1 = Iy 1 ~ 3:~d4~ the  same as 

before  found.  
2. :Let the  s e c t i o n b e  W,~,q,:8.1 ~ 

an equi la tera l  t r iangle ,  ;,i,  ,~\ ~ 
w i th  the axis of  sym-  ~ \ / l \  / 
m e t r y  inc l ined  at an  
angle  i w i th  the axis of 
x 1. Then  J 3 ~ 9 0  ° - i .  ~ - - - ' ~ ,  
~Ve easily find tha t  Iy~ 
==: ~s b~d~ and  we have  / x 

\ found Ix1 ~ :~  5d 3. See equat ion  (8"). 
Hence,  (24) becomes / 

Ixl--3~2 5d (~d2s in  2 ~ +  ~ b 2 cos 2 i ) ,  . ,  (25.) 
Iyx ~ 1~ ~d (~ d 2 cos 2 i + ~b 2 sin '~ i),  (26.)  

~ IOMENT OF I57ERTIA OF A R E G U L A R  t )0LYGON.  

To find the moment of inertia of a regular polygon, let the axis of 
x pass through a vertex and the centre. 

~ " .Yi~. ,9. 

"X AJ c-I e a  O " X 

Let xl, •z, &e., Fig. 9, be the polygon ; o its centre ; ol, % kc., the 
eentrcs of the triangles ; oa, o% &e., the altitudes. 
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:Let b = h~ A s - -  A s A s ----- &C. 
d : oa~ : o% : the  a l t i t ude .  

hi : o~ c 1, h~ : o, % &e. 
a - a~Oa s = A20a~ = &e. = ang le  a t  the  v o r t e x  of  each  t r i a n g l e .  
i~ = a,oa~, i s = a~OAl, &e., - -  the  inc l ina t ion  of the  ax i s  of  s y m -  

m e t r y  of each t r i a n g l e  to the  ax i s  of x. 
k,, k~, k~, &c., = the  m o m e n t  of  i ne r t i~  of  the  success ive  t r i ang l e s  a b o u t  

an ax i s  p a s s i n g  t h r o u g h  the i r  cen t re s  and  p a r a l l e l  
to  XOX. 

~,  ~s, ~3, &e., = the  mo me n t s  of i n e r t i a  of the  c o r r e s p o n d i n g  t r i ang l e s  
a b o u t  x o x .  

n = the n u m b e r  of s ides  in the  p o l y g o n .  
a =  ½ bd = the  a r e a  of  each  t r i a n g l e .  

= na = the  a r e a  of  the  p o l y g o n .  
W e  have  

360 * 
( / - -  

n 
b = 2a  tan ~,a 

:By (25) we have  

il = ½a 7~ = ]o / s in  i~ 

iz = ~a ]~z----- ~ d  sin i~ 

"2n - -  1 
i= - -  2 a h= = ~d sin i n 

k~ =-- ~ a (~ a ~ sin 2 it + ~ b ~ cos  2 i,) 
k 2 - -  ~ a (½ d 2 sin ~ i 2 + { 5 2 cos 2 i2) 
k 3 = ~ a (½ d ~ s i n '  i 3 + ¼ b s cos s is) 

• • 

i . =  ~ a ( ~ d ' s i n ' i .  + [ b'z cos2 i . )  

B y  equa t ion  (4) we have  
I L - -  k L + aft1 s = ~ a (d 2 sin z i 1 -4- i~a b '  cos 2 i 0  
I~ = ks + ahs s = ½ a (d s sin ~ i~ + ¢ :  b' cos' is) 
13 = k3 -t- ah3 s = ½ a (d  2 sin 2 i s -at- ~'~ b z cos z is) 

rn = k,~ ~- a ~ [ :  = ½ a (d ~ s i , '  in + ? :  b ' cos ~ in).  
F o r  a n y  p o r t i o n  of  the  p o l y g o n  we have  

b '~ cos 2 i),  (27,)  x I = ½ a ( d ' z ~ s i n  2 i +  1 Z 
2n  - -  1 

in w h i c h : ~ s i n  s i = s i n  s i n + s i n  2 ~ a + s i n  2 ~ a  . . . + s l a ' - - - 2 - - a  

:~ cos ~ i = cos ~ ½ a + cos: ~ a + cos' ~ ~ . . .  + c o s ' - ~ - - ~ l a  

F o r  the  whole  p o l y g o n  :~ s i n ' / =  :~ cos 2 # hence,  b y  a d d i n g  the  p r e -  
ced ing  e x p r e s s i o n s ,  we find 

:~ sin s i = z  cos 2 i  = ~ n;  
hence,  for  the  whole  p o l y g o n ,  equa t ion  (27) becomes  

= ~ A (d ~ + ~,~ b'), (us.)  
F o r  the  squa re ,  d = ½b, A = fib s ; . ' .  I = ¢~ b 4. 

VoI,. LI.~TrTIRI) S ~ i ~ s . - - N o .  2 . - -Fr~u .~a~r ,  1866. 9 
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For the hexagon, d==½bcot30 ° , A = = 3 b d ;  . ' .  I == 0'96214 d ~. 
:For the octagon, d ----- ½b cot 2221 °, A = 4 bd ; .'. I ~ 0"875776 d 4. 
Let  ~ ----- the radius of the circumscribing circle. 

r ~ the radius of the inscribed circle. 
Then 

¼b~--- ~2--d~;  r-~ d;  
. ' .  (28) becomes I ---- ~.z )" (1~ ~- 2 r). 

I f  r ~ ~, then A ----- 7~r 2 ; ... I = ~zr ~, which is the moment of inertia 
of a circle as before found. 

For the Journa l  of the Frankl in  Insti tute.  

,4 Mode of Determining Graphically the Correction for tI~e .Reduction 
to Cantre of Station, and also for Oblique Illumination on Signals 
in a Geodesic Survey. By J o h n  R. M~Y~R, C.E. 

.Reduction to the Centre of Station. 
c being the centre of a trigonometrical station, o the angle observed 

between two objects A and B, y the angle between c and B, the left 
hand object, r the distance o c~ I) the distance 

B V / A  Ac, a n d G t h e d i s t a n c e B c .  
Correction expressed in seconds 

r sin (o -~.y) 1V/ r s i n y  l~rt 
D G " 

In  the first term call sin (o ~- y), a, and we 
D R Iv 

have ibr this term D : 1~ tt : : 1000 : ~ : : 
~V-2/0 

(r a) : correction for the first term. 
The quantity r a is obtained by a fourth proportional between 90 ° 

or radius, r and a the value of this last quantity being taken from the 
table of natural sines. 

Thus we construct a sectoral figure a b c, (:Fig. 2,) having a b for ra- 

N"  / i x , ' , ,  \ 

'.,\ \ \  
/ "  "r, -", ~ \ 

dius, and the transverse b c = r, on which the natural  sine of a is 
marked on the lines a b and a c at d and e from the centre a~ which 
gives d e for the quantity r a. 
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Then, on the same figure a b e, describe an arc f g ,  with a radius 
D R t! 

equal to i 0 ~ '  and intersect this are at g with the quantity" 1-000' and 

draw the line a g  k. Then, from a as a centre, describe an arc with 
d e as radius which intersects tile lines a b and a ]c at h and i, the dis- 
tance h i will represent the number of seconds for tile correction of the 
first term. 

The same operation is required for the second term, 
r sin ,y R r~ 
-=a--- 10o" 

1000 
The rule of signs is to make the first term pogtive when (o-~ y) is 

less than 180 °, and apply, the negative sign with sin y. 
D 

The same scale of equal parts is used for the quantities r, 1000' 

G It'r r , " =  206264"'8. 
1000' and 10OO" 

:Exa~rL~.--Suppose o ~ 51 ° 46' 38",  y = 79 ° 24', r = 5'50 feet, 
1) = 27659"6 feet, and G = P.2245"4 feet. 

The graphical computation gives : 
Firs:  term, + 30" '75;  second term, - - 5 0 " ' 0 5 .  Correction - -  

19't.30. 
The computation with the table of logarithms gives : 

t !  t,' First term, "k 30 "87 ; second term, - -  50 .12. Correction = - -  
19"'25. 

Correction for .Phas~ when a Tin Cone or C!]linder is used as Signal 

z being the angle observed at the station between the sun and the 
signal, r the radius of the signal, and 1) the distance. 

Correction ----- + r cos: ½ z ~rt. 
- -  D 

Substituting ½ (cos z + 1) to cos ~ ½ z and calling ~ the value of ½ 
(cos z + 1) from the table of natural cosines, the quantity" r ½ (cos 
z + 1) or r,~, will be the fourth proportional between 90 ° or radius, r 
and Z. Then, dividing I) and R 'r by. 1000, we havo 

D 1~ tr 

1000 : 1000 : : r/~ : correction. 

The construction of the sectoral figure to solve this problem is like 
lhe above-mentioned, (:Fig. 2.) 

With a radius of about six inches, this mode of graphical eompu- 
lation gives results which can approximate to less than a five-hun, 
tredth of an unit. 


