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I t  would be a natural remark to make, that the greater number of the 
engines and machines which have been so long at work have been 
greatly altered fl'om the original construction by the exigencies and 
accidents of practical wear and its attendant repairs. Like John's 
old knife, which still remained " John's Old knife," though it had re- 
ceived about half-a-dozen new bladesin succession, and about as many 
new handles, it might be doubted whether these engines really repre- 
sent their original construction. In one sense this may be true, and 
it is probable that only a portion of the original raw metal is still in 
combination. But then it must be remembered that in piecemeal re- 
pairs any part repair is in a great measure tied to the original form. 
The new blade of the old knife has to conform to the existing handle, 
and the new handle has to be made to the shape of the blade. The 
same must be, more or less, the case with repairs to an engine or ma- 
chine. At the same time, such a consideration points to the absolute 
necessity for a correct history--or rather engine biography--being 
appended to each engine, pointing out where and what alterati()ns and 
repairs have been made. 

The Patent Museum at South Kensington, only yet needs the "No- 
velty" to complete the trio of the engines which figured at the great 
Rainhill contest. It  is not now known where the "Nove l ty"  at pre- 
sent is, or indeed, whether it is even still in existence. We believe that 
Mr .F .P .  Smith is anxiously looking about for it, and we hope that he 
may be successful in his search. Whatlessons of the way in which "For- 
tune turns her wheel," may be read by a look at these old eng ines , -  
the progenitors of the apparatus,--the use of which is stamping its im- 
press on present life in so many direct and indirect ways. The two 
Stephensons are now dead, but their engine, which killed Mr. Huskis- 
son, raised their fortunes above those of perhaps any other engineers 
of their time. Timothy Hackworth is now dead, but his works at New- 
castle, like those of the Stephensons, are still flourishing. The Messrs. 
Braithwaite are now living, but their factory has been given up, and 
their partner of 1829, the Swedish engineer, Ericsson, is now build- 
ing "Novelties," in the way of gunboats for the Federals. In centu- 
ries hence, time will have thrown its halo of distance round these en- 
gineers, and their doings will be scanned with a kind of romantic 
interest. Let us hope that, in the course of the next century, the Go- 
vernment will have provided a decent building for the objects which 
represent such important interests, but which are now sheltered in the 
crowded and dark shed at South Kensington. 

For the Journal of the Franklin Institute. 
General Problem of Trussed Girders. By DE ¥OLSON WOOD, 

:Prof. C.E., University of Michigan. 
Continued from page 107. 

20 °. I t  is found by subjecting equation (65) to experiment, that a 
is not constant for beams of different forms, when made of the same 
material. I t  is also found that the value of ~a which is found from 
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rectangular beams does not equal the ultimate resistance of the ma- 
terial to tension or compression. 

For instance, if a rectangular wooden beam be suspended at its ends 
and broken by a weight p placed at the middle, we have, from the for, 
mula which was deduced for this ease in the preceding article, 

3 P l  
R - -  

2b  d ~ 

in which all the quantities in the second member may be measured, 
and hence n may be found. Now, bearing in mind, that, in this case 
r~ is the ultimate resistance of a unit of fibres most remote from the 
neutral axis, and we would expect to find that it equals the force ne- 
cessary either to pull asunder, or to crush a bar of the same material 
whose section is unity, when the force is applied in the direction of 
the length. 

But an examination of tables, in which are entered the ultimate re- 
sistances to tension, compression, and values of n, shows that the dis- 
agreement is too great and too uniform to be attributed to errors of 
experiment. There is a very good table of this kind in the appendix 
of "Mosley 's  Mechanics and Engineering." A careful examination 
shows that the value of n is generally, indeed almost always, between 
the others. For instance, if the resistance to tension--which we will 
hereafter call s,--is greater than the resistance to compression--which 
we will call c ; -- then we find that a is less than s and greater than c. 
This is the case with wrought iron and most kinds of wood. I f  c be 
greater than s, R will be less than c and greater than s, as in the case 
of cast iron. We find the same result by comparing tables in Weis- 
bach's Mechanics and Engineering. 

Hence we infer that the theory is not perfect; in other words~ it does 
not represent the true law of resistance of beams. 

This fact induced Professor Barlow, a few years since, to investi- 
gate the law of resistance more carefully and more thoroughly than 
ever before ; and as a result he announced a new law, ca]led " The t~e- 
slstanee to Blexure." I consider the term unfortunate ; for all the 
resistances in a beam which resist bending may properly be called 
'~ resistances to flexure," but he intended to include only a certain class 
of resistances which he thought was developed by bending, and the 
value of which he tried to determine at the instant of rupture. I think 
it may more properly be called " a  resistance to longitudinal shearing." 

He reported the results of his investigations to the Royal Society 
(England) in 1855, and afterwards published the data, experimental 
and analytical results upon which the theory is founded, in the b~ivil 
.Engineer and Architect's Journal, vol. xix, page 9, and vol. xxi, page 
111. They are also published in the Journal qf the .Franklin insti- 
tute, vol. xxxii, pp. 4 and 73. These articles from a scientific point 
of view, are looked upon as among the most valuable that have ever 
been written upon this subject. 

His complete theory involves two laws of resistance ; the first of 
which is essentially the same as that given in the preceding number, 
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19 ° ; and the second of which he calls " t h e  redstanee to flexure." 
The first law includes, and is founded upon, the following principles : 
1. The fibres on the convex side are extended, and those on the 

concave side are compressed. 
2. There is a neutral surface, along which the fibres are neither 

extended nor compressed. 
3. The resistance to extension and compression varies directly as 

the distance of the fibre from the neutral axis. 
4. Tile ultimate resistance which acts along the most remote fibre 

is s on the side of tension and c on the compressed side: s being the 
tenacity of the material for a unit of section, and c the resistance to 
crushing per unit of section. 

The second law is founded upon the following principles : 
1. The longitudinal shearing is a resistance acting in addition to 

the direct extension or compression ; and is really the cohesive resist- 
ance which is developed between two adjacent planes of fibres which 
are unequally elongated or compressed. 

2. This resistance is evenly distributed over the transverse section ; 
and, consequently, (within the limits of its operation) its centre of ac- 
tion on the compressed part  will be at the centre of gravity of the 
compressed section ; and, similarly, in respect to the extended part. 
This resistance per unit of section Barlow calls ~. 

3. I t  is proportional to and varies with the inequality of strain be- 
tween the fibres nearest the neutral axis and those most remote, and hence 

4. The " resistances to longitudinal shearing " in open built beams 
will be to that in a solid beam of the same material at the instant of 
rupture, as the depth of the solid part, is to the distance of the outside 
of the solid part from the neutral axis. 

5. Sections which were normal to the axis of the beam before flex- 
ure, will remain normal during flexure. 

6. Rupture of solid beams willtake place when the Fm 30 strain on a unit of section of the fibres most remote 
from the neutral axis, is s + ~ or c + ?, according as ~////////////////k 
one or the other is first reached. / 

To show more clearly the nature of the longitudi- / 
nal shearing, I will refer to an example given by Bar- 
low. Suppose that P, in Fig. 30, is just sufficient to 
pull asunder the bar ~ B C ~., in which case it is sup- 
posed that all the fibres are equally strained, and each 
unit resists a force equal to s. Now if another bar, 
A ]3 c D, were substituted for the former, and P ap- 
plied to the same section, c ~, it is evident that P 
would not break the bar;  for the fibres just  at the 
left of F E, will restrain those just at the right, so that 
they will not be elongated as much as they would if 
the part x~ E ])were removed. The restraining of 
the fibres just at the right of F E will have its effect 
upon the next plane of fibres, and so on to B c. Now ~ bP 
this restraining influence, this cohesion between the 
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fibres is the "resistance to longitudinal shearing ;" and it is evident 
that a portion of the force P, must be absorbed in overcoming it, so 
that it cannot produce a strain of s on the fibre ~ c. 

A phenomenon similar to this takes place in a bent beam. The fibres 
unequally distant from the neutral axis are unequally strained, and 
hence develop the "longitudinal shear ing;"  and it seems evident 
that this strain absorbs some of the bending force. Hence, it takes 
a greater force to produce a strain s on the outer fibres, than it would 
if this resistance did not exist. 

Although this theory seems rational, yet it remains to he seen whe- 
ther it is thetrue one, or even whether it is better for practical purposes 
than the theory commonly used. 

In analyzing it, we observe that all the resisting forces are parallel 
to the axis of x;  and taking the applied forces parallel to the axis of 
Y, and we will immediately obtain equations (61) and (62) ; and hence 
the remarks which follow them apply to this theory. 

I will now . . ( ). p. show how to develop the third of equations 62 Su 
pose that the beam ruptures on the side of tension. Let the origin be 
on the neutral axis ; d L the distance of the most remote fibre from the 
neutral axis ; and the other notation as in number 19 °. Then pro- 
ceeding as we did to obtain equation (65), and we find for the resis- 

s~. 
tance accordingto the first law above named, d~' and according to 

the second law ~¢ffydydx. Hence, the moment of resistance is, 

I f  the beam be rectangular, and the neutral axis at the centre of 
the section, b the breadth, d the depth, then r ---- i4  b d ~ ; d l =  ½d 

J oJ  --½d dy dx=~bd" ; and (84) becomes 

 ry- (28+8v)  . (85) 

I f  the beam be supported at its ends, and P be applied at the middle ; 
we have ~Fy=  ~Pl, and (85)becomes, 

3rl  
2 s -}- 8 ~ = bd--* . . (86) 

I f  ~o = O, e q u a t i o n  (86)  r e d u c e s  to  the form which is commonly used. 
It  is evident that two experiments are necessary in  order to deter- 
mine both s and ~ ; but they can be more satisfactorily determined by 
taking a large number of experiments, and reducing the equations by 
the method of least squares. 

I f  the theory be correct, the value of s thus found should be the 
same as that found by puliing a bar asunder by a force applied in the 
direction of its length. Barlow found for cast iron that ~----0'85 s for 
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a mean value ; and for wrought iron ~ .= ½ s nearly. (See Oiv..Eng. 
and Arch. ,Four., vol. xxi, pages 114 and 116.) 

This "longitudinal shearing resistance" not only has a value at the 
insta~at of rupture, but must act during all the stages of flexure up to 
the instant of rupture. The actual deflection therefore should be less 
than that found by the theory in common use ; but as the observed 
deflections are generally small, no marked discrepancy between com- 
puted and observed results has, so far as I know, been detected. 

21 ° To find the position of the neutral axis. 
This may be found experimentally or analytically. The former has 

great advantage over the latter for any particular ease, but the latter 
is essential for general purposes. The former must be resorted to, to 
confirm or vitiate a theory. 

-position found by "ExDeriment.--I will note a few examples where 
it has been determined experimentally. 

Barlow made a very delicate experiment upon a solid rectangular 
cast iron beam, supported at its ends and loaded at the middle, in which 
he found the neutral axis to coincide exactly with the axis of the beam. 
(See Cir..Eng. and Arch. Jour., volume xix, page 10.) He found the 
same result with a wrought iron beam under similar circumstances. 
(See same Journal, vol. xxi, page 115.) For malleable iron he found 
it to be ¼ or ~ the depth of the beam from the compressed side. (See 
JBarlow's Strength of Materials, page 330.) I t  should be observed tha~ 
this experiment was made several years before the former ones, and 
that the means employed were not as delicate as in former examples, 
I t  is possible that a more careful experiment would show it to be 
nearer the centre of the sections than that given above. 

A valuable set of experiments was made at the " Conservatorie des 
Arts et M61iers" in 1856, from which I infer, that in a wrought iron 
beam whose cross section is a double T, the neutral axis passes through 
or very near the centre of gravity of the sections. (See Morin, R~sis- 
tahoe des Mat~raux, page 137.) In the same work on pages 129, 130 
and 131 are given the results of experiments upon rectangular wooden 
beams of various qualities, which show that it passes through or very 
near the centre of the transverse sections. So far as these examples 
are concerned, the results are conclusive, and very strongly indicate 
that it generally coincides with or is very near the centre of gravity 
of the sections, when the deflecting force acts normal to the axis of 
the beam. 

.Position found by Calculatlon.--It is well known that within tho 
elastic limits, the resistance of any fibre to extension is directly pro- 
portional to its elongation, and the latter is proportional to the modu- 
lus of elasticity. This is also true r to some extent, considerably be- 
yond the elastic limit ; but in the state bordering upon rupture it is 
not true r and it is difficult to measure the strains in any way so as to 
make them available for analytical purposes. 

.~. ~9ulaTose that the deflecting forces are normal to the axis of the 
beam ; then we have only to develop the first of equations (61). 
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a. ~et the 8trains uTon the fibres be directly as their distances from 
the neutraZ axis. 

I will first investigate those cases in which the elastic limits are not 
passed. 

1. Let the modulus of elasticity for tension equal that for compres- 
sion. 

Let ~t ~- the strain upon a unit of fibres most remote from the neu- 
tral axis on the side of tension. 

go ~ similar strain on the compressed side. 
dt ~- the distance of the most remote fibre from the neutral axis 

on the si.de subjected to tension. 
do ---- similar distance on the compressed side, and other notation 

the same as before used. 
The elongations of the fibres on one side of the neutral axis, equal 

the compressions of those on the other side which are equally strained ; 
and because the strains are directly proportional to the distance of the 
fibres from the neutral axis, we have 

R~ Rc 
----- ~ ----- s ----- the strain at a unit's distance from 

the neutral axis ; and at any distance y, the strain is s y ; 
.'. s y dy dz ~ the strain on any elementary fibre. 

Hence after integrating once, we have --~dtzy dy which integrated 

so as to include the total extended part, gives the total tension. Similarly 

do 
A dy gives the total compression. Observing that the angle between zy 

these forces is 180 ° , and we have by substituting in the first of (61) 
de 

s f o d~zy d y - s  Z zy d~/ m O 

f o or z y @ ÷  .z#@** o S@=O . (87) 

Now from the mechanics we know that the ordinate of the centre 
of gravity of any section is 

_ fzyd  
Y f ' ~2]dz 

and if tl~e origin be at the centre of gravity, ~' ** O, . ' 4  zy dy . .  O, 

which is the same as (87). Equation (87) was obtained by taking the 
origin on the neutral axis ; hence the neutraZ axis coincides with the 
centre of gravity of the sections. 

VOL. ~LIX.-,-T~iaD S~aI~s,--~o. 5.--M~', 1865. 27 
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2. Let the moduli of elastlcity be 
Unequal. 

Let ~t ~ the modulus of elasticity 
for tension, 

~o = the modulus of elasticity 
for compression, 

y ~- ~r k = a n y  ordinate, fig. 81, 
7~ ---- k e ~ the elongation of 

the fibre at k, 
d x  ~ L ~ = the distance be- 

tween two consecutive sections. 
dy dz ~ t h e  area of a fibre, 
_p = the force which would pro- 

duce an elongation or compression equal to 2, of any fibre. 
Let a beam be bent under the action of any number of parallel forces 

which are normal to its axis, so as to produce the neutral axis A ~ T. B, 
Fig. 31. 

Let c ~ and K u be two consecutive sections and normal to the neu- 
tral axis before flexure, then since they remain normal during flexure 
they will take the position of c ~ and v, ~,, and will meet if produced 
in some point, as o. 

Now, instead of the deflecting forces, we may conceive the beam to 
be severed along the plane K H and a force applied to each fibre acting 
in the direction of its length, those above L ~ elongating, and those 
below compressing the fibres, and each acting with such intensity as 
to produce the same elongations and compressions as the deflecting 
forces. Le tp  be one of the forces, producing an elongation or com- 
pression equal ~,. We know that within the elastic limits, the force 
necessary to produce this elongation varies directly as the modulus of 
elasticity, the section and the elongation, and inversely as the length 
of the bar; hence, 

ZdUc   Z d u g z  . (88) P--- d x  or - - ~ r ,  

according as it is tensive or compressive. 
But because the sections remain normal to the neutral axls~ we have 

from the similarity of triangles. 

~ ~ e --- constant, . . . (89) 
Y 

equal the elongation or compression of a fibre at a unit's distance from 
the neutral axis. 

.'. 2 ffi e# which in (88) gives 
e ~t y dy dz e ~ y dy dz . (90) 

P -'- dx or dr, 

H e n c e  the total tensive force is e 2t f f  v d~ 
d x d d o  
V Eo ~pdc 

and the total  compressive force is . ~ - - j j  o y dy dz; 

hence  the first of (61) becomes 
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Then (02)becomes ,fo~)~fy ayd, = 

or ½ r b F =  ½ b (d--y)  ~ 
d 

• '" Y = 1  + V ;  

I f  r = l ;  y = ½ d ,  
r = O ;  y = d, 
r = o c  ; y ~  O. 

General _Problem of Trussed Girders. 815 

ff ' st y dy dz--E dz = 0 , (91). 

Equation (91) can be solved when the form of the section is known. 
f / $  32 EXA•PLE.--Supposo the sections are reetangu- 

1) lar, Fig. 32. 
Let A D = b ,  As ~ d, 

y = A E = the superior limit, 
d - - y  = ~ z = the inferior limit, 

St 
= r, for convenience. 

Eo 
Take the origin at ~, 

f f  #.d--y d 
do  v y& 

. (92) 

I f  y is known, the ratio of the moduli are easily found ; for by (92) 
we have 

Equation (91) is not so easily solved for the more complex forms. 
3. To find the position of the neutral axis so as to give a minimum 

strength. 
To solve this we have to make the first member of (65) a minimum. 

We assume that 1~ is the same for all positions of 
F l a  3~., the neutral axis. We have called I the moment 

~ of inertia about the line of intersection of the neu- 
tral plane and the section. 

Let  I' ~ the moment of inertia about an axis 
parallel to the former and which passes 
through the centre of gravity, 

D ~ t h e  distance between the axis, 
A = the area of the section, 
a ---= the distance of the most remote fibre 

from the axis which passes through the 
centre, 

d r =  a + D ~ the distance of the mostremote 
fibre from the neutral axis. 

Then from the well known formula of reduction, we have 
I==I1-~- D2A. 

Hence, the first member of (65) becomes 
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I 11 -b D' A (98) 
a " " 

which is to be a minimum. Observing that I', a, D, and A arc con- 
stants; and differentiating, placing equal zero and solving, gives, 

~ - - - 7  (94) D=--a+_ i 
The positive value of D makes the second differential co-eflioient posi- 

tive ; hence, it is the minimum ; and the negative value is the maxi- 
mum. The maximum value is really the minimum of the negative 
values. 

EXA~PL~.S.--1. Suppose the sections are rectangular. Let d be the 
depth, and b the breadth. 

Then a - -  ½d ; 11 ~ 5  d s ; A ~--- 5 d, 

which in (94) gives 
f + o . o 7 7 8 2 d  

D --  ,( _ 1"07732d 

The positive value in (93) gives ~ ~ =  0"1547R5 a ~. (95) 

If  the neutral axis passes through the centre of the sections, D ---- 0 
and (93) gives {~ n b d ~ --  0"1666 R 5 d ~. . . (96) 

2. Suppose the sections are circular. 
Then, a - - - - r ;  2 = ¼ ~: r4 ; A ~ ~ r ~ 

S -~ 0'11807 r 
.'. D - -  ~. --1"11807 r 

I 
and ~ l =  0"7415 rSn. 

I f  the neutral axis passes through the centre of gravity of the sec- 
tiona ~a m 0 and (93) becomes 

I 
R ~ = 0"7854 r 8 

F/~' ~4 ~ 3. Let the sections be isosceles triangles, :Fig. 34. 
Let d ~  the altitude, b ~ the base. 

... D dL-~ 0"0403 d 
_ . . .  ~ - -  0"04043 d 

I f  D = 0 we have ~--~ 0'04166 d 

This analysis leads to some interesting considerations. According 
to the second hypothesis it appears that the neutral axis will be nearer 
the side which has the greater modulus of elasticity. That is, if the 
modulus for compression is greater than for tension, the.neutral axis 
will be nearer the compressed side. But the modulus for compression 
ia nearly the same aa for tensiou in all the materials with which the 



General _ProSlem of Trussed Girders; 317 

engineer has to deal ; hence, so long as the elasticity is unimpaired, 
the neutral axis passes very near the centre of the sections. But as 
the strains are increased, and the elasticity becomes impaired the third 
hypothesis shows that the neutral axis moves from its original posi- 
tion towards the side which offers the greatest ultimate resistance to the 
strain, until, at the instant of rupture, the distance between the cen- 
tre and neutral axis is D, equation (94). 

The latter reasoning furnishes an amusing paradox; for if, in a 
rectangular beam, we suppose that the ultimate resistances to compres- 
sion and tension, as well as the moduli of elasticity, are exactly equal, 
it follows that both sides of the beam would be equally impaired by 
the. strains ; and hence, the neutral axis could not move, but must re- 
mum at the centre, in which case, the beam would be stronger than if 
One of the resistances were slightly increased. 

The relative strength of the beam in the two cases is shown by equa- 
tions (95) and (96). The paradox is purely theoretical, for no mate- 
rial is so perfectly homogeneous as torealize the conditions upon which 
it is founded. 

If  a rectangular beam be supported at its ends and is broken by a 
.weight p, applied at the middle, we know that the moment of the weight 
is ~ l ;  and this must equal the moment of resistance ; hence we 
have, 

according to equation (95) 0'1547 ~ba~m¼Pl (97) 

" " (96) 0"1666 Rba~¼p/ (98) 
We see that the same general law holds in these equations ; vlz : 

that the resistance of a rectangular beam varies directly as the breadth 
and square of the depth, and inversely as the length. 

We have supposed that R is constant, and hence must be determined 
by means which arc independent of any theory of transverse resist- 
ante, unless we succeed in establishing the true theory; for each theory 
gives a value peculiar to itself. 

Thus, in equations (97) and (98), all the quantities except R may bd 
found by direct measurement and R found by simple computation; 
but the two equations give different values. It  makes no difference 
which equation is used, provided we use the same one in practice that 
we do for obtaining the value of R ; but unless the theory be correct 
R must be determined for each form of beam used in practice. When 
the true theory is established, it will give the same value for the con- 
stants in all forms of beams which are made of the same material. 

I am not aware that the last hypothesis has been investigated be- 
fore, and I have not now the time to apply it to experiments to see if 
it possesses much merit. A glance at it, however, inclines me to the 
opinion that it possesses little or no advantage either theoretically or 
practically over the commonly received hypothesis which fixes the neu- 
tral axis at the centre of the sections. In connexion with Barlow's 
theory it may be found to be of great value. In my next I will de- 
velop the f~rmulas which will be applicable to the case. 

(To be continued.) 

~7 • 


