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General _Problem of Trussed Girders. By DE VOLS0N WOOD, 
Profi of C. E., University of Michigan. 

( C o n t i n u e d  from page  311.) 

The formulas which express the strains upon the several parts of 
trusses which are in common use, should be as simple as possible, and 
,~'hen possible should be continuous functions of the strain and dis- 
tance from some fixed point, as one end for instance. This cart 
generally be done when the curve of the chord follows an algebraic 
l a w ,  

We will suppose that the bays on the lower chord are all equal to each 
other, and that the load consists of equal weights placed at the upper 
or lower joints. If  these hypotheses do not correspond with any 
practical case resort may be had to the equations already given. 

14 °. Let the lower chord be horizonlal and the upper one parabolic, or, 
i f  polygonal, let the vertices of the polygon be in a parabolic arc. 

Some parts of this problem were very fully discussed in my article 
on the " Trussed Arch,"  found in the April number of this Journal 
for this year, on page 223. I shall therefore notice it very briefly 
here, merely showing how to apply equations (20) to this case. 

F/G. ll. 
eZ ., 

Y 

Let Fig. 11, represent the truss. 
Let N--~ total number of bays in the horizontal tie, 

n~---the number of the bay considered, counting from either 
end, 

]) ~d4~-greatest  depth of the truss, 
l z l e n g t h  of a b a y = l - - 2 ~ 2 - - 3 ,  &c., 

p =one  of the equal weights which constitute the load, 
w : t h e  total load when uniformly distributed over the span; 

and the other notation the same as before given. 

W 
Then p = ~ .  

We first suppose that the bridge is uniformly loaded throughout 
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with equal weights placed at the joints 1, 2, 3, &c. Then we readily 
find ~ . . . .  } ( ~ - - l ) y ,  ~o~p ~ ( n - -  1) p ; x 1-- nl (26) 

=~=~ (~-- n ) . ,  ~ o= rx = ~n ( n - -  1 ) / .  and tt 

These substituted in the third of equations (20), and reduced will 
give 

FN 2 

Equation (27) being independent of n, shows that the strain on the 
horizontal tie is constant throughout. 

I find that the simplest forms for the values of F and 1%, are found 
bv eliminating among equations (20) and placing the results in tile 
following form : 

. 0 V--~.JP--II t tan i 
'2'., cos ..... I-1- tan 0 tan i (28) 

y sin i V--Xo~P - II, cot i 
=-%ot~-co~-i . . . .  i - - -  (°-9) 

In the article referred to above it was shown [equations (13a) an4 
(14)] that, 

IN ~ . 4 D  
tan 0--4Dn(N__n)  , and tan ~----~-~(~--2n-61) (30) 

Equations (26), (27) and (30) will reduce (28) to 
F,,. cos 0 = 0 ; 

hence there is no strain on the diagonal ties for an uniform load 
throughout. I t  is evident that the strain on each of the vertical ties 
is p, and that they transmit the strains from the lower chord to the 
arch. 

Making F ~  0 in the first of (20) and we have F cos i ~  t which is 
a simpler equation, for this particular case, than (29). I t  corresponds 
with the first of (16). 

This discussion shows that to produce strains on the diagonal bars 
it is necessary to load the bridge over only a part of its length, or 
else unequally load the joints. 

I f  the diagonal bars act as ties, and the bridge be loaded for maxi- 
mum shearing, we have for the strains on the n t~ tie, [see equation 
(17), page 229 of the April number], 

( N - - n + 1 )  
r~ cos O = 2N ( n - -  1) P • (31) 

I f  the diagonal ties sustMn the load which is at their lower ends, 
we must add p to the above expression. 

Let n - - l = n  ~ .'. - - n + l = - - n  ~ and (31) becomes 

r~ oos O = -- 2 ~ - - P  (31') 
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~'hich is the form taken by the equation when the bars act as braces. 
(See eq. 15, p. 228 in the April :No.) 

Equation (3U) shows that the strains vary as the product of the 
segments into which the span is divided b21 the vertical bar which passes 
through the upper end of the inclined tie. 

I t  is easy to show that the strain on the horizontal chord is greatest 
~'hen the bridge is completely loaded ; hence, for an uniform load wc 
have for the greatest stress on this chord 

_ p l ~  2 
~q----8D-' as given in equation (27). 

Similarly, the greatest strain on the arch is for a full load ; and if 
the load be uniform, we have 

_ plN ~ 
P cos i-~ ~r I - -  ~ -  . : (32) 

as given above. 
From (30) we may find 

/N 2 
COS i 

V ~ - t -  16D~(N - - 2 n  q- 1) ~, • (33) 

which reduces (32) to 

- P ( 3 4 )  F - - ~ V t ~  --~16D 2 ( N ~ 2 n + l )  ~ 

From (30) we may also find that 

1 __V 16D~N ~ (N--  n) ~ + l~  ' 
cos 0 4Dn(N - -  n) 

which reduces (:31) to 

(N- -  n-}- 1) ( n - - l )  V1---~2~-~ (N ~ n)~ ÷ l'~N ~ 
F~-- 8DNn (N--n) p (35) 

Equations (27), (34) and (35) are necessary and sufficient for solv- 
ing the problem. 

:Before leaving this problem it will be well to observe that for a load 
unitbrmly distributed over the whole length v--Xw--~-,~ But in this 
case only one-half the load on each of the end panels causes strains 
on the truss, because said half is sustained directly by the abutments, 
or supports. Making this deduction and we have for the re-action 
which causes straias v----½ ( N - - 1 ) p  as given in equation (26). 

In order to bring together, in this connexion, all the equations for 
computing the strains on this truss, I copy the following from the 
article above referred to. 

For ma~ximum shearing in the 'panel  system when the load is on 
the upper chord, we have 

c o s  i . . ( 3 6 )  

82  * 
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For maximum strain on the upper and lower chords use equations 
(27) and (32). 

In the Triangular System, for maximum shearing, when the load 
is on the upper chord, we have 

F 2 cos 0 - -  ( ~ -  n)~ l- 4n~--1 --1 
2~ L 4 n ~ - - 4 ~ - l J  p' (37) 

~vith the load on the lower chord, we have 

(~r -n) ( tc - -n+l )F  4nZ--1 "] (38) 
r~ COS 0 = 23 L - 4 n ~ i _ J  p 

[N 2 
tan O = 2D [N*-- (~--2n--1)  ~] (89) 

Equations (27) and (82) may also be used for this system, for find- 
ing the strains on the chords. 

15 ° . Let both chords be horizontal. 
For this make i ~ 0 in equations (20) and they become, 

tt A-F~ sin o = t~, ] 
r z c o s o = v  - - : % ' r  ~ (40) 

fID ~ - V x | - -  ~o x PX 

in which I) is the total depth. 
The second of these equations shows that the ties or braces, as the 

case may be, resist all the shearing stress. 
For an uniforin load v~½wL, and at the middle section ~/P-----½wI,, 

which in (40) gives F2----0 , which shows that no ties or braces are needed 
at the middle. But it will be shown hereafter, that if the uniform 
load consists of equal weights placed on the joints, there will, in some 
cases, be a strain on the middle braces. 

LET US FIRST CONSIDER A SYSTE-~I OF TRIANGULAR T R U S S I N O - - s e e  

Fig. 12. 

0 O 0 @..@ 0 , ,  
S , 

y 

Let the bays be of equal length, and the bars be equally inclined. 
.Let the equal weights be on t]~e joints of the upper chord. Then 

the total load is Np. .'. V~--½Np. 
Let a vertical s-ection be mad-e just at the left of g, and call be the 

n ta bay counting from A ; or to be more specific, let n be the number 
of bays between the end and the foot of the brace considered. Then 
we readily find for the section gx, ' 

~o z P .--= np 
x, - -  ( n  - -  ½) Z 

~o~r * =½n ( n - -  1) pl. 
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These in (40) give, 
H ~ F  2 s i n O L - I t  1 "~ 

F 2 cos 0---- ½p (~ - -  2n) ~ (41) 
.~. =~ [~ @~-- 1) - -  2~ ( ~ - -  1)] pz 

1 1 2D 
• C O S ~ - - - O  %- . . . . . .  We also find tan o ----- - ~ ,  sin o --j41)2H_l ~ ; V4D~+P • 

For the braces which incline the same way as g c, sin o will be ne- 
gative ; for all others it is positive. 

I f  N is even, we have n = ½ N for the middle braces, which in the 
second of (41) gives F 2 ~--- 0 ; or there is no strain on the middle braces ; 
but if N is odd, we shall have n = ½  (~ + 1) or = ½ (N- - l )  for the 
middle braces. These values in the second of (41) willgive ~'2 sin 0 
~- + ½ p. :For the end braces n -- 0, which gives F 2 sin 0 ~-- ½ N2 ~--- v. 

~or maximum shearing let all the joints on the left of g be loaded 
and those on the right be unloaded. Then we readily find: 

the total load = (N--n) p, 

v-- ~ 2, 

~o ~ P ~--- O, 
:~o P x=-- O, 

x, = (~--½) I. 

These substituted in (40) give, 
rI + F 2 s in o ~  H, 

! 
r 2 c o s o - -  ~ p 

. (42) 
(N-, , )~ I a D -  ~ @ ~ - - 1 ) l  j 

Bu~ to combine the 6ases of uniform load throughout, and an uni- 
form load to produce maximum shearing, we will suppose that the 
uniform load is the weight of the frame, and let w I ---~ w --  ~ ~ the 
weight of a bay in length of the frame. Then if p ~ w, in (41) those 
equations will give the strains, and by the aid of (42) we have for the 
strains, 

tt + r2 sin o = it, "1 
( N - - )  ~" I r z cos o = ½ w, (N--2 n) . ~ - p  } (43) 

t~,D--~lE{N(2n--1)--2n(n--1) }wvl-~(2n-1)p~ J 
For an uniform load throughout including the weight of the frame 

we readily have from (41) 

t t ' q  I- F 2 s in  O ~ H  I ~ 

r z cos o -~ ½ (N--2 n) (p + w,) ) (44) 

(2 n(n--l/'](p+wO H t D ~  ~- 
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The third of (44) is greater than the third of (43); hence, for the 
strains upon the chords we use equations (44). :For n less than ~ N, 
the second of (43) is greater than the second of (44) ; hence, we use 
the former to find the strains upon the braces. 

Similar expressions might be found when the joints of the lower 
chord arc loaded, but we ~'ill omit them and pass immediately to the 

:PANEL SYSTEM. 

For a definition of this system see number 8 ° of this article. Let  
figure 13 represent the case. Many bridges have been made in this 
.country upon this principle ; among which I will mention the follow- 
lng : 

Howe's Truss, in which the chords and inclined bars are made of 
wood, and the vertical ties are of iron, (See this Journal vol. iii. 3d 
series, p. 289, also~ Silliman's Journal vol. xviii, p. 123): Pratt 's  Truss, 
in which the chords and vertical struts are of wood, and the inclined 
bars are irou ties, (see Vose's Hand-book of Engineering, p. :~54): 
Long's Truss, which is composed entirely of wood, and the inclined 
bars are braces, (see this Journal vol. v, 2d series, p. 231.)" Whip- 
ple's Truss, which is composed entirely of iron, and the inclined bars 
are ties, (see Appleton's Dictionary of Mechanics--the last edition-- 
article Bridges,) and Jone's Truss, which is also made entirely of iron, 
(see Scientific American for 1863, vol. ix, p. 193.) These Trusses 
differ in the details of their construction and not in their mathemati- 
cal properties, and as it is only the latter that we propose to discuss "~'e 
shall not dwell upon their points of distinction. Many other trusses 
partake of some of the properties of those above mentioned. 

We now proceed to discuss the theory. The strains upon the dia- 
gonal bars will be the same whether they act as ties or braces ; also 
the strain upon them will be the same whether the load be on the 
upper or lower chord. But the strain on the vertical ties (or struts, 
as the case may be) is not the same for the load on either ctmrd. 

I t  may be seen from the second of (40) that the vertical components 
of the strains on the several braces which are between two consecu- 
tive weights, are equal to each other. :For, v being constant, the first 
member will remain constant as long as :%~ 1" is constant, and this is 
constant between two consecutive weights. 

From this we see that when the load is on the lower chord, the ver- 
tical components of A f and f a  Fig. 13, will equal each other ; so of 
a g and g b. But if the load be on the upper chord, the vertical com- 
ponents o f f a  and a g equal each other; so of g b and b i. I f  ties be 
used instead of braces, and the load be on the upper chord, then will 
the vertical components on fb  and bg equal each other ; but if the load 
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be on the lower chord, the vertical components on a f  and f b  equal 
each other. I f  there be no load between c and A, the vertical com- 
ponents will be the same on all the bars between c and A. 

Let n be the number of the panel counting from A, in which the 
strains are considered, which will be the same as the number 
of a brace (or tie) counting from ttle same end, and let the 
other notation be the same as given above. 

Then for an uniform load in which the weight of the bridge is con- 
sidered, we have 

(N--l)  (p -}- w,) = the total load, 
v = ~ ( N - - l )  (p + w,), 

Z~o oP = ( n - - l )  (p q- wt) , 
x, ----- n 1 for a section just at the right of q, 

:~o ~ P x = ½ n l ( n - - 1 )  (pq-wt). 
These in (40), give 

H "~ F 2 sin O ~ H [  ) 
~2 cos o = ½ (~r - -  2n 4- 1) (p + w~) } (45). 

n,D = ½ ( N - -  n) nl (p + %) 
The third of these equations shows that the strain on the lower 

chord varies as the product of the segment into which the span is divided 
by the vertical bar which passes through the u2oper end of' the brace (or 
tie) which belon98 to the panel considered. 

For maximum shearing there will be ( n - - 1 )  unloaded joints, and 
hence (~T--n) loaded joints, but still the weight of the frame must 
remain as an uniform load throughout. For  this case we readily 
find, in the same way that we found equaLions (44) that, 

tl  + F 2 s i n  0 = I~f 

~',, cos o == ½ (~ ~ 2n q- 1) w~ -~ ( y ~ n )  ( x - - n + l ) p  [ 
- 2 ~  (46) / 

For n less than ½N, the second of (45) is less than the second of 
(46); hence, we use the latter to compute the strains on the braces. 
For  the strain on the chords use (45). 

There is a point at which the shearing stress is zero ; and it may 
be found by placing the second of (46) equal zero and solving for n. 
The general expression thus found is lbng and inconvenient, but it 
may be easily shown that there is one value between ½x and ~'--this 
we will call no. The other value exceeds N, and hence is inadmissible. 

For  example, if p = w,, and ~ = 12 we find n o = 7"9 
p=gw~, and ~ = 10 we find n o = 6'8 

In  this way a table might be formed with the argumentsp, w~ and x. 
The second of (46) is positive for all values if n between 0 and no; 

and negative'for all values between n o and >'. 
To show more clearly the force of this equation, let us suppose that 

the frame is loaded uniformly throughout, and that it moves off in the 
direction from a towards ]3. The strain on a f  will be greatest when 
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all the load is on and is found by making n = l  in tlle second of (46) ; 
the strain on a g  is greatest when the rear end of the surcharge has 
reached a, and is found by making n = 2  in the same equation: the 
strain on bi is greatest when tile rear end h'~s reached b, and is found 
by making n = 3  ; and so on to n = n o ,  beyond which the expression 
becomes negative which shows that tics must be used instead of 
braces;  or "~That is equivalent, the brace must be inclined the other 
"~'ay, like di, for instance. The s~me phenomenon is observed if the 
load moves from ~ towards A. Wc observe thz~t, counting from either 
end, the braces beyond n o incline in an opposite direction to those 
within that value, h 'om 0 to ~ ,  or ½ (N + 1), the bars are usually 
called main braces or main ties; from ½N to no, counter braces, be- 
cause riley incline in an opposite way h'om main braces. 

Fig. 14 is a gr:,phical representation of equations (46) and the prin- 
ciples which h~ve here been developed. 

fl#14- [ _ _  - - ~  

r / / - -# -=-~-~  1 
~r+-I I--~, 

We observe that the first term of the second member, of the second 
equation of (46) is positive, for n less than ½ (N+I)  and negative for 
n greater than that value, therefore, when the surcharge extends over 
half or more than half the bridge it conspires with the weight of the 
frame to produce strains upon the main braces ; but they act against 
each other to produce the strains on the counter-braces. When there 
is a strain on a counter-brace, there is none on the main brace in the 
same panel. Between n o and :~ the effect of the surcharge is merely 
to relieve the main braces of a portion of the strain which is produced 
by the weight of the frame alone. 

_~or a queen post truss we have ~ ~-- 3, in (46) ; 

.-. r:  cos 0 = (S - -  n) w L + ~ ( 3 - - n ) ( 4 - - n ) p ,  

and for the end brace or rafter make n = l ,  

... F~cost)=wL+ P. 

:For the braces in the middle panel, make n = 2 ,  

.'. r ~ c o s 0 : ½ p .  

Braces are rarely put in the middle panel in the queen post truss, 
for the stiffness of the frame is relied upon to resist the concentrated 
load. 

For single rafters make ~ = 2 ,  and n = l ,  in the second of (46) ; 

.-. r2eos e = - ½ ( w ~  p-) 

}6 ° . The principles just  stated are more forcibly illustrated by 
supposing that the ties are so near each other as to be considered 
continuous, and that the load is continuous and uniform. 
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For this, let x = t h e  length of surcharge which is continuous from 
one end, see Fig. 15, 

r-----weight of surcharge on a unit of length, 
L=length of frame, 

w----weight of a unit of length of the frame. 

rx2 J:-/G 15 V 

Then v = ~WL -~ 2L _-- . . . . .  l 

f 
=jP=w(L--x), A 

and the second of (30) becomes 

~.X 2 
F~ cos ~ = ½w (2x--~)  + -~ = y  (say) . (47) 

This may be considered as the equation of a curve. 

For x = O ;  y = - -  ½wL 

~=0 ; x =  - - - -  -'- "~ + ~ L (48) 

= 0 ;  x = - - - - .  
r 

Fig. 16 is a geometrical illustration of equation (4"/). 
From (48) we see that the curve crosses at D, a point between A 

and the middle of the span, For instance, 

if r = 1 0 w ;  x----O'231n ] , , ~ i i ~ ~  

r =  5w; x=0"299L A--D> 
r ~  2w; x=O'366L ""~" ,c 
r :  w;  x----0"414L ........ " ............ 

r :  O; x =  ½L. (See equation (47), 

From c to ]) the braces incline from the support c, and from h to D, 
they incline from A. I f  the load moved in the opposite direction, the 
ooint of no shearing would be at I) ~, and between 1) and D ~ braces must 
]nelino both ways to resist the strains arising from loads moving both 
ways. 

Equation (47) may be separated into two parts;  one being the 
strains due to the permanent load ; the other, to the surcharge. Call 
the former Yz ; the latter y~ ; and we have 

' y ,  = w  ( x  - -  ½T,.) . ; . . ( 4 9 )  

9-X ~ u ~ = ~ -  • (50) 
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:Equation (49) shows, that for an uniform load extending over the 
whole span, the strains increase uniibrmly from the middle towards 
the ends. 

/ = ~  Equation (50) shows that they increase as the 
].~,.. ordinates of a common parabola, counting from one 

eM. The axis of the parabola is perpendicular to 
.:ZI[.~I the span. Fig. 17, represents equations (4'0) and 

i ................. 
17 ° . It  is desirable to have some easy mode of determining whether 

a bar is subjected to a thrust or pull. It is evident that the bars of tile 
upper chord are all subjected to a thrust, while those in the lower 
chord are subjected to a pull or tension. But the inclined bars may 
be subjected to either, and in varying circumstances to both kinds of 
strain. To determine to w'hich strain any bar is subjected under 
any given condition; we observe, first, that the shearing stress is 

{ positive or upwards } 
negative or downwards when the second members of (40), is 

{pos i t i ve}  
negative " I f  we conceive the load to be divided by a vertical 

plane so that the part between ~, and the plane shall equal v, see fig. 12 
or 13, then will the shearing stress between v and the plane, be positive ; 
and beyond the plane it will be negative. Or, this principle may be 

{P°sltive } according as the stated thus: the shearing force will be negative 

plane section is{ nearer } more remote than a plane which divides the load 

into two parts respectively equal to the re-action of the supports. 
We next observe that all the bars which are similarly situated on 

either side of the dividing plan will be subjected to like strains. 
Finally, the brace ~e (fig. 12, or AJ' fig. 13) is subjected to compres- 

sion, and its angle of inclination and the shearing stress are both 
positive ; hence we have lhis general principle; for  ordinary trussed bridges: 

{ thrust I when the or its a.gle of incti- . / t  bar is subjected to a pull 

nation is I the same as l the sign of  the shearing stress on a plane sec. contrary to 
tion which passes through the bar. 

This rule which is essentially that given by Rankine for a similar 
case, (see his Applied Mechanics, p. 161) fails in many cases when 
applied to trusses of different form. For instance, in the double raf- 
ter, as shown in Fig. 18, the inclination of both the right hand rafters 
is positive, and the shearing stress is positive; yet the lower one is 
subjected to tension. 
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In Fig. 19, all the bars have a positive inclination, while the alter- 
nate ones are subjected to tension. /:/~z8 

Tredgold in his Carpentry (Fourth 
edition p. 12) gives the following rule 
to distinguish ties from struts. 

e 

"Le t  a parallelogram be constructed on the direction of the strain- 
ing force as a diagonal, the sides of the parallelogram being parallel 
to the sustaining forces ; then, let the other diagonal of the parallelo- 
gram be drawn ; and, parallel to it, draw a line through the point 
where the directions of the forces meet. Consider towards which side 
of this line the straining force would move if left at l iberty; and all 
supports on that side will be in a state of compression and all those 
on the other side will be in a state of tension." 

For instance, in Fig. 18, construct a parallelogram on A v as a dia- 
gonal, having its sides parallel to A B and A c. Draw e e t through A 
parallel to a e. ~ow if  v were free to move it would move vertically 
upward, and as A B is above e e r it would, according to the rule, be 
compressed and A c extended. The rule draws a correct conclusion 
in this case ; still it is not infallible. For if we suppose there is a 
single weight acting on the frame, as shown in Fig. 19, and we apply 
the rule to it, we will find that all the bars at the right which are 
marked c, should be subjected to tension ; whereas, they are really sub- 
jected to compression. The rule also decides that the lower bar is 
compressed, whereas it is extended. In justice to the rule, however, 
I should say that if we suppose that two inclined bars sustained the 
weightwneglecting the influence of the horizontal t ie-- i t  gives cor- 
rect results. But with this admission I find that it fails in numerous 
instances in the arched truss. I t  can then be relied upon only in cases 
where two bars--and only two--are concerned in resisting the force. 
Tredgold applied it to such cases. 

Robison in his Mechanical Philosophy, vol. i. p. 504, gives the fol- 
lowing rule : "Take  notice of the direction in which the piece acts 
from which the strain proceeds. Draw a line in that direction .from 

VoL. XLVIII.--THI~D S~aI~s.--No. 6.--D~c~,~B~R, 1864. 33 



386 Civil .Engineerb~g. 

the point on which the strain is exerted ; and let its length express 
the magnitude of this action. :From its remote extremity draw lines 
parallel to the pieces on which the strain is exerted. I f  one of these 
lines cut the bar, or the bar prolonged in the direction of its remote 
end, the bar will be compressed ; but if it cut the prolongation in tho 
opposite direction it is a tic." This rule is also given in the Eneyclo- 
pedim ]3ritanica in the article on Carpentry. 

This rule is more nearly general than either of the preceding, and 
yet it must be used with caution and with some limitations. To illus- 
trate it, refer to Fig. 19, and let ~a represent the re-action of the sup- 
ports, whicrh is vertically upwards. Through a draw a line parallel to 
the lower chord; it cuts the bar A d ; hence Ad is a strut. :Now the 
force in the strut acts from A towards d ;  therefore, draw d e in that 
direction from d, and proceed as before, and we see that the upper 
chord is compressed and the next bar extended. :Proceed in this way 
until we come to the point where r is applied : or generally ; commence 
at either end and follow the rule to the point where the vertical shear- 
ing stress is zero. The limitations to which I wished to refer, is--we 
must not pass the point where the vertical shearing stress is zero. 

I have said the rule must be used with caution. :For instance, in 
:Fig. 19, to find the strains upon the bars which concentrate at g, 
we have found that the bar dg  is a tie, and to produce tension on 
~he part g o, it must act from g towards o ; through o draw o i paral- 
lel to mg ; it cuts .~g at i ;  hence, we would be inclined to infer that 
A g is compressed, but we found while considering the forces at a, 
that it was extended. We must therefore infer that the point i be- 
longs to the prolongation of ng ; and hence ~g is extended. I f  these 
cautions and limitations be observed I think that the rule will always 
give correct results. 

My rule has been to observe that the inclined bars commencing at 
either end, are alternately compressed and extended up to the point 
where the shearing stress is zero; and that all parts of the upper 
chord are compressed, and of the lower are extended. I t  is not diffi- 
cult to determine whether the first one is extended or compressed, 
and hence, the rule is easily applied. 

In the next article I shall consider some cases in which the axis of 
Y intersects more than three bars. 

(To be Continued.) 

_~lons. Crepin's .ExTeriments on Baltic Timber Creosoted under 
.Bethell's -Process. 

[Annales  des Travaux Publics de Belgique.] 
From the Lond. Practical Mechanic's Journal, August, 1864. 

The experiments undertaken by me in 1857, at Ostend, to ascer- 
tain the relative preservation of timber prepared with sulphate of cop- 
per, and timber prepared with creosote oil, when placed in the sea, 
and the relative resistance of such differently prepared timber to the 
attacks of the Teredo worm, have been previously given to the scien- 
tific world. 


