
806 ~ivil 1Engineering. 

therefrom ; though one or two offices are understood to be ready so to 
consider the injuries. 

We have hinted that there is some reason to apprehend that the 
embankments of the Thames, which are said to make in the total 300 
miles, are not as they should be for security. The danger averted,N 
and, as we have shown, through a most fortuitous conjuncture of cir- 
cumstances,--will, we hope, incite the several Commissioners, and the 
Conservators of the Thames, to consider whether better survey, and 
more frequent reparation of the embankments and sluices are desirer- 
ble ; and whether it would not be well to prevent such risk as is proved 
to be incurred by the storage of gunpowder iri a position where explo- 
sion may cause a breach. 

For the Journal of the Franklin Institute. 

General _Problem of Trussed Girders. :By DE VOLSON WOOD, 
Prof. of C. E., University of Michigan. 

(:Continued from page 236.) 

I f  the diagonal bars act as ties, and b c, Fig. 5 is subjected to a 
strain, we will make a section just at the left of b. We might use the 
former section and take the origin at c; or we might let the origin 
remain at a, but in the latter case we would have two moments, one the 
moment of b c, the other of cd .  The first being the simplest~ we will 
take the origin at b. 

Considering as before the forces at the right of the section~ and we 
have to consider the strains on the infinitely short parts of the bars 
a b, bc, and ed .  To produce tension on this part of bc  the force 
acts from b towards c. Therefore we have o~z = 90 ° -t- 8 and the other 
angles as before. These in (10) give 

cos i - - F  t COS il--F 2 sin 6--~-0 ) 
Y sin i - - F  ! sin i l+  F2 cos O~-V--:~o~ e i . (12)  

F[ ]~ COS i t =VX,--~o x PX 

Equations (12)may be deduced from (10) by substituting minus 
a for o. Equations (10) or (12) are applicable to :Fig. 4 by observing 
the signs of the angles. It must be observed that at the left of the 
middle the signs of i and i, change and become negative. 

9 °. JLet the lower chord be convex downwards, as in Fig. 6. Equations 
~ c ~  (10) are immediately applicable by 

L- ~ ~ observing that at the right of the mid- 
dle, i is positive, i, negative and o posi- 
tive or negative according to the incli- 
nation of the bar ; while at the leftof  
the middle, iis negative and i I positive. 

Example. Let  the quantities be as in the preceding example, only 
observe that the inclination of the lower chord is--20°~ and we find 
from (10) that for a load over the whole length ; 

1~ = 218, Fj = 143, and F 2 = - -  107. 
The negative value of F, indicates that it is a tie. 
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10 ° . The same equations apply to the case where the upper chord 
is convex downwards and the lower convex upward as in Fig. 7~ by 
observing the signs of the angles. 

11 °. Let the upper chord be horizontal and the lower one convex up- 
wards as in Fig. 8. 

Make i = 0 in (10) and call the horizontal force in the upper chord 
It and (10) becomes 

Pt cos i, + r,. sin ~ ~ H  "} 

Fth cos i t Vxc-F.ox Px 

At the left of the middle, i, is f~c $ 
negative. A . . . .  / I t I t/l~'-. 

12 °. Let the lower chord be ~ ] - ~ ~ t  t t / U , ~  I~ ~'-.. 
convex downwards. ~ ~ 1 ) 1 '  ~,/ 

In this case we have only to i - ~  ' ~ * " " ' '  t~:t 
change thesign of i, in (13). I f  we supl~-OSe that all the ties and braces 
are omitted--or what is equivalent, suppose.o = 0- -we shall have the 
analytical condition of the suspension bridge.' Making i t negative and 
6 =  0 in (13) and we have 

H=F t cos i t ~ 0 ) 
r, sin i, + r,.=v-:~o ~, P. ~ (14) 
Fthcosi  t -==Vxt-2o z PX 

In the suspension bridge the land cables resist the strain which is 
now thrown upon the chord AB, Fig. 9. From the first of these we 
observe that for i , = 0 ;  ~--.]~,i.e. at the lowest point the tension of 
the cable equals the compression of the upper chord. Also from 
the first F, cos i,-----H, that is, the horizontal component of the tension 
at any point equals the tension at the lowest point, and this ia 
true whether the curve be parabolic, catenarian, or any other form. 

:From the second of (14) we have 

F t sin i~ = v-:% ~, P - r .  

in which r 2 may be included in 2o ~' P, and thus not appear as a sepa- 
rate term. Hence we have 

r, sin i, = v-~o ~ t~ (15) 

which shows that the vertical force resolved by the arch (or cable) at 
any point equals the portion of the load which is supported by the 
pier generally diminished by all the load between it and the same 
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pier; or equal the load between the lowest point of the curve and the 
point considered. 

If  the load and ties be considered continuous, and the loading follow 
any algebraic law, the cable will be a continuous curve, and the pre- 
ceding equations may be more conveniently expressed in the foltvwing 
way : 

L e t f  (x y) be the equation of the curve, 
s any portion of the arc, 
T=rL=tension at any point 

. _ d z  i - d . Z  then cos h--dss sin '--ds 

Hence, (14) and (15) become 

dx 

.dz ~ ] Th~----V ,--~o z Px J 

• . ( 1 6 )  

From (16) we may determine the mechanical conditions of the cable 
such as tension and deflection. 

For instance suppose the load is uniformly distributed over the 
span, and 

Let L= the length of span~ 
w =  the load on a unit of length, and take the origin at the low- 

est point. 
Then v=½ w L ; ~ o  zl p ~ W ( ~  L - -  2 ) .  These substituted in the 

second of (16) and then differentiated gives 

dT~--~ Wdx . . (17) 
i 

The value of T from the first of (16) substituted in (17) gives 

dH~=wdz  the integral of which 

, 2H 
i s  x = ~ - y  . . . ( 1 8 )  

• ~hich is the equation of a parabola. 
Equation (18) aids us in using the third of equation (16), but the 

latter is rarely necessary, when the equation of the curve is known. 
Equation (18)and the third of (16) give the same value for zl at 

the lowest point. For at the lowest point z = ~  L~XL, y ~ h ~ D  

d~= 1 
as ~o~ ex= ½wL×~T,=~wL' 
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which in the third of (16) gives 

T = U---- :} w L 2 - -  y w I? == w L z , (19) 
B 8D 

which is the same that we obtain directly Dora (18). The same result 
may be obtained geometrically. 

We would proceed in a similar way if the loading follows any other 
law. I f  the loading be the cable itself--forming a catenary--we have 

v - -  :~o x, e -----f3 K ds, when 3 is the weight of a unit of volume and K 

the section of the cable. 
I f  the load increases uniformly from the middle each way, then 

13 ° . I f  the lower chord be horizontal and the upper one convex 
upwards, we have i , ~ 0 , F , = t q  in (10), which will give 

F cos i -{-F 2 sin O-=H t "1 
sin i + ~ cos 0 = v - -  y~o~ e ) (20) 

title, ~--~ v x  t - -EoX~px 

The equations thus far deduced are for the most general distribu- 
tion of the load. Let  us now suppose that the load is uniformly dis- 
tributed over a part or the whole of the span, being continuous from 
one end to the point eonsidered,--or from end to end,--as  the ease 
may be. I f  the load extends from end to end we readily have 

V =½-WL; ~oXIP ~ q2X 1 
Vxt=~wnxt =o=~e:~=½WX= t , (21) 

I f  it extends from the remote end to the point considered--thus 
giving the maximum shearing,--we have 

q~O(L--X! 
= O) V ~-- 9L ~°*X~P 

£ oX~PX ~-- 0 .J VX t 2L 

I t  is impossible to strictly realize the latter condition, for the 
weight of the frame always forms an appreciable part of the load, 
and may be considered a permanent load, while the surcharge may 
be called moveable or transient. 

These may be considered separately or together. I f  separately, 
we shall have for the case of maximum shearing arising from the sur- 
charge, from (20) 

F cos i+~2sino~-~H , ] 
sin i + F 2 e o s 0 = v  ( (23) 

" Hh = V x  I ) 
The 1st and 2d of (23) are the same as (3) and (2) page 224 of 

the April number of the Journal for this year. 
The weight of the frame cannot be definitely known until the 
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strains upon the several parts are known, but these cannot be known 
until the load is known; hence the strains due to the weight of the 
frame remain an implicit function of the weight. We may, however, 
approximate to tbe weight by assuming that it is an uniform load, 
and then finding tire sections of the prificipal parts at the middle of 
the frame. This assumption will not be far from the truth, and will 
generally be on the side of safety. I give the following as one method 
of finding the approxmate weight. 

:Let K=the section of the upper chord at the middle which also 
equals the section of the lower one, 

L={he total length of span, 
~)=the depth of frame at the centre. 
3=~the weight of a unit of volume of the frame, 
n = t h e  ratio between the weight of a chord and the whole 

weight of the frame. 
Then the weight of the frame equals n 3 K L 

and v = ½ n a K L  

f/~/O Let a section be made at the mid- 
~~ dle of the frame, and taking A as the 

origin of moments and we have 
~ n~KLX~.=themoment of the frame, 

~wL~the  moment of the sur- 
charge 

f4  ~ " " A ~ Hence the equation 
~ - ~  ~ n ~ L  ~ + ~wL ~ 

n3K~ ~ + w~ ~ , (24) 
89 

:But this horizontal force must be resisted by the material. I f  c be 
the resistance to crushing of a unit of section, we have 

n3I~L ~ + wr3 
8~ 

• ( 2 5 )  
q/zL ~ 

. ' .  K 
8 C D - - n S L "  

:For east iron 3-----0"25 lbs. per cubic inch, 
for wrought iron $---0"27 lbs. per cubic inch, 
for wood 3~0"03 lbs. per cubic inch, 

and n may be 3, 4, 5, or 6, according to the nature of the structure. 
Although the weight of the frame may be considered an uniform 

load, yet it produces very different strains in different structures. 
:For instance, if the upper chord be a parabola, so much of the chord 
as is really an uniform load produces no strains upon the ties and 
braces ; while the lower chord and ties strain the ties and braces. 

I f  the chords are parallel they produce the same or very nearly the 
same, strains as an uniform surcharge. I t  is safe to consider the 
effect in most practical cases the same as for an uniform surcharge, 
and I shall so consider it hereafter. 

Although the load may be continuous, yet it is really supported 
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at the joints where the ties and braces are connected with the chords ; 
and the same effect would be produced upon the trussing if the load 
were divided into as many equal weights as there are bays, and each 
weight were supported directly by the ties and braces. This hypo- 
thesis will enable us to slightly modify lhe preceding equations. 
They may also be modified for many forms of trusses so as to he more 
convenient for computation. These modifications will form the sub- 
ject of the next article. 

(.To be C o n t i n u e d , )  

MECHANICS, PHI~SICS, AND CHEMISTRY. 

Note on the Variations of Density produced by Heat in Mineral 
Substances. By Dr. T. L. PnIPSON, F.C.S. 

From the London Chemical News, NO. 235. 

That any mineral substance, whether crystallized or not, should 
diminish in density by the action of heat, might be looked upon as 
natural consequence of dilation being produced in every case and be- 
coming permanent. Such diminution of density occurs with idocrase, 
Labradorite, feldspar, quartz, amphibole, pyroxene, peridote, Samar- 
skite, porcelain, and glass. But Gadolinite, zircons, and yellow 
obsidians augment in density from the same cause. This again may 
be explained by assuming that, under the influence of a powerful heat, 
these substances undergo some permanent molecular change. But in 
this note I have to show that this molecular change is not permanent, 
but intermittent, at least as regards the species I have examined, and 
probably with all the others. Such researches, while tending to eluci- 
date certain points of chemical geology, may likewise add something 
to our present knowledge of the modes of action of heat. My experi- 
ments were undertaken to prove an interesting fact announced formerly 
by Magnus--namely, that specimens of idocrase after fusion bad 
diminished considerably in density without undergoing any change of 
composition : before fusion their specific gravity ranged from 3"349 to 
3"45, and after fusion only 2"93 to 2"945. Having lately received 
specimens of this and other minerals brought fromYesuvius in January 
last by my friend Henry Rutter, Esq., I determined upon repeating 
this experiment of Magnus. I found, first, that what he stated for 
idocrase and for a specimen of reddish-brown garnet was also the case 
with the whole family of garnets as well as for the minerals of the 
idocrase groupe; secondly, that it is not necessary to melt the mine- 
rals: it is sufficient that they should be heated to redness without 
fusion, in order to occasion this change o f  density ; thirdly, that the 
diminished density thus produced by the action of a red heat is not a 
permanent staSe, but that the specimens, in the course of a month or 
less, resume their original specific gravities. These curious results 
were first obtained by me with a species of lime garnet in small yellow- 
ish crystals, exceedingly brilliant and resinous, almost granular, 
fuling with difficulty to black enamel, accompanied with very little 


