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STABILITY OF LARGE AMPLITUDE FORCED MOTION OF A 
SIMPLY SUPPORTED BEAM 

JOE G. EISLEY* and JAMB A. BENNETTI 

The University of Michigan, Ann Arbor, Michigan 

Abstract- The large amplitude steady state forced motion of a simply supported beam with ends restrained to 
remain a fixed distance apart is represented by a series of linear normal modes. The validity of the assumption 
of single mode response is examined by investigating the stability of the unforced modes when a single mode is 
forced. The equations include the effects of an initial axial load and numerical examples are presented for axial 
loads in both the pre- and post-buckling regions. It is concluded that the approximation of single mode response 
is not always valid because of the possible instability of higher modes. 

NOTATION 
6, h length and thickness of beam, respectively 
m, n, j integers 
t time 
v, w displacements in y, z directions, respectively 
,v. z coordinates 
E Young’s modulus 
i cross section moment of inertia 
P lateral applied load 
ey strain component 
/, mass density 

Other symbols are defined in the text. 

1. INTRODUCTION 

WHEN a beam with ends restrained to remain a fixed distance apart vibrates laterally there 
is stretching of the median line. This effect may be accounted for in the strain~ispla~ement 
relation by taking 

6, = v,, f !&,J” (1) 

where a comma denotes differentiation with respect to the subscript. 
If the other usual ass~ptions of simple beam theory are retained the following equation 

results for a beam of unit width 

phw, tt + WY y,), w - F + 4 j (w,J2 dy w, yy = P(Y, 0 
0 1 

where a0 represents an initial axial displacement measured from the unstressed state. The 
derivation of this equation is done in detail by Burgreen [l] and McDonald [2]. 
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The solution of this equation has been examined by several investigators by expanding 
the deflection w in a series of linear normal modes of vibration of the beam to obtain a set 
of ordinary differential equations which describe the motion. An extensive bibliography is 
given by Eisley [3]. Several papers report on various aspects of single mods response. 
Among them are papers by Burgreen [l], Mettler [4], and Eisley [IS]. An investigation of 
the infinite degree of freedom free motion of a simply supported beam is reported by 
McDonald [2]. 

In the following paragraphs the validity of the assumption of a single mode response is 
examined by forcing one mode and determining the stability of the other modes. The 
equations include the effects of an initial axial load and numerical examples are presented 
for a range of axial loads in both the pre-buckling and post-buckling regions. 

This investigation was aided by the work of Henry and Tobias [6], and Gilchrist [7], 
Williams and Tobias [S], and Efstathiades and Williams [9] on problems of related 
interest. 

2. METHOD OF SOLt~TION 

For a simply supported beam let 

W(Y) = b 
nv r,(~) sin ~ 

b 

where the 5”‘s are generalized coordinates and r is a nondimensional time 

T = (E/p)" ;. 

(31 

The following set of ordinary non-linear differential equations are obtained by Galerkin’s 
method 

where 

pn = ~2n2(n2 - A) 
n27c4 

4. = __ 4 

b 

Q, = & 
s 

P(y, t) sin F dy 

0 

and 

h 
g=- 

b 
/z=vo 

VOC, 

where vo, is the end displacement at the buckling load. The buckling load is reached at 
3. = 1. 
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Steady state solutions of the form 

r, = 4 cos (BnWr f $d 

where A, is the amplitude, & is an integer and &, is the phase angle are sought. The method 
of harmonic balance is used to determine amplitude-frequency relations. 

Except for McDonald [2] who considered only free motion with no initial axial load, 
efforts to obtain a solution for the steady state motion have been limited to single mode 
response. The stability of a single mode response is now examined. 

3. STABILITY OF SINGLE MODE RESPONSE 

Consider the special case of harmonic forcing applied to just one of Eq. (5) or 

Qil = Qj = BjCOSOX n=j 

G 0 n # j. > 
(7) 

A possible approximate solution is 

I, = tj = Aj COS WZ il=j 

= 0 n #j. (8) 

The resulting amplitude frequency relation is 

02 = pj + gjyqj - 2. 
J 

This solution represents a single mode response. In the linear case there is no coupling 
of the governing equations and so a single mode response is always possible. In the non- 
linear case, however, the equations are coupled through the non-linear terms so that 
excitation of one generalized coordinate may result in excitation of other coordinates. If 
this should happen the approximation of single mode response or, in general, truncation 
of the assumed series for the deflection may not be valid. 

To determine stability let 

5,(r) = 5(r) + ?“(3 (10) 

where yn is a small quantity. Note that & = 0 when n # j. When only first order terms in 
y8 are retained the following equations are obtained 

Each of these equations is a Mathieu equation and may be put in the standard form 

Yn,,, + (6, + E, cos 2) yn = 0 (12) 

where 

z = 2wt 
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6. = Pj + 3j’qjAfP 
J 402 

t. _ 3.i2qjA; 
J 80’ 

tz =j 

6 = pn + .i2wC% .i2q& 
” 

42 t =&JF n n # .i. 

The stability properties of this equation are well known [lo, 111, and are usually presented 
in terms of 6 and t in graphical form as shown in Fig. l(a). A stability analysis similar to 
the one considered here is reported by Henry and Tobias [6]. In the figure the shaded 
regions are stable. For a given beam the stability boundaries may be found in terms of 
amplitude and frequency and superposed as a response curve plot. 

6 

FIG. I(a). Mathieu equation stability boundaries 

The single term harmonic balance method assumes that the effect of higher order 
harmonics is negligible. Analog computer results indicate that for the range of values 
considered the response did not contain any higher harmonics. The Mathieu equation 
may also be solved using a single term harmonic balance method. If this is done the bound- 
aries are straight lines as shown in Fig. l(b). Note that only the first instability region shown 
in Fig. l(a) is retained by the approximate solution shown in Figure l(b). Analog computer 
solutions show, however, that the higher order instabilities, ruled out by the approximate 
solution do, in fact, exist. This leads to the conclusion that the approximate solution of the 
Mathieu equation is not sufficient. The analog computer solutions suggest that the full 
boundaries shown in Fig. l(a) are more accurate statements of the stability regions. Some 
of these results are shown in the figures which follow. 
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The approximate stability boundaries for the first region of instability are quite close to 
the exact boundaries, closer than the analog computer solutions were able to distinguish 
stability boundaries. The approximate boundaries for the first mode coincide with the 
free vibration response line, and there are physical arguments to support that this should 
be so, In the figures which follow the approximate boundaries are used for the first region 

FIG. I(b). Approximate Mathieu stability 
boundaries. 

and the exact values for all other regions. This is justified by the analog computer solutions 
which show that the approximate boundaries for the higher order regions are inadequate. 

The stability properties for the case n = j = 1 are shown in Fig. 2 for a beam with a = 04305 
and A= 0. The shaded lines are stability boundaries with the shading on the stable side. 
Thus regions B, D, F are stable and C, E are unstable. Those bounda~es which originate at 
To/T -c 1.0 correspond to ultraharmonics, where the response frequency is some integer 
multiple of the forcing frequency [ll]. The boundary which originates at To/T = 1.0 is 
that for the familiar jump instability. 

Te/T 
FIG. 2. Stability regions for single (first) mode response. 1 = 0. 
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The case n = 2,j = 1 is shown in Fig 3. This is an instability of the second mode which is 
initially at rest. The stable areas are indicated by shading between the lines. Analog computer 
solutions are shown. Note that the second mode instability which occurs in region E would 
not be predicted by the approximate solution to the Mathieu equation because that region 
reduces to a single line. Typical analog computer traces are shown in Fig. 6. 

ANALOG RESULTS 

0 UNSTABLE 

FIG. 3. Stability regions for the second mode with the first mode forced. I = 0. 

The complete stability diagram is given in Fig. 4(a). For clarity only one of the ultra- 
harmonic regions and only two of the second mode instability regions are shown. Note that 
there are areas in which the first mode alone is stable, but the addition of a second mode 
indicates an instability. In these cases the assumption of a single mode response is no longer 
valid. Combined stability diagrams for other values of 1 are given in Figs. 4(b), and (4~). 

Similar results are shown in Figs. S(aHc) for second mode excitation with all other modes 
initially at rest. In Fig. 5(a) the shaded lines define the boundaries of stability of the second 
mode response and the other lines show stability boundaries for the first mode initially at 
rest. In the shaded regions the second mode response is stable but the first mode is not 
stable at rest. In Fig. 5(b) second and third mode stability boundaries are shown for the 
same response curve as in Fig. 5(a). Other values of J are shown in Figs. 5(c) and (d). Since 
for second mode response it is the third mode which is most likely to be coupled only 
stability boundaries for the second and third modes are shown in Figs. 5(c), and (d). 

No further numerical results will be shown for single mode response. The pattern that 
has developed is that if one mode is excited the next higher mode at rest may also be excited 
under the right circumstances. There are also narrow regions in which lower modes and 
higher modes may be excited. It may be argued that a small amount of damping will 
eliminate the instability of these additional modes. Curves are shown in Fig. (1) to illustrate 
that a small amount of damping significantly increases the stable portions on the Mathieu 
stability chart. These curves correspond to c = 0.2 when the Mathieu equation is modified 
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as follows 

Y., zz + 2%, I + (6, + E” cos z) yn = 0 

and the portion below these curves are the stable regions. 

To/ T 

FIG. 4(a). Combined stability regions for the first and second modes with the 
first mode forced. 1 = 0. 
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(13) 

To/T 
FIG. 4(b). Combined stability regions for the first and second modes with the 

first mode forced. 1 = 1. 
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It should be noted that in the dashed portions of the response curves to the left of the 
last Shown stability boundary there are additional narrow regions of instability. A very 
small amount of damping eliminates these instabilities also. 

It should also be noted that the solution, equation (8) requires symmetrical motion 

FIG. 4(c). Combined stability regions for the first and second modes with the 
first mode forced. 1 = 2 

T, / T 

FIG. 5(a). Combined stability regions for the first and second modes with the 
cecond mode forced 2 1 0 
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about the flat position For the buckled case (3. > 1) another type of motion is possible in 
which vibration takes place about the buckied position on one side of the flat position. This 
latter type of motion is not considered here. Therefore in the above it is assumed that the 
proper conditions exist for exciting the motion. 

FIG. 5(b). Combined stability regions for the second and third modes with the 
second mode forced. 2. = 0. 

FIG. 5(c). Combined stability regions for the second and third modes with the 
Tecond mode forced. rl = 1. 
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FIG. 5(d). Combined stability regions for the second and third modes with 
the second mode forced. I = 2. 
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FIG. 6(a). Response corresponding to point a in Fig. 3. 
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4. ANALOG COMPUTER STUDIES 

The equations which led to the response curves presented in Fig. 4(a) were also solved on 
an analog computer in order to confirm the regions of second mode instability and to 
examine the nature of the actual response when the second mode is unstable. These studies 
confirm that second mode instability does exist. They also confirm that a small amount of 
damping does eliminate instability where the instability regions are narrow. 

Points which lie in the main region of second mode instability, such as represented by 
points a, b, and c in Fig. 4(a) identify cases with interesting properties. In Figs. 6(a)-(c) are 
shown the analog traces for both first and second mode response for initial conditions and 
applied forcing functions which correspond to points a, b, and c in Fig 3, respectively. 
In Fig 6(a) we examine the free motion when an initial displacement is given to the first 
mode but the second mode is at rest. Note the interchange of energy from the first mode to 
the second and the subsequent growth of the second mode response. 

In Fig. 6(b) we examine the case where the second mode is initially at rest but the first 
mode is subjected to steady state harmonic forcing. If the second mode were not present 
the first mode would have a stable steady state response. Once again we have a second mode 
response and evidence of energy exchange between modes. 

In Fig 6(c) the motion corresponding to point c is recorded with results similar to those 

FIG. 6(b). Response corresponding to point b in Fig. 3. 
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for point b. It is noted that 
jump phenomena [I l] and 
portion of the curve. 
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with a very small amount of damping added we observe the 
the amplitude changes abruptly to the point d on the lower 

5. CONCLl-JSION 

It is concluded that the approximation of single mode response is an over-simplification 
of large amplitude beam vibration when in a region of higher mode instability. The resulting 
motion is shown to be different from the usual single mode response. 

“0 
x 

an 

_.I-.L__. 

FIG A(C). Response corresponding to point c in Fig. 3. 

Acknawkedgment- The authors wish to thank Mr. Ciwo-Bao Min for his help in performing the computations. 

REFERENCES 

[I] D. BUKGKEEN, Free vibrations of a pin ended column with constant distance between ends. J. clppl. Mcclz. 18, 
135 139 (1951). 

[2] P. H. MCDONALD, Nor&near dynamic coupling in a beam vibration. J. uppi. Me&. 22, 573-578 (1955). 
[3] J. G. EISLEY, Nonlinear deforn~~tion of elastic beams, rings, and strings. ~~~fjed ~ec~a~j~.s Stcrvq*s. pp. 

285-290. Spartan (1966). 
[4] E. METTLER, Zum Problem der Stabilitat erzwingener schwingungen elastischer Korper. Z. anp’:pw. Math. 

Mech. 31, 263-264 (1951). 
151 J. G. Elsr FY. Nonlinear vibration of beams and rectangular plates. Z. unge~. Math. Ph,vs. IS, 167 ~175 (I 964). 



Stability of large amplitude forced motion ef a simp1.v supported beam 651 

[6] R. F. HENRY and S. A. TOBIAS, Modes at rest and their stability in coupled non-linear systems. J. Mech. Eng. 
Sci. 3, 163-173 (1961). 

[7] A. 0. GILCHRIST, The free oscillations of conservative quasilinear systems with two degrees of freedom, 
ht. J. Mech. Sci. 3, No. 4, 286-311 (1961). 

181 C. J. H. WILLIAMS and S. A. TOBIAS, Forced undamped non-linear vibrations of imperfect circular discs, 
J. mech. Engng. Sci. 5, 325-335 (1963). 

[9] G. J. EFS~A~HIADE~ and C. J. H. WILLIAMS, Vibration isolation using non-linear springs. Znt. J. mech. Sci. 9, 
2744 (1967). 

[lo] N. W. MCLACHLAN, Theory and Application of Mathieu Functions. Oxford University Press (1947). 
[ll] C. HAYASHI, Nonlinear Oscillations in Physical Systems. McGraw-Hill (1964). 

(Received 12 February 1969) 

Rbum&Le rkgime permanent B grande amplitude du mouvement for& d’une poutre en appui simple dont les 
extrkmitks sont contraintes de rester s&par&es par une distance constante est reprksentte par une strie de modes 
normaux lineaires. On examine la validit& de l’hypoth8se d’une rbponse en mode unique en Ctudiant la stabilitC 
des modes non forces lorsqu’un seul mode est for&. Les tquations comprennent les effets d’une charge initiale 
axiale et on donne des exemples numkriques pour les charges axiales dans les deux rtgions: avant et aprbs flambage. 
On conclut que l’approximation d’une rkponse en mode unique n’est pas toujours valable B cause d’uni instabilitk 
possible des modes supkrieurs. 

Zusammeufassung-Die erzwungene Bewegung eines einfach unterstiitzten Trlgers mit grosser Amplitude im 
stationlren Zustand, wobei die Entfernung zwischen den beiden Enden tixiert ist, wird mit Hilfe einer Reihe 
linearer Normalschwingungen dargestellt. Die Giiltigkeit der Annahme der Anregung einer einzigen Schwingung 
wird gepriift, indem die Stabilitlt der freien Schwingungen untersucht wird, wenn eine einzelne Schwingung 
erzwungen wird. Die Gleichungen enthalten die Wirkungen einer anf5nglichen axialen Last, und numerische 
Beispiele fiir axiale Lasten vor und nach erfolgter Durchbiegung werden behandelt. Es wird geschlossen, dass die 
NIherungsannahme der Anregung einer einzigen Schwingung wegen der maglichen Instabilitiit haherer 
Schwingungen nicht immer giiltig ist. 

AHHOTaqMsr-kICCMaTpIIBaeTCH B03MyweHHOe RBI0KeHlIe CBO6OnHO OIIepTOti 6aJIKn npll ripen-- 
IIOJIOmeHR~ IIOCTORHCTBa PaCCTORHHR MelKay KOH+MII 6anKI4. XCTaHOBRBIIIeeCR COCTOFIHMe 6anKM 
C 6OnbmnMa aMIIJIMTyAaMI4 OIIMCaHO PFIAOM, COCTaBZHHbIM I13 JIPIHefiHbIX CO6CTBeHHbIX KoneGatrafi 
6anKR. CIIpaBeAJII,IBOCTB IIPB~IIOJIOHRHHFI 0 TOM, YTO 6aJIKa ABLlHteTCR B BIlRe OTAenbHOrO 
CO6CTBeHHOrO KOJIe6aHIIH IIpOBepHeTCH IIyTeM PICC~enOBaHkIH yCTO@UIBOCTLi HeBO3MyQZHHbIX 
@OpM KOJIebaHHti IIpM BOSMYLQBHMII paCCMaTpHBat?MOfi OTHeJIbIIOfi @OpMbI. PaccMaTpnBaeMbIe 
ypaBHBH11~ysEiTnBaloTBncl~HAeHasB.?bHO~OCeBO~Harpy3K;ll.~pB~CTaBneHbl~llCJreHHbIenpnMepbl 
B Cny%RX OCeBbIX Harpy3oK, npIIK.ZaRbIBaeMbIX IIepeA PI noCJIe TOPO, KBK IIpOI’I3OIIIejr IIpOAOnbHblfi 


