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STABILITY OF LARGE AMPLITUDE FORCED MOTION OF A
SIMPLY SUPPORTED BEAM

Jok G. EisLeY* and James A, BENNETTT
The University of Michigan, Ann Arbor, Michigan

Abstract— The large amplitude steady state forced motion of a simply supported beam with ends restrained to
remain a fixed distance apart is represented by a series of linear normal modes. The validity of the assumption
of single mode response is examined by investigating the stability of the unforced modes when a single mode is
forced. The equations include the effects of an initial axial load and numerical examples are presented for axial
loads in both the pre- and post-buckling regions. It is concluded that the approximation of single mode response
is not always valid because of the possible instability of higher modes.

NOTATION

b, h  length and thickness of beam, respectively
m, n, j integers

time
w  displacements in y, z directions, respectively
coordinates
Young's modulus
cross section moment of inertia
lateral applied load
£ strain component
P mass dénsity
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Other symbols are defined in the text.

1. INTRODUCTION

WHEN a beam with ends restrained to remain a fixed distance apart vibrates laterally there
is stretching of the median line. This effect may be accounted for in the strain-displacement
relation by taking

€ =0, + 3(w,)? (1)

where a comma denotes differentiation with respect to the subscript.
If the other usual assumptions of simple beam theory are retained the following equation
results for a beam of unit width

Eh b
Phw ¢+ (EIW,y), 5y — 5~ [Uo +1[w,) dy] W,y = P(y,1) @
' 0

where v, represents an initial axial displacement measured from the unstressed state. The
derivation of this equation is done in detail by Burgreen [1] and McDonald [2].
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The solution of this equation has been examined by several investigators by expanding
the deflection w in a series of linear normal modes of vibration of the beam to obtain a set
of ordinary differential equations which describe the motion. An extensive bibliography is
given by Eisley [3]. Several papers report on various aspects of single mode response.
Among them are papers by Burgreen [1], Mettler [4], and Eisley [5] An investigation of
the infinite degree of freedom free motion of a simply supported beam is reported by
McDonald [2].

In the following paragraphs the validity of the assumption of a single mode response is
examined by forcing one mode and determining the stability of the other modes. The
equations include the effects of an initial axial load and numerical examples are presented
for a range of axial loads in both the pre-buckling and post-buckling regions.

This investigation wds aided by the work of Henry and Tobias [6], and Gilchrist [7],
Williams and Tobias [8], and Efstathiades and Williams [9] on problems of related
interest.

2. METHOD OF SOLUTION
For a simply supported beam let

Mﬂ=b§25mm¥?f G)
n=1

where the &,'s are generalized coordinates and 7 is a nondimensional time
Lt
T = (E/p)* . (@)

The following set of ordinary non-linear differential equations are obtained by Galerkin’s
method

aﬂ+ma+%(;m%QQ=Qn 5)
where
4 2. 4
_T 2202 _hr
pn - 12a n (n ’1) qn 4
b
2 . nny
0, = ﬁfP(y, 1) sdey
0
and
ah _
) v,

where v, is the end displacement at the buckling load. The buckling load is reached at
A=1
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Steady state solutions of the form

&, = A, cos (Bt + ¢,)

where 4, is the amplitude, §, is an integer and ¢, is the phase angle are sought. The method
of harmonic balance is used to determine amplitude-frequency relations.

Except for McDonald [2] who considered only free motion with no initial axial load,
efforts to obtain a solution for the steady state motion have been limited to single mode
response. The stability of a single mode response is now examined.

3. STABILITY OF SINGLE MODE RESPONSE
Consider the special case of harmonic forcing applied to just one of Eq. (5} or

On=Q;=B;coswt n=j
=0 n#j. } U
A possible approximate solution is
Z(t)=¢; = A;jcosor n=j
=0 n#j } ®)
The resulting amplitude frequency relation is
o = p; + 3°Ajq; — %— 9

J

This solution represents a single mode response. In the linear case there is no coupling
of the governing equations and so a single mode response is always possible. In the non-
linear case, however, the equations are coupled through the non-linear terms so that
excitation of one generalized coordinate may result in excitation of other coordinates. If
this should happen the approximation of single mode response or, in general, truncation
of the assumed series for the deflection may not be valid.

To determine stability let

&) = &0 + D) (10)

where 7y, is a small quantity. Note that &, = 0 when n # j. When only first order terms in
y, are retained the following equations are obtained

i2q E . 11
In o+ (00 + 7228 7 =0 n#j. (11)

Each of these equations is a Mathieu equation and may be put in the standard form
Ve T (On + €C082) 7, =0 (12)

where

z = 2wt
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and
s _Pit3aA2 e
J 4(1)2 J 8602 h=j
+2 A2 2 22 A2
5"=pn+.1q2.. n/ ¢, = s ntj
4 8w? :

The stability properties of this equation are well known [ 10, 11], and are usually presented
in terms of & and ¢ in graphical form as shown in Fig. 1(a). A stability analysis similar to
the one considered here is reported by Henry and Tobias [6]. In the figure the shaded
regions are stable. For a given beam the stability boundaries may be found in terms of
amplitude and frequency and superposed as a response curve plot.

1€l

F1G. 1(a). Mathieu equation stability boundaries.

The single term harmonic balance method assumes that the effect of higher order
harmonics is negligible. Analog computer results indicate that for the range of values
considered the response did not contain any higher harmonics. The Mathieu equation
may also be solved using a single term harmonic balance method. If this is done the bound-
aries are straight lines as shown in Fig. 1(b). Note that only the first instability region shown
in Fig. 1(a) is retained by the approximate solution shown in Figure 1(b). Analog computer
solutions show, however, that the higher order instabilities, ruled out by the approximate
solution do, in fact, exist. This leads to the conclusion that the approximate solution of the
Mathieu equation is not sufficient. The analog computer solutions suggest that the full
boundaries shown in Fig. 1(a) are more accurate statements of the stability regions. Some
of these results are shown in the figures which follow.
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The approximate stability boundaries for the first region of instability are quite close to
the exact boundaries, closer than the analog computer solutions were able to distinguish
stability boundaries. The approximate boundaries for the first mode coincide with the
free vibration response line, and there are physical arguments to support that this should
be so. In the figures which follow the approximate boundaries are used for the first region
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Fig. 1(b). Approximate Mathieu stability
boundaries.

and the exact values for all other regions. This is justified by the analog computer solutions
which show that the approximate boundaries for the higher order regions are inadequate.

The stability properties for the case n = j = [are shown in Fig. 2 for a beam with o = 0-005
and A = 0. The shaded lines are stability boundaries with the shading on the stable side.
Thus regions B, D, F are stable and C, E are unstable. Those boundaries which originate at
To/T < 10 correspond to ultraharmonics, where the response frequency is some integer
multiple of the forcing frequency [11]. The boundary which originates at To/T = 10 is
that for the familiar jump instability.
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F1G. 2. Stability regions for single (first) mode response. 1 = 0.
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The case n = 2,j = 1is shown in Fig. 3. This is an instability of the second mode which is
initially at rest. The stable areas are indicated by shading between the lines. Analog computer
solutions are shown. Note that the second mode instability which occurs in region E would
not be predicted by the approximate solution to the Mathieu equation because that region
reduces to a single line. Typical analog computer traces are shown in Fig. 6.

ANALOG RESULTS
o STABLE
10 o UNSTABLE

IAlx10°

—

F1G. 3. Stability regions for the second mode with the first mode forced. 4 = 0.

The complete stability diagram is given in Fig. 4(a). For clarity only one of the ultra-
harmonic regions and only two of the second mode instability regions are shown. Note that
there are areas in which the first mode alone is stable, but the addition of a second mode
indicates an instability. In these cases the assumption of a single mode response is no longer
valid. Combined stability diagrams for other values of 1 are given in Figs. 4(b), and (4c).

Similar results are shown in Figs. 5(a){c) for second mode excitation with all other modes
initially at rest. In Fig. 5(a) the shaded lines define the boundaries of stability of the second
mode response and the other lines show stability boundaries for the first mode initially at
rest. In the shaded regions the second mode response is stable but the first mode is not
stable at rest. In Fig. 5(b) second and third mode stability boundaries are shown for the
same response curve as in Fig. 5(a). Other values of A are shown in Figs. 5(c) and (d). Since
for second mode response it is the third mode which is most likely to be coupled only
stability boundaries for the second and third modes are shown in Figs. 5(c), and (d).

No further numerical results will be shown for single mode response. The pattern that
has developed is that if one mode is excited the next higher mode at rest may also be excited
under the right circumstances. There are also narrow regions in which lower modes and
higher modes may be excited. It may be argued that a small amount of damping will
eliminate the instability of these additional modes. Curves are shown in Fig. (1) to illustrate
that a small amount of damping significantly increases the stable portions on the Mathieu
stability chart. These curves correspond to ¢ = 0-2 when the Mathieu equation is modified
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as follows

Vnve + 2CYs , + (0, + €,0082) 7, =0
and the portion below these curves are the stable regions.

1Al x10°

TO/T

F1G. 4(a). Combined stability regions for the first and second modes with the
first mode forced. A = 0.

1Al x 10®

T/ T

FIG. 4(b). Combined stability regions for the first and second modes with the
first mode forced. A = 1.
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It should be noted that in the dashed portions of the response curves to the left of the
last Shown stability boundary there are additional narrow regions of instability. A very
small amount of damping eliminates these instabilities also.

It should also be noted that the solution, equation (8) requires symmetrical motion

1Al X 10°

IAIx 10}
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FIG. 4(c). Combined stability regions for the first and second modes with the
first mode forced. } = 2.

T/ T

FIG. 5(2). Combined stability regions for the first and second modes with the

second mode forced. 2 = 0.
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about the flat position. For the buckled case (A > 1) another type of motion is possible in
which vibration takes place about the buckled position on one side of the flat position. This
latter type of motion is not considered here. Therefore in the above it is assumed that the
proper conditions exist for exciting the motion.

10
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F1G. 5(b). Combined stability regions for the second and third modes with the
second mode forced. 1 = 0.
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F1G. 5(c). Combined stability regions for the second and third modes with the
second mode forced. 2 = 1.
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1A1x10°

To/T
FIG. 5(d). Combined stability regions for the second and third modes with
the second mode forced. 4 = 2.

Bl

F1G. 6(a). Response corresponding to point @ in Fig. 3.
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4. ANALOG COMPUTER STUDIES

The equations which led to the response curves presented in Fig. 4(a) were also solved on
an analog computer in order to confirm the regions of second mode instability and to
examine the nature of the actual response when the second mode is unstable. These studies
confirm that second mode instability does exist. They also confirm that a small amount of
damping does eliminate instability where the instability regions are narrow.

Points which lie in the main region of second mode instability, such as represented by
points a, b, and ¢ in Fig. 4(a) identify cases with interesting properties. In Figs. 6(a){(c) are
shown the analog traces for both first and second mode response for initial conditions and
applied forcing functions which correspond to points g, b, and ¢ in Fig 3, respectively.
In Fig 6(a) we examine the free motion when an initial displacement is given to the first
mode but the second mode is at rest. Note the interchange of energy from the first mode to
the second and the subsequent growth of the second mode response.

In Fig. 6(b) we examine the case where the second mode is initially at rest but the first
mode is subjected to steady state harmonic forcing. If the second mode were not present
the first mode would have a stable steady state response. Once again we have a second mode
response and evidence of energy exchange between modes.

In Fig. 6(c) the motion corresponding to point ¢ is recorded with results similar to those
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FiG. 6(b). Response corresponding to point b in Fig. 3.
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for point b. It is noted that with a very small amount of damping added we observe the
jump phenomena [11] and the amplitude changes abruptly to the point 4 on the lower
portion of the curve.

5. CONCLUSION
It is concluded that the approximation of single mode response is an over-simplification
of large amplitude beam vibration when in a region of higher mode instability. The resulting
motion is shown to be different from the usual single mode response.
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F1G. 6(¢c). Response corresponding to point ¢ in Fig. 3.
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Résumé—Le régime permanent a grande amplitude du mouvement forcé d’une poutre en appui simple dont les
extrémités sont contraintes de rester séparées par une distance constante est représentée par une série de modes
normaux linéaires. On examine la validité de 'hypothése d’une réponse en mode unique en étudiant la stabilité
des modes non forcés lorsqu’un seul mode est forcé. Les équations comprennent les effets d’une charge initiale
axiale et on donne des exemples numériques pour les charges axiales dans les deux régions: avant et aprés flambage.
On conclut que 'approximation d’une réponse en mode unique n’est pas toujours valable & cause d’uné instabilité
possible des modes supérieurs.

Zusammenfassung—Die erzwungene Bewegung eines einfach unterstiitzten Trigers mit grosser Amplitude im
stationdren Zustand, wobei die Entfernung zwischen den beiden Enden fixiert ist, wird mit Hilfe einer Reihe
linearer Normalschwingungen dargestellt. Die Giiltigkeit der Annahme der Anregung einer einzigen Schwingung
wird gepriift, indem die Stabilitdt der freien Schwingungen untersucht wird, wenn eine einzelne Schwingung
erzwungen wird. Die Gleichungen enthalten die Wirkungen einer anfinglichen axialen Last, und numerische
Beispiele fiir axiale Lasten vor und nach erfolgter Durchbiegung werden behandelt. Es wird geschlossen, dass die
Niherungsannahme der Anregung einer einzigen Schwingung wegen der moglichen Instabilitit hoherer
Schwingungen nicht immer giiltig ist.

Annoramma—PaccmarprBaercsa BOSMYIIEHHOe [BHMeHHe CBOGOJHO omeproil Gajsku HpM TIpej-
MOJIOKEeHUN NMOCTOAHCTBA PACCTOAHMA MEHAY KOHIAMM 0aJIKM. YCTaHOBHUBLIEECH COCTOSIHUE GallKu
¢ 0ONBIIVMHU AMIITUTYAAMHA ONUCAHO PANOM, COCTABICHHBIM M3 JMHENHHBIX COOCTBEHHBIX KOMeGAHUI
Ganku. CnpaBeflMBOCTB INPENNOJIOHEHUA O TOM, 4YTo 0aJka JBIMKETCH B BUIE OTHEJIBLHOTO
CcOOCTBEHHOTO KOJleGaHNA TIPOBepHETCH IIyTeM WCCIe0BAHMA YCTONYNBOCTH HEBO3MYIEHHKIX
dopM KozeGaHMH §pM BO3MYIIEHMH pAacCMaTpPUBAeMON OT/eqablioil gopMel. PaccMaTpuBaeMule
YpaBHeHMA YUNTHBAIOT BINAHUE HAYATbHON OceBOit Harpysku. IIpeacTaBieHB YUCIeHHEIE IPHMEPLL
B CIyYeAX OCEeBHIX HATPY30K, IPMKIANBIBAEMBIX TIepe;] U MOCJe TOT0, KAK MPON30IIesT NPogoaLHbIH



