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A Comparison of Two- and Three-Dimensional Size Distributions 
in a Cellular Material 

P. L. WHITE a AND L. H. VAN VLACK b 

This investigation concerns the comparison of two- and three-dimensional data 
obtained on a cellular material. By quantitative micrography techniques and spatial 
measurements, the cellular structure corresponds most closely with the shape of pen- 
tagonal dodecahedra, twelve-faced cells having five edges per face. The cell volumes 
have a normal distribution. 

The areal distributions of planar sections for various shapes of polyhedra were taken 
from existing literature. The measured volume distributions from this study were then 
applied by numerical computer calculations to create a transformation which carried 
the distribution of volumes (three-dimensional) to the expected distribution of planar 
areas (two-dimensional). The results of the expected and measured areal data agreed well 
for assumed complex polyhedral symmetry such as pentagonal dodecahedra, and un- 
satisfactorily for spherical symmetry. These results demonstrate that the pentagonal 
dodecahedron is a measurable prototype of cell in grain shapes. 

Ein Vergleich yon zwei- und dreidimensionalen GrSflenverteilungen an einem zellularen Stoff 

Die vorliegende Arbeit besch/iftigt sich mit dem Vergleich yon zwei- und dreidimen- 
sionalen Daten yon Zellstrukturen. Mit Hilfe quantitativ mikroskopischer Untersuchungs- 
verfahren und r~iumlichen Messungen wurde festgestellt, dab die Zellstruktur am besten 
durch die Form eines Pentagondodekaeders angen~ihert werden kann, d. h. einer Zelle 
mit 12 Fl~ichen und 5 Kanten pro Fl~iche. Die Zellvolumina sind normal verteilt. Die 
Flfichenverteilungen der ebenen Schnittfl/ichen fi.ir verschiedene regelm~il3ige Polyeder 
wurden der vorhandenen Literatur entnommen. Die gemessenen Volumenverteilungen 
der vorliegenden Arbeit wurden dann einem Computer eingegeben, wobei die Volumen- 
verteilungen (dreidimensional) in die erwarteten ebenen Verteilungen (zweidimensional) 
umgerechnet wurden. Die Ergebnisse der erwarteten und der gemessenen Fl~ichen- 
verteilungen stimmten gut mit der angenommenen komplexen polyedrischen Symmetrie, 
zum Beispiel der des Pentagondodekaeders iJberein, jedoch nut  unbefriedigend mit der 
sph/irischen Symmetrie. Diese Ergebnisse zeigen, dab das Pentagondodekaeder ein 
brauchbarer Prototyp fiir zellenf6rmige K6rner ist. 

a Dr. P. L. White is Senior Materials Scientist with Corporate Research, Owens- 
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b Professor L. H. Van Vlack is Chairman, Chemical and Metallurgical Engineering 
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Une comparaison de la distribution des mesures ~ deux 
et ~ trois dimensions dans un matdriau ~ structure cellulaire 

Cette ~tude est consacr~e h la comparaison des mesures h deux et ~ trois dimensions 
qui ont ~t~ d&ermin~es pour un mat~riau compos6 de cellules. D'apr~s l'interpr&ation 
quantitative des micrographies ainsi que d'apr~s des mesures spatiales, c'est h des dod~- 
ca~dres pentagonaux, donc h des cellules h douze faces ayant cinq ar&es par face, que la 
structure cellulaire correspond le mieux. Les volumes des cellules ont une distribution 
normale. Pour diverses formes de poly~dres, les distributions de surface de coupes planes 
ont ~t6 extraites de la litt~rature existant d~j~. Les distributions volum~triques mesur~es 
dans cette &ude ont ~t~ soumises ~ un ordinateur pour les calculs num6riques, afin de 
transposer la distribution volum6trique (~t trois dimensions) en une distribution de surface 
(~ deux dimensions) que l'on d~sirait d~terminer. Les r6sultats des surfaces r6ellement 
mesur6es correspondent bien aux donn~es attendues pour la sym~trie des poly6dres 
pr~sum~e complexe, donc par exemple pour les dod~ca~dres pentagonaux; ils sont 
n~anmoins insatisfaisants pour la sym~trie sph~rique. Ces r6sultats prouvent que le 
dod6ca~dre polygonal est un prototype de cellule mesurable pour les formes des grains. 

a Le Dr. P. L. White est "Senior Materials Scientist" au centre technique d'Owens- 
Illinois, Toledo, Ohio. 

Le Professeur L. H. Van Vlack est pr6sident du service "Chemical and Metallurgical 
Engineering" de l'universit6 du Michigan, Ann Arbor, Michigan. 

Introduction 

The opacity of most materials along with the inability to determine volumes 
of cells or grains accurately has led to numerous attempts to calculate particle 
or grain size distributions from measured planar data. For the most part, such 
calculations are based on an a priori assumption that all grains are spherical. 
While this is known to be incorrect, such symmetry simplifies the calculation 
of volume distributions. Efforts to achieve similar probabilities from planar inter- 
sections of more complex shapes has been largely neglected because of the 
mathematical difficulties. 

Through the use of reticulated polyurethane foams (foams with only a 
skeletonal structure, having cell walls removed), however, it is possible to 
determine the cell volume distribution by individually measuring a statistically 
meaningful number  of cells. In  addition, the cellular structure of the foam can 
be defined in terms of orientation, faces, edges, and dimensions. Such a material 
also permits the observation of planar sectioning distributions by connecting 
straight lines between grain junctions and subsequently measuring the areas of 
each grain. 

Thus  a knowledge of the two-dimensional areal distribution plus the three- 
dimensional volume distribution provides a direct check of various conversions 
from one distribution to the other. In  addition, the structure may be classified 
as to complex polyhedral shapes, and transformations based on the complex 
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symmetry may be carried out numerically with the aid of the computer. There- 
fore, it was feasible to make analyses of two- and three-dimensional distributions 
and to arrive at conclusions as to the validity of planar-spatial transformations 
based on assumed average shape, whether spherical symmetry was employed 
or not. 

Determination of Statistical Grain Size  

The shape and size of biological cells and metal grains has been under inves- 
tigation since the seventeenth century. The three-dimensional shapes of 
biological cells have been reviewed by Lewis 1,2 and Marvin. 8 Marvin 4 also 
demonstrated that, when lead balls of uniform diameter are compressed so that 
the interstices are eliminated, the balls are changed into polyhedra averaging 
14 faces, and that when small and large shot are mixed and compressed, the 
small balls are changed into polyhedra with fewer than 14 faces and the large 
ones into polyhedra having more than 14 faces. 

Matzke 5 and Matzke and Nestler 6 made intensive analyses of three-dimensional 
shapes of bubbles in foams. Bubbles of uniform volume had an average of 
13.7 faces. Matzke found a predominance of pentagonal faces and concluded that 
pentagonal dodecahedra might be expected to be the most common shape, 
approximating the equilibrium conditions of 120 ° angles between films and 
angles of 109°28'16" between edges. 7 

Desch 8 was able to examine the shapes of grains of beta-brass where there 
were 11 to 20 faces per grain with a predominance of five edges per face. Scheil 
and Wurst 9 determined the spatial distribution of grain sizes in a sample of 
ingot iron by polishing off successive layers and following each grain through 
micrographs, deriving a statistical grain shape in terms of a calculated plane 
distribution curve, resulting in a distribution somewhat different from that 
obtained from a sphere. 

Williams and Smith, 1° using an A1-5.2% Sn alloy in which the tin concentrated 
in triangular areas at the grain corners, delineated a total of 91 grains through 
stereoscopic photographs which were taken by microradiography. That study 
indicated an average of five edges per face and of 12.48 faces per grain. 

When the requirements for space filling, along with the minimization of 
surface-tension forces, are considered, Lord Kelvin 11 demonstrated that a volume 
composed of truncated octahedra will completely fill space with a minimum of 
surface area. A polyhedron of this type, better known as the tetrakaidecahedron, 
is shown in Fig. 1. This 14-faced volume has six four-edged faces along with 
eight hexagonal faces and meets the surface tension requirements of no more 
than three grains at an edge and no more than four edges at a corner. A slight 
double curvature of the eight hexagonal faces satisfies the 120 ° dihedral angle 
requirement for three adjacent grains meeting at an edge. Such curvature can 
be demonstrated in simple soap films. TM 
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FIa. 1. Tetrakaidecahedron. 

Desch a pointed out in his study that both foam cells and grains approximated 
the shape of regular pentagonal dodecahedra. This polyhedral shape is shown 
in Fig. 2. It has 12 faces, all being pentagons, with the faces meeting at close 
to 120 ° and the edges meeting at angles of 108 ° . Hence, small curvatures of the 
faces would bring this figure into conformity with surface tension requirements. 
Complete filling of space cannot be accomplished by stacking of pentagonal 
dodecahedra; but where polyhedra of varying shape are packed together 

FIo. 2. Pentagonal dodecahedron. 
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subject only to limitations on junctions of edges and grains, it is apparent that 
pentagonal dodecahedra may be frequently observed. 

An additional limitation to that of filling space is that the shape of grains or 
cells must tend toward that of minimum surface energy. Because of the variation 
of shapes observed in nature, the closest prototype is the pentagonal dodeca- 
hedron. 13 Most strictly the physical conditions comply with the viewpoint 
of Williams and Smith;l°--namely, that the individual grain is not governed by 
any one particular shape but conforms to the tetrahedral junction of four grains 
whose angles approximate 109028 ' . 

Shapes of Grains in Two Dimensions 

Desch 8 and Hull and Houk 14 have studied the two-dimensional shape of 
planar sections by using models of specific polyhedra. Myers 15 has refined these 
results through computer calculations. It  can be shown that six is the average 
number of sides when three grain boundaries meet at every corner, satisfying 
surface tension requirements. 16 

Distribution of Grain Sizes in Three Dimensions 

Seldom, if ever, is a mass composed of identically sized grains. Rather a 
wide variation of volumes exists, as well as grain shapes. Furthermore, it can be 
shown that a wide range of sizes would be observed on a planar section even if all 
grains were the same size. 14 

Many studies have been devoted to calculate the volume distribution of particle 
or grain sizes from information obtained from planar sectioning data. Such 
methods are too lengthy to be discussed in detail, but are generally based on 
chord, diameter, or areal distributions, and usually assume spherical shape. 
Excellent up-to-date reviews of particle size distributions and grain-size 
distributions have been made by Underwood 17 and Schuckher, t8 respectively. 

Aaron et aL 19 calculated three-dimensional grain-size distributions on samples 
previously examined by Williams and Smith3 ° While direct comparisons could 
not be made between the calculated and measured sizes, a strong dependence 
of the number of grains per unit volume on the number of class intervals was 
found, and methods based on spheres were concluded to fit the direct 
measurements. 

Experimental Procedure 

Polymer foam was provided through the courtesy of the Scott Foam Division, 
ScottPaper Company. This foam is a polyester polyurethane formed as a conden- 
sation polymer. Following formation, the cell walls were removed, leaving the 
foam in a flexible, open-pore or reticulated state. Figure 3 shows the structure 
of such a foam having a nominal density of 2 lb/ft 3. 
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FXG. 3. Structure of 7-cell-per-inch polyurethane foam, density 2 lb/ft a. 6.2x. 

A cell volume distribution was obtained by filling individual cells from a 
0.25-cc syringe while observing the filling with a stereoscopic microscope. The  
amount of distilled water in the syringe was read before and after fill to 0.0025 cc. 
Filling was considered complete when the water "popped," wetting all members 
of the single cell. Figure 4 shows one individual cell within the foam, before 
filling, partially filled, and after filling. Measured variation of filling a number of 
individual cells repetitively resulted in a volume variation of ±0.0025 cc. A total 
of 408 cells were individually measured for the volume distribution. 

The filling of individual cells by surface tension resulted in planar surfaces 
for the cell faces. This method could result in a slight error in the volume 
distribution, but a planar face was desirable, since the two-dimensional areas 
were determined by straight-line intersection between second-phase material 
(see Fig. 5). Hence, a uniform comparison between two- and three-dimensional 
analyses was realized. 

In addition to obtaining the volume distribution of cells within the structure, 
the number of faces of each of the polyhedra was also measured along with the 
corresponding number of edges per face. These two additional measurements 
aided in determining the geometrical shape of the "average" cell. 

Foam samples were prepared for two-dimensional measurements by addition 
of a liquid polyester resin. Subsequent to solidification, samples were sectioned 
randomly and polished by hand. Pictures of the polished planar sections were 
taken on a Vickers projection microscope and on a stereoscopic zoom microscope. 

Planar sections belonging to each individual cell were classed according to 
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(a) 

FIG. 4. Cell volume determination of polyurethane foam. 8.4 ×. (a) Before filling. 

their respective areas by direct comparison with circular templates having 
variation steps of 1/32 inch in diameter above 3/8 inch, and 1/64 inch below. 
Areas were determined by drawing straight lines between the second-phase 
material. In this manner, planar sections were classed into 42 sizes ranging from 
1 inch in diameter to 1/32 inch in diameter, at a magnification of 4.2 ×. The 
number of sides was counted for each planar cell section. Figure 5 shows the 
microstructure developed from infiltration of a foam specimen which has been 
prepared for areal analysis. 

Experimental Results and Discussion 

The measurements of the number of faces per foam cell demonstrate that the 
most probable number of faces is 14 with a mean of 13.2 faces per cell. No cells 
are observed with more than 17 or less than four faces, and statistically few 
cells have less than ten faces. The numbers of faces per polyhedron are 14 for 
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(b) 

(c) 

FI~. 4. (b) partially filled, volume 0.035 cc; (c) completely filled, volume 0.080 cc. 
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FIG. 5. Random planar section of foam prepared for quantitative analysis. 4.2 ×. 

the truncated octahedron (tetrakaidecahedron) and 12 for the pentagonal dodeca- 
hedron. Experimental observations on the shapes of cells in various materials 
show a strong similarity and confirm the general picture that the number of 
corners, edges, and faces observed are closely approximated by the averaged 
values of different asymmetrical polyhedra fitting together. 

The distribution of faces per cell observed in this study is plotted in Fig. 6 
along with the observed values of uniform interior bubbles and interior com- 
pressed lead shot. The observed distributions are quite similar, with 14 faces 
being predominate in all cases. For a further comparison, Table I shows the 
averaged results of measurements on froth bubbles, vegetable cells, and metallic 
grains. Five-edged faces are observed more than twice as often as any other in 
this particular foam structure. The mean of these results is 4.88. Comparison 
with Table I indicates that this figure may be low in relation to the number of 
faces per polyhedron, A further comparison with other observations is shown 
in Fig. 7, where the graphs exhibit the distribution of edges per face for the five 
different materials listed in Table I. The data measured in this study follow quite 
closely those observed for either mixed or uniform bubbles, but differ from 
those of metallic grains. The similarity to the bubbles should be expected because 
of the foam origin. Smith 2° notes that foams owe their shape characteristics to 
the volumetrically insignificant part of matter lying in between the grains or cells, 
whereas metallic systems are influenced by the presence of nonmetallic inclusions 
and by the variation of grain boundary energy with direction and orientation. 
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Comparison of the distribution of number of faces per polyhedron for various 

Experimental  observations of the frequency distr ibution of the number  of 
edges or sides on plane sections in this s tudy are compared with the distr ibution 
of edges per sectioned polygon for the pentagonal dodecahedron and the tetra-  
kaidecahedron in Fig. 8. The  average number  of edges is 5.681 from this study, 

TABLE I 

SHAPES OF BUBBLES, CELLS, AND GRAINS CONSIDERED AS SEPARATE POLYHEDRA 

Edges/face Faces/polyhedron Reference 

600 uniform bubbles 5.111 13.702 
150 mixed bubbles 5.095 13.260 
450 vegetable cells 5.123 13.802 

30 beta-brass grains 5.142 14.500 
100 A1-5.2 % Sn alloy grains 5.02 12.48 
Tetrakaidecahedron 5.14 14.00 
Pentagonal dodecahedron 5.00 12.00 
Cube 4.00 6.00 

5 
6 
5 
8 
I0 
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as compared with the expected average values of 5.6915 and 6.000, respectively, 
for those two shapes. The  expected distributions from these two polyhedral 
shapes were compared statistically with experimental values. The  fit was excellent 
for the pentagonal dodecahedron and poor for the tetrakaidecahedron. 

Selection of Structure Type 

Although the goal of these quantitative measurements is to obtain data which 
enable a " typing" of the structure toward one particular polyhedral shape, it is 
naive to assume that only one cell shape exists in such a foam, because many 
shapes go together to make up the volume. A typing of shape merely suggests 
that the distribution of forms can be averaged toward one given shape. 

The  preceding results of the cellular characteristics are summarized below and 
lead to the conclusion that the polyurethane foam structure is represented most 
closely by assuming a cellular shape of pentagonal dodecahedra: 

Expected Expected 
Observed tetrakai- pentagonal Expected 
average decahedron dodecahedron cube 

Faces/polyhedron 13.2 14.0 12.0 6.0 
Edges/faces of polyhedron 4.88 5.14 5.00 4.00 
Edges/sectioned polygon 5.68 6.00 5.69 4.00 
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Distribution of sides per sectioned polygon for various polyhedral shapes. 

Three-Dimensional Volume Distribution 

The measured volume distribution observed by filling 408 individual cells is 
shown in Fig. 9. Each data point is averaged with adjacent points for smoothness. 
These results yield an observed mean value of 0.0481 cc and a standard deviation 
of 0.0179 cc. Also shown as a dark heavy line is a computed Gaussian distribution 
with a mean of 0.0477 cc and standard deviation of 0.0188 cc. While such a fit 
cannot be exact because of discrepancies at the limits, it is concluded that the 
distribution of cell volumes within the foam is normal and can be described 
analytically by a Gaussian function. 

Review of Hull and Houk's Analysis 

Hull and Houk 14 investigated in detail the distributions of the number of 
sides and the areas of "grains" in planar sections of various regular polyhedra 
by constructing wire models. Through proper orientation of the sectioning 
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p lane ,  t hey  se lected a u n i f o r m  d i s t r i b u t i o n  of  o r ien ta t ions ,  r o u g h l y  e q u i v a l e n t  

to  a 5 ° sol id angle  over  t he  surface  of  a r e fe rence  sphere .  Charac te r i s t i c s  of  

se lec ted  p o l y h e d r a  of  in te res t  to th i s  work  are l i s ted  in T a b l e  I I .  

T h e  resu l t s  of  Hu l l  a n d  H o u k ' s  m e a s u r e m e n t s  for  t he  p lane  d i s t r i b u t i o n  cu rve  

TABLE II 

CHARACTERISTICS OF SELECTED POLYHEDRA* 

Tetrakai- Pentagonal 
Cube Sphere decahedron dodecahedron 

Volume 1.0 1.0 1.0 1.0 
Surface of figure 6.00 4.83 5.31 5.30 
r of inscribed sphere 0.50 0.62 0.54 0.56 
Average r 0.76 0.62 0.66 0.66 

(based on intersections) 
r of circumscribed sphere 0.87 0.62 0.70 0.71 
Average cross-section 0.66 0.81 0.77 0.78 

area from distribution 
curve, A 

Maximum cross-section 1.41 1.21 1.40 1.31 
area, Amax 

Amax/A 2.14 1.50 1.83 1.69 

* From Hull and Houk. 14 
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of areas are shown for the sphere, tetrakaidecahedron, and pentagonal dodeca- 
hedron in Fig. 10. The latter two are of primary interest to this investigation. 
These plots are histograms of the frequency distribution of areas for each of the 
shapes. The area curves of polyhedra having more complex symmetry than the 
sphere are characterized by a rapid rise in frequency, F(A), at small values of 
intersection. In addition, each curve has a large maximum between 0.7 and 0.9 
for A/Amax, while at the largest areas possible the curves reflect the differences 
in symmetry between the polyhedra. 

The curves of the areal distributions represent the results of measurements 
from either of two viewpoints: (1) They may result from a statistically meaning- 
ful number of intersections of one given size of polyhedron, or (2) they may result 
from measurements of a volume containing identically sized polyhedra. Further, 
the shape of these curves is independent of the size of the polyhedra. That is, 
the same frequency distribution would be measured for a pentagonal dodeca- 
hedron, for example, whether very large or very small. These results pertain 
to only one particular size of polyhedra. The introduction of a volume containing 
a distribution of sizes is a complicating factor which is encountered in quanti- 
tative micrography. 

These distribution curves take on special significance with relation to this 
investigation. With a knowledge of the areal distribution from a sectioning plane 
(two-dimensional data), and a knowledge of the volume distribution (three- 
dimensional data), it is possible to calculate one of the distributions from the 
other with the aid of Hull and Houk's data. That is, using distribution of areas 
for one given polyhedral size and shape, and knowing the number and sizes 
within the volume under investigation, a calculated curve of areas for a section 
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can be predicted and compared with actual measurements. This corresponds to 
a transformation of: 

3-dimensional (volume) ~ 2-dimensional (planar) 

Calculation of Areal Distribution from Three-Dimensional Data 

The calculation of the two-dimensional area distribution curve was carried 
out in the following manner:(1) The measured volume distribution curve was 
analytically described by a Gaussian function having a mean of 0.0477 and a 
standard deviation of 0.0188; (2) this function was applied to the distribution 
curve of Hull and Houk, with the height of the Gaussian function becoming 
a multiplier, and the volume determining the value of Amax for each interval; 
(3) each calculated curve from (2) was normalized as to unit area under the curve; 
and finally (4) summation of the individual contributions of each curve was 
made across the axis for area. These summations as a function of area are a 
composite areal distribution curve which should be observed from a volume of 
foam having the cell volume distribution that was previously measured. 

Calculations were made by computer for the sphere, pentagonal dodecahedron, 
and tetrakaidecahedron. Conversions from area to volume and vice versa for one 
size and shape were made using data from Table II  and the assumption: 

v = 

where V is the volume, K a constant, and Ama x the maximum section area. 
Details of such calculations may be found elsewhere. 21 

The predicted areal distribution curve for the three shapes is shown in Fig. 11. 
The various polyhedra yield similar results as to position of the maxima and 
behavior toward large values of area. The major differences arise in the range of 
small areas, with the sphere distribution decreasing in the region of small areas, 
and the more complex shapes rising sharply near the origin. For each of the cases 
the peak height has been normalized to 100% at its maximum. The large values 
of small section areas predicted from the more complex polyhedra arise from 
sectioning planes intersecting corners of these bodies. 

The results of the two-dimensional sectioning analysis are shown in Fig. 12 
and compared with the predicted curves based on a shape assumption of the 
pentagonal dodecahedron and tetrakaidecahedron. Both the computer-generated 
curves based on the shape of the pentagonal dodecahedron and the tetrakaide- 
hedron are in close agreement with the experimentally observed distribution. 
The experimental values at small section areas fit more closely the tetrakaideca- 
hedron prototype, while for values larger than 0.2 in. 2 the pentagonal dodeca- 
hedron is preferred. A least-squares analysis indicates a better fit to the 
pentagonal dodecahedron. The direct comparison shows that an assumption of 
the sphere shape is not valid, particularly at small values of area. Thus, the 
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tative microscopy would lead to erroneous results if applied to this system. 

The  results of the dimensional transformation coupled with the previous 
measurements of the cell characteristics demonstrate that the pentagonal 
dodecahedron is a reasonable prototype or model for foam cells. The  selection 
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of this polyhedron as opposed to the space-filling tetrakaidecahedron arises most 
likely from the nonideality of the foam and the variation of cell shapes and 
volumes encountered in the material. 

Summary 

A commercial polyurethane foam having only a skeletonal structure was 
analyzed from both a two-dimensional and a three-dimensional standpoint. 
It  was possible to determine characteristics of the form of these cells by con- 
sidering cells within the foam as individual polyhedra. Comparison of these 
data to other cellular materials exhibits a strong similarity to data obtained from 
bubbles, vegetable cells, compressed balls, and alloys. 

These distributions were compared to expected distributions from polyhedra 
having shapes that either completely or nearly fill all space while conforming to 
surface tension and topological requirements. On the basis of these data, the 
most probable shape of individual cells is that of the pentagonal dodecahedron, 
a 12-faced polyhedron with all faces being equal pentagons. 

The distribution of areas from two-dimensional sectioning planes was observed 
on planar sections of polyester infiltrated foam and found to be close to a normal 
distribution. The distribution of volumes of cells was ascertained by filling 
individual cells with water and could be very closely described by a Gaussian 
function having a standard deviation of 0.40 of the mean volume (0.0477 cc). 

Using the Gaussian function describing the measured volume distribution and 
areal sectioning data for various polyhedral shapes existent in the literature, a 
predicted areal curve was numerically calculated based on selected particular 
shapes and the measured volume distribution. The calculated areal curves based 
on the shape for the pentagonal dodecahedron and tetrakaidecahedron fit the 
experimentally observed areal curve very closely. In contrast, the data show that 
an assumption of a spheroidal cell shape is invalid, particularly for small areas. 
Hence, calculations of volume distributions from observed area distributions 
established in the literature as accepted practice do not yield accurate results. 

These results show that the most representative cellular shape for foam cells 
is the pentagonal dodecahedron, and present unusual data which permit for the 
first time a direct check of the validity of calculated areal distributions based 
on spatial volume measurements. Further, it is demonstrated that accurate 
predictions can be made of transformations between two-dimensional and 
three-dimensional data, providing characteristic cell shape and distribution can 
be adequately determined. 
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