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Abstract- This paper is concerned with a theoretical model of the head. Neuroanatomical and 
analytical considerations lead to a fluid-filled spherical shell as a first-generation model. The 
shell is considered thin, elastic, homogeneous, and isotropic. The shell equations includeboth 
membrane and bending effects in axisymmetric torsionless motion. The motion of the fluid is 
governed by the wave equation. A free vibration analysis of the fluid-shell system is obtained 
in the form of a frequency equation. Compared with a fluid-filled rigid shell and an elastic shell 
in uacuo, the frequency spectrum of the fluid-shell system is almost a ‘superposition’ of the 
spectra of the two special cases. The exceptions appear as slight distortions in the neighborhood 
of the ‘curve’ intersections. 

1. Ih’TRODUCTION 

IT IS a well-established fact that approximately 
three-quarters of the fatalities resulting from 
all accidents involve injury to the head, em- 
phasizing the disproportionate vulnerability 
of this part of the human body. The mounting 
awareness of the gravity of the problem cul- 
minated in a Head Injury Conference in 
Chicago, 1965. Its Proceedings, edited by 
Caveness and Walker (1966), consist of 576 
pages of contributions from practically every 
conceivable point of view concerning the 
problem of craniocerebral trauma. 

The investigation presented here is part of 
a systematic study of the various mechanical 
properties of the head as revealed by its 
response to pressure waves. It is an attempt 
to theoretically model what is considered a 
very complicated situation with the hope of 
deducing from the analysis the most prominent 
features of cranioceiebral trauma. 

Section 2 delineates the various considera- 
tions leading to the choice of the analytical 

model. The model adopted is a thin, homo- 
geneous, isotropic and elastic spherical shell 
containing an inviscid h-rotational fluid (Fig. 
1). The various limitations of the model are 
discussed and they form points of departure 
for future investigations. Section 3 summarizes 
previous studies in head injury and also in- 
vestigations in mechanics which are similar 
to the adopted model. The formulation of the 
problem consisting of the governing partial 
differential equations and their associated 
initial and boundary conditions are given in 
Section 4. The steps leading up to the fre- 
quency equation and mode shapes are 
revealed in Section 5. Discussion and presen- 
tation of the results in Section 6 terminate this 
paper. 

2. CONSIDERATIONS LEADING TO THE 
ANALYTICAL MODEL 

Geometry, hydrostatics and restraints 
Roughly speaking, the human head can be 

represented as a she:1 filled with fluid inside 
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Fig. I. Simplified model of &he 
brain and skull as a fluid- 

filled spherical shell. 

of which is a fluid mass of somewhat greater 
density. Consider Fig. 2 as an idealization of 
the problem. Region I represents the brain, II, 
the cerebrospinal fluid (CSF) and III, the 

Fig. 2. Model of the brain, 
cerebrospinal fluid and skull. 

skull. According to Blinkov and Glezer ( 1966), 
the cerebrospinal fluid has a specific weight 
of l-007 g/cm3 and the average adult (20 yr 
old) brain is 1200 cm3 in volume and 1378 g 
in weight and has a cranial (volume) capacity 
of 1500 cm3. Assuming spherical regions, one 
can estimate the dimensions involved: 

(4/3)rrR3 = 1200 cm3; 

R = (2O6.9O)1’3 = 5.92 cm. 

The gap size, g, is, similarly: 

(4i3)r(R+g)3 = 1500 cm3; g = 4-57 mm 

McRae ( 1966) indicated 
brain and skull. 

From the well-known 

a closed fit of the 

buoyancy relation- 
ship of hydrostatics we can find the weight 
of the brain in the CSF, WCSF, as the difference 
between its weight in air, Wair, and its buoyant 
force: 

W CSF = Wair-- YCSFvbrain 

= 1378- (lX@7)(1200) = 16Og, 

where y and V denote the specific weight and 
volume respectively. The above result con- 
flicts with that given by Ganong (1967), who 
claims WCsF = 50 g. The discrepancy can be 
explained only if the CSF does nor completely 
enclose the brain. The level of the CSF which 
will agree with the Ganong figure can be 
computed from elementary hydrostatics. 
McRae ( 1966) asserts that more of the CSF 
is at the bottom of the head than it is on top in 
the normal position. 

That the restraint system should be ‘weak’ 
can also be argued as follows. If the brain 
were not in relative hydrostatic equilibrium 
then there should exist ‘strong’ restraints in 
order to offset the density differences between 
the brain substance and the CSF. For example, 
in the normal upright position the brain should 
be prevented from sinking. Further, the re- 
straint systems should be active whether one 
is upright, supine, lying prone or standing 
on one’s head. A restraint system which is 
strong with respect to all these positional 
changes must be quite complicated. On the 
other hand, if the brain were in relative neutral 
equilibrium with the CSF, one need only 
‘weak’ restraints to position it. We assume 
that nature follows the latter- the simpler of 
the two systems. 

The quantitative estimates given above are 
supported by neuroanatomy. Figure 3 shows 
the major sub-divisions of the brain, brain 
stem and spinal cord. We note that the 
system is an integral unit and is also ‘enclosed’ 
in CSF, Davson ( 1960). The CSF fills the 
cerebral ventricles and the subarachnoid 
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Fig. 3. Major organs of the camiocerebral system. 

space. Figure 4 shows an enlarged section of 
the brain and its investing membranes. We 
quote from Ganong ( 1967), “The dura is 
attached firm@ to bone. There is normally no 
‘subdural space’, the arachnoid being held 
to the dura by the surface tension of the thin 
layer of fluid between the 2 membranes. The 
brain itself is supported within the arachnoid 
by the blood vessels and nerve roots and by 
multiple, fine fibrous arachnoid trabeculae. 
The brain weighs about 1400 g in air, but in 
its ‘water bath’ of CSF it has a net weight of 
only 50 g. The buoyancy of the brain in the 
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CSF permits its relatively flimsy attachments 
to suspend it very effectively. When the head 
receives a blow, the arachnoid slides on the 
dura and the brain moves, but its motion is 
gently checked by the CSF cushion and by the 
arachnoid trabeculae”. 

The view that the skull is a closed spherical 
shell is, of course, substantially in error. Its 
lack of sphericity is evident by inspection. 
The shell has a major opening called the 
foramen magnum, through which the medulla 
oblongata merges with the spinal cord, Fig. 
3. Other openings such as the optic foramen 
are so small as to be negligible. 

Furthermore, the head is not a free-floating 
object, as is implied in our model, but is 
pivoted about the atlas and its orientation 
maintained by muscles and ligaments of 
various sorts. 

Dynamical implications of above 
The geometry, hydrostatics and restraint 

system seem, at least, to call for a multi- 
layered spheroidal shell (skull and membranes) 
with a weakly plugged hole (medulla oblongata 
in the foramen magnum) containing a ‘fluid’ 
(brain) partially suspended in another. 

The complications can be removed if one 

I , II 

Fig. 4. Details of cerebral cortex and its investing’ 
membranes. 
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takes into account experimental evidence 
and ultimately what one’s objectives are. In 
the present case, we are interested primarily 
in the intracranial pressure distribution and 
the locations of high stress on the skull with 
the advent of a blow, i.e. a transient problem. 

Roberts, Hodgson and Thomas ( 1966) con- 
ducted experiments with fluid-filled skulls 
subjected to different blows. They showed 
that the retension of falx cerebri and tentorium 
cerebelli membranes had practically no effect 
on the intracranial pressure distribution. 
Further, the simulation of an elastic closure 
over the foramen magnum produced changes 
which are different when compared to a rigid 
plug over the same. These results are probably 
reasonable since the material plugging over 
the foramen magnum in viuo are quite soft 
compared to skull bone. The assumption of a 
closed spherical shell is the most debatable 
and this point should be examined in the 
future. 

While we recognize local variations in the 
brain, it should not be forgotten that the brain 
consists mosrty of water and has a specific 
weight of l-15 g/cm3. Hence, a fluid-filled 
closed spherical sheh appears to be a reason- 
ably adequate first approximation since the 
densities of CSF and brain are approximately 
the same. 

The primary value of the present model lies 
in providing a basis for later, more accurate, 
analyses: e.g. the inclusion of a softly plugged 
hole to simulate the foramen magnum. As the 
present model is already a complex and in- 
teresting problem in applied mechanics, we 
feel its analysis could be useful in guiding 
future investigations in the dynamic behavior 
of the head during impact. 

3. PREVIOUS STUDIES 

Previous work in the area can be put into 
two categories: (a) those which dealt directly 
with the analytical modelling of the head injury 
problem and (b) those which are investigations 
in theoretical mechanics as problems in fluid- 
solid interaction. 

Category (a) has been treated by Anzelius 
( 1943) and Giittinger ( 1950). They considered 
the effect of a blow to a free-floating rigid 
closed spherical shell with irrotational, in- 
viscid fiuid inside. Their formulations were 
practically identical and involved an axi- 
symmetric solution of the wave equation in 
spherical coordinates. They concluded that 
the initial velocity input produced a com- 
pression wave at the point of impact (coup); 
however, because the shell was assumed rigid, 
the effect was ins:antaneously transmitted 
to the counterpole (contrecoup), whereupon 
a tension wave was simultaneously emitted. 
The collision of the two waves at the center 
produced large pressure gradients, which 
was considered the mechanism of damage. 
The obvious defect in the model led Goldsmith 
(1966) to suggest the analytical or numerical 
solution of a fluid-filled elastic shell. Gold- 
smith’s paper is both a tutorial (for those not 
in the physical sciences) and a review of the 
theoretical and experimental approaches em- 
ployed in engineering impact which might 
have implications in the delineation of head 
injury problem. 

Recently, Hayashi (1968) treated a one- 
dimensional version of the Anzelius-Giittinger 
model. The system consists of a rigid but 
massless vessel (skull) containing internal 
elastic fluid (brain and CSF). The vessel is 
attached to a linear spring, which represents 
the composite elastic properties of the helmet, 
skull, skin, hair and the elasticity of the -wall. 
Thus the problem is simplified to that of a 
fluid ‘rod’ enclosed in a rigid vessel with an 
attached spring striking a stationary wag. 
Approximate solutions were obtained for the 
extreme cases of very soft and very hard 
impacts. The analytical results agreed quite 
well with the experimental data of Roberts 
ef al. (1966) and Fujii and Kobayashi (un- 
published). The simple model has the advan- 
tage of being easy to interpret. However, 
many shortcomings are immediately evident: 
(a) it is not clear what occurs when the impact 
is neither very soft nor very hard; (b) due to 
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the geometrical assumption, there is no way of 
determining the possible locations of skull 
fracture and (c) the effects of skull deformation 
on the intracranial pressure or pressure 
gradient cannot be determined. Both theo- 
retical and experimental considerations in- 
dicate the desirability of a systematic study 
of the dynamic characteristics of a fluid-filled 
elastic spherical shell. 

The investigations belonging to the second 
category are numerous. Only a few represen- 
tative one’s will be mentioned here. The 
problem of a fluid-filled shell submerged in 
another fluid has attracted many researchers, 
especially in the discipline of acoustics. 
Junger (1952) calculated both the reflection 
from an air-filled shell submerged in a fluid 
and the transmission through the shell interior 
of an incidental plane wave. Greenspon ( 196 1) 
treated unpressurized shells by exact elas- 
ticity theory and the cylindrical shells with 
internal fluid by approximate shell theory. 
Goodman and Stem f 1962), using elasticity 
theory and numerical integration of a system 
of ordinary differential equations, investigated 
the steady state response of fluid-filled 
spherical shell submerged in another fluid. 
Hickling ( 1962) extended the results to a 
pressure pulse emanating from a point source. 
The transient response to such an impulsive 
pressure can be found by integrating, over a 
suitable range of frequencies, the product of 
the steady-state response and the Fourier 
transform of the applied impulsive pressure. 
Recently, Rand and DiMaggio (1967) ob- 
tained frequency equations and mode shapes 
for the axisymmetric, extensional, torsionless 
vibrations of fluid-filled elastic spherical 
shells and rigid prolate spheroidal shells. As 
a problem in mechanics, the present investiga- 
tion is a generalization of the results of Rand 
and DiMaggio by including the bending effect. 

There exists two other areas where the 
dynamics of fluid-filled (cylindrical) shells 
have been extensively investigated: (a) the 
interaction of blood with arteries and/or 
veins and (b) the interaction of liquid pro- 
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pellants and their elastic containers. The 
references given in Skalak ( 1966) in the first 
area and Beam and Guist ( 1967) in the second 
suffice to indicate the scope and interest in 
these two neighboring disciplines. 

4. FORMULATION OF THE PROBLEM 

The model of the head under consideration 
is that of a fluid-filled closed spherical shell 
under axisymmetric torsionless motion. The 
fluid is inviscid and irrotational while the 
shell is thin and elastic. The spherical co- 
ordinate system used is shown in Fig. 5. 

Deformation of a given shell can be 
analyzed in terms of the deformation of its 
middle surface, i.e. a surface which lies mid- 
way between the thickness of the shell. The 
symbols U, u and w are used to denote the 
meridional (p) , circumferential (0) and radial 
(r) displacements, respectively. Following 
the thin shell theory of Novozhilov ( 1960), we 
note that the assumptions of axisymmetry 
and torsionless displacements result in 

aO=@o_* 
a6 9-9 

where cl denotes any function of the depen- 
dent variable. The remaining displacements 
are now expressible as: 

U = U(cp, t); w = w(cp, 2). (3) 

The motion of an inviscid and it-rotational 
fluid undergoing small oscillations is governed 
by the wave equation. In spherical coordinates 
it can be shown to be: (see Ewing, Jardetsky 
and Press, 1957) 

1 a @#! +_J_a -- ( > r2 ar ar r2 sin p acp 

X (sin&$ =-jj$, (4) 

where # is the velocity potential and c is the 
speed of sound in the fluid. The pressure, P, in 
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the fluid is found from the velocity postential 
4, by the relationship: 

P = -PAwar), (5) 

where pr is the density of the fluid. 
The equations of motion for the fluid-filled 

shell can now be derived from Hamilton’s 
Principle. The potential energy Y, of the 
shell is: 

v=l, W-l, (P(a,q,t)+Peb~~ (6) 

where the fhst integral represents the strain 
energy of the deformed shell, (0 is the strain 
energy density per unit area of mid-surface), 
the second integral represents the potential 
energy contribution due to effects of both the 
internal pressure P(a, cp, t) and external pres- 
sure P,. The kinetic energy of the shell is 

where pI and V, are the mass density and the 
volume of the shell material respectively. In 
(7), the effects of shear deformation and rotary 
inertia of the shell are neglected. 

The analytical statement of Hamilton’s 
principle is 

(8) 

where t1 and r2 are two distinct, arbitrary, but 
hxed times, and 6 denotes the usual varia- 
tional operation. Substituting (6) and (7) into 
(8) and performing the variational operations 
yield two partial differential equations, (and 
a set of natural boundary conditions, which is 
of little importance here) i.e. 

(l+nd)[-~-cot~~+ (u+cot~~)u] 

+ ,2a3w a% 
q-+cYQotpdcp2 

-[(l+v)(l+d)+dcot~rpl$ 

+ [d cot3 cp+ 3012 cot p 

- (l+V)(l+cp) cotcp]u 

-a+ $+2cotp$ 
[ 

-(l+y+cot~(o)~ 

+ (2cotrpfcot~+?-~cotp)~ 1 
l-9 ,* 

-2(1--v)w-- 
E ha at2 

+%[p;~- P,($o, f)] = 0, 

(10) 

where E is the modulus of elasticity, a is the 
inner radius, h is the thickness of the shell, v 
is the Poisson’s ratio and ar2 = hz/12a2 is a 
thickness parameter of the shell. 

Equations (4), (9) and (10) are the govem- 
ing partial differential equations of the 
problem. The velocity potential 4 and the 
radial displacement w are interconnected 
through the kinematic boundary condition, 
i.e. the radial velocities of the shell and fluid 
are equal for all ‘p and t, or 

$9, r) = $4 (p, t). (11) 

5. FREQUENCY EQUATION AND MODE SHAPE 

For no external pressure pulse, i.e. P,(q) = 
0, we obtain the free vibration response of 
the fluid-shell system. Introduce the dimen- 
sionless variables: 



Fig. 5. Spherical polar coordinate system. 

(f~cucing p. 16) 
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J, = u/a, 5 = w/a. R(r,)G(cpP”, we obtain two ordinary 

7 = c,tla, c, = [E/p,(l-~~)]1’2 (12) 
differential equations: 

s = c/c,, rl = rla. Cp, = dlac,, f = pfalp,h, 
&$(sm+$+~G = 0 (17) 

where c, is the apparent wave speed in the 
shell (symmetrical wave speed in an infinite d 

+ (R2r,2-i)R = 0 (18) 
plate) and f is the fluid-shell interaction F 

parameter. 
Equations (4), (9), ( 10) and (I 1) become, in where R = oak is the unknown dimensionless 

view of(12): frequency and h is a constant. Equation ( 17) 
is the self-adjoint from of Legendre’s equa- 

1 a -- 
r12 ar, ( > 

23+ 1 a 
tion. From orthogonal function theory, e.g. 

‘l ar, r,“G Churchill (17) will have a Legendre poly- 
nomial solution if and only if A = n(n+ l), 

X (sin&$)--$3=0 (13) where n are integers. Equation (18) has as 
its solution the spherical Bessel functions. 

2% [ 
+cot+ (v$_cotZ a)$-$$ 

The requirement of boundedness and the 
linearity of (13) lead to its general solution: 

-cot++ (V+cot+] n-o 

(19) 

+3 +cot cp&- 
a3r. (v+cot2$0)$J when C, are unknown coefficients& (lb,) are 

spherical Bessel functions of the first kind and 

+ (l+v)$-$$= 0, (14) P,(cos ~0) are Legendre polynomials of the 
first kind. 

d ~+2cot~~-(1+v+cot~~)~ 
[ 

Similar considerations lead to the following 
expansions for 5 and + in ( 14) and ( 15): 

5% +cot$0(2-V+cot2(p)J(-a~~ 

-2cot& + (l+V+cot’~)~ 

&, f) = ngO M%cos cp) eW, (20) 

Jl(cp, 7) = $I B,P,‘(cos cp) e**, (21) 

.% -cot(p(2-V+Cot2(p)_+ 1 
where A,, and B, are coefficients and P,‘(cos ~a) 
are Associated Legendre Polynomials of the 
first kind and first order. The boundary con- 

-(1+4($ +cotcp++ 25) dition ( 16) leads to the relationship: 

C,= WJJ(fi) (22) 
fm(l7%7) =o a25 

872 a7 7 (15) 
where ’ denotes differentiation with respect 

$9 7) =~(l,p,7). 

to its argument. Hence, ( 19) can be rewritten 
(16) as: 

Using the method of separation of varia- 
%(rl, CP~ 7) = ~OA.[W:(fl)l 

ables on ( 13), i.e. assume cP,(r,, (o, 7) = Xjn(Rrl)P,(cos cp) efm. (23) 
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The substitution of (20), (21) and (23) into 
(I 4) and ( 15) leads to two sets of homogeneous 
algebraic equations for A, and B,; where the 
higher-order derivatives of P, and P,,’ have 
been eliminated by the recursive use of the 
differential equations which they satisfy. 
Requiring that nontrivial solutions exist for 
the coefficients A, and B, yields the frequency 
equations: 
Forn=O, 

+ [cY*A,~ - ~cK~A,~ + CY~A,, (5 - v’) + A,( I- v2) 

-2(l+a2)(1-9)] =o. (27) 

Case 2 

The case off > 0 and s + 0 corresponds to 
a rigid shell containing a fluid. 

The frequency equations (24) and (25) 
degenerate to 

1+f& sW--2(1+V) *, = 0. (24) 
0 I 

Forn.3 1 andX,=n(n+l) 

[ 
1+j& 

n 3 I[ 
s*W+ 1 +f&] 

?I 

x (l-V--X,)(l+a*) 

-2(l+v)-$[X,Z--&(1--V)] S?X 
1 

-(l+V){2(1-v-h,)(l+d) 

+A,[l+v-~(l-V--_“)]} 

-LZ?(“(~-A,)[A,~-A~(~-~)] =O. (2.5) 

The appropriate limiting cases of the above 
frequency equations agree with results 
obtained by other authors. 

Case 1 
The case off = 0 corresponds to the absence 

of fluid. Introduction of values of s and 0 into 
(24) gives the dimensional .angular frequency 
of pure radial motion as 

o0 = (l/a) [2E/p,( 1 - v)]~‘* (26) 

which was first obtained by Lamb (1882). 
Setting f = 0 and defining a new nondimen- 
sional frequency Tz = Qs in (25) yields the 
frequency equation of the empty sheh which 
was recently obtained by McIvor and 
Sonstegard (1966) 

A(Q) = 0, (2ga) 

which is easily shown to be the same as 
Giittinger’s (1950) result. 

(2gb) 

where JnfllZ (iI) is the Bessel function of the 
indicated order. 

Case 3 
The case of oz.= 0 yields the frequency 

equation corresponding to the membrane 
(extensional) theory for both the empty shell 
(f = 0) and fluid-filled shell (f > 0). The 
frequency equations for vibrations of a fluid- 
filled spherical membrane possessing infinite 
bulk modulus (V = l/2) were given by Morse 
and Feshbach, and their results agree with 
(24) and (25) when a?, f and v are given the 
appropriate values. 

Figure 6 is a plot of the frequency spectrum 
for a spherical shell in vacua obtained from 
(27), using Y = O-3 and a/h = 20. Note that 
in all the plots the mode numbers n are dis- 
crete, i.e. only those points corresponding 
to the integer values of n are physically 
meaningful. In Fig. 6, both the composite* 
(lower branch) and the membrane mode 
(higher branch) frequencies are plotted using 
the nondimensional frequency a, and also 
fi = h/s. The value of s for bone-water and 
steel-water are O-553 and O-269 respectively. 

*This type of classification was used in Mclvor and Sonstegard (1966). 
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MODE NUMBER, n 

Fig. 6. Frequency spectrum for an elastic spherical shell 
in vacua (V = 0.3. a/h = 20. s = 0.269 for steel-water and 

s = 0.553 for bone-water). 

The reason for plotting the same frequency 
spectrum in terms of two nondimensional 
frequency parameters, namely fi and a, will 
be readily seen in connection with Figs. 7-9. 

Equation (28a). which gives the frequency 
spectrum for an ideal Auid in a rigid spherical 
shell, is plotted in Fig. 7. In Figs. 8 and 9, 
the frequency spectra corresponding to (24) 
and (25) are plotted for v = 0.3, a/h = 20 and 
f is equal to 9.38 (bone-water) and 2.56 (steel- 
water) respectively. 

6. DISCUSSION OF RESULTS 

Three results reveal themselves from a 
comparison of Figs. 6 through 9: (a) In Figs. 
6 and 7. the frequency spectra represent the 
natural frequencies of an empty shell and a 
fluid-filled rigid shell, respectively. In Figs. 
8 and 9, one can no longer say that a particular 
frequency of the spectrum belongs to the shell 

I/ ! I / I 1 I 
0 2 4 6 8 IO 12 14 

MODE NUMBER, n 

Fig. 7. Frequency spectrum for a rigid fluid-filled spherical 
shell. 

or to the fluid, since each frequency is a 
natural frequency of the fluid-filled elastic 
spherical shell system. 

(b) When the shell containing the fluid 
becomes elastic, certain portions of the 
spectrum become distorted. In Figs. 6 and 8 
or 9 are superposed, the higher branches of fl 
in Fig. 6 pass tangent to the distorted portion 
of the spectrum in Figs. 8 and 9. The higher 
branches in Fig. 6, however, are associated 
mainly with the membrane behavior of the 
shell. Hence, this ‘higher-branch distortion’ 
phenomenon is the result of the membrane 
behavior of the shell serving as an elastic 
boundary for the fluid. In other words, one of 
the predominant fluid-solid interactions in this 
problem is between the membrane action of 
the shell with the fluid. It is interesting to 
note from the trend exhibited in Figs. 8 and 9 
that should the value off be increased further, 
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0 2 4 
MOG NUMB& n 

IO 12 14 

Fig. 8. Frequency spectrum for an elastic fluid-filled (bone) 
spherical shell. Y = 0*3,f= 9.38, s = 04’53. 

i.e. the shell material becomes softer, the 
upper branch of Fig. 6 may become lower than 
the lowest branch of Fig. 7. 

(c) Comparison of Figs. 8 or 9 with Fig. 7 
exhibits a frequency branch which does not 
exist in the spectrum of the latter. This is the 
lowest branch of the frequencies displayed in 
Figs. 8 and 9. The existence of this ‘lower 
branch’ in the frequency spectrum for an 
elastic fluid-filled shell corresponds to the 
composite mode in Fig. 6 of the empty shell. 
The numerical values of the in-uacuo lower 
(composite) branch are changed due to the 
presence of the fluid, but qualitatively the 
branch remains similar. The composite mode 
behavior in the empty shell was explained by 
Mclvor and Sonstegard (1966), as exhibiting 
membrane behavior for small n and bending 
behavior for large n. 

I 1 I / I J 
0 2 4 MODZ NW&, IO 12 14 

n 

Fig. 9. Frequency spkrum for an elastic fluid-filled 
(steel) spherical shell. Y = 0*3,f= 2.56, s = 0.269. 

Within the context of the present model 
some improvements and/or extensions can 
be made without drastically altering its basic 
makeup. Having obtained an elastic solution, 
one can appeal to the Correspondence Prin- 
ciple of Viscoelasticity to obtain viscoelastic 
solutions of the same problem in the spirit 
of Maxwell and Anliker (1968). The linearized 
equations for spherical shells shown in (9) and 
(IO) might also be valid for ‘thick’ walls. 
Greenspon (1961) showed that the shell 
equations corresponding to (9) and (10) for 
the case of a cylindrical shell continues to 
be valid for so-called ‘thick’ walls. A thin 
elastic spherical shell emphasizes the mem- 
brane-fluid interaction, see Fig. 9. We might 
expect more participation by the bending 
modes for thick shell, i.e. shell with a/h < 
20. The response of the model to external 
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pressure pulses must necessarily make use of 
the results given here. These results, however, 
will be presented in other papers. 
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NOMENCLATURE 

cerebrospinal fluid 
Young’s modulus 
external force distribution on the shell 
Legendre polynomials of the first kind 
associated Legendre polynomials of the first 
kind and first order 
radius of the brain 
mid-surface of the shell 
kinetic energy 
potential energy 
volumes of fl uid and shell respectively 
strain energy density for the shell 
velocity potential for the fluid 
nondimensional velocity potential for the 
fluid, +/UC, . 
nondimensional frequency, we/c 
radius of spherical shell 
coefficients of the Legendre polynomial 
expansion off; 
coefficients of the Legendre polynomial 
expansion of JI 
coefficients of velocity potential 
compressional wave speed in the fluid 
apparent wave speed in the shell, [E/p,( l- 
*)]I’* 
shell-fluid interaction parameter, poo/p,h 
cerebrospinal fluid layer thickness 
shell thickness 
spherical Bessel function, (n/2~)~~*J,+,,,(z) 
fluid pressure on the surface of the shell 
spherical coordinates 
nondimensional radius, r/n 
speed ratio, c/c, 
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t time 
u meridional displacement with respect to 

center of mass of the system 
w radial displacement with respect to center of 

mass of the system 
x, y, z Cartesian coordinates 

a* thickness parameter, h*/12a2 
6 variation symbol 

4 nondimensional radial displacement, w/a 
$ nondimensional meridional displacement. 

ula 
A, = n(n+ 1). where n are integers 

u Poisson’s ratio 
Pt. Pa mass density of fluid and shell, respectively 

T nondimensional time, et/u 
0 angular frequency. 


