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An Optimal Gas-Fired Heating System*

Un systéme optimal de chauffage au gaz

Ein optimales Gasheizungssystem

OutuManbHas cucTeMa ra30BOI0 OTOILICHHUS

A. H. ELTIMSAHY? and L. F. KAZDA!

A realistic home heating model is derived and optimal control theory is applied to
obtain an ideal heating control system against which the performance of conventional
and suboptimal systems may be compared.

Summary—Ultilizing a prescribed system configuration, this
paper discusses the mathematical models of the system com-
ponents used and formulates a method for controlling a
domestic heating system in accordance to a prescribed
criterion. The optimal problem treated is one of reducing
the room temperature deviation from a prescribed reference
value to zero, while at the same time minimizing the value of
some predetermined performance or cost functional J.
The development proceeds in essentially five steps.

(a) The development of the mathematical models for
each of the elements of the heating system;

(b) Combining the mathematical models into a form
which is suitable for the application of optimization
techniques;

(¢) Defining an optimization criterion which incorporates
the main objective for minimizing room temperature
variations with respect to a prescribed reference
temperature;

(d) Choosing the optimization technique best suited for
the problem;

(e) Constructing an optimal control system employing
the optimization technique developed.

A numerical example compares the performance of the

optimal system with a system of the conventional type which
can be found in many American homes.

1. INTRODUCTION

THE sTuDY of human comfort in a habitable en-
closure has consumed the efforts of many
individuals over the past two decades. In general,
human comfort involves both physiological and
psychological factors, many of which are directly
related to the aggregate of characteristics that are
intrinsic to human beings. Broadly speaking, the
requirements are different for males than females;
different for the young than for the old;etc. A comp-
rehensive investigation of studies [9] has revealed
that air temperature, air temperature gradient, air
motion, humidity, radiation are the major environ-
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mental factors that effect human comfort. While it
may be desirable to control all the above factors,
economic considerations have dictated the control
of the most important single factor, namely
temperature, with humidity ranking as a poor
second. It is for this reason that equipment manu-
facturers control temperatures first and humidity
second. In this paper, therefore, temperature was
considered to be the one factor that was to be
controlled. The immediate problem to be treated
is (a) to develop mathematical models for the
components of a gas-fired forced-air heating system ;
(b) to develop a satisfactory state-variable model
for the system; (c) to apply optimal control theory
techniques to the system in order to minimize
temperature variations; (d) apply technique to a
specific heating system.

2. MATHEMATICAL MODEL

The fixed portions of the domestic heating system
include the following elements:

2.1. Habitable space. This is the room space
[1,9-13]in which the temperature is to be controlled.
Although the air temperature of a room varies
continuously from point to point throughout a
room, and therefore is a function of both space and
time, it has been found that under forced air
operating conditions the temperature in a domestic
enclosure can be approximated, for most engineering
purposes, by a three region model as will be shown
in a subsequent paper. Since under forced air
operation, the temperature throughout the habitable
region is almost constant, the above three region
model in this paper is further simplified in that
it is assumed to be a single temperature 7,. The
thermostat is assumed to be located in the habitable
space having an average space air temperature, Tp.

2.2. Room boundary characteristics. The exterior
walls of a domestic enclosure are sections of
material. The equivalent circuit of which also
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possesses distributed heat transfer properties. It
has been shown [9], however, that these structures
can be satisfactorily modelled as one or more 7-
sections of an electrical transmission line, in which
the wall surfaces are characterized by the outside
temperature, 7,; the temperature of inside wall
surface, 7,,; and the room temperature, Tjy.
Details of using this approach are summarized in
appendix.

The approximate mathematical model of the
room with walls as used in this paper is character-
ized by the following equations:

pchTR =(pc,QTi—pc,QTR) —k(Tx—Ty) (1)
~CR(R+Ro)Tr+ C(R+Ry)(R;+R) T}y

)

where p=density of the air
V" =volume of the room
QO =rate of flow of air
R;, R, R, thermal resistances of walls
C =thermal capacitance of walls
¢, =specific heat at constant pressure.
2.3. Gas-fired forced air furnace. Gas-fired forced-
air furnaces have been studied extensively [5, 9].

The results of the American Gas Association
studies in Research Bulletin 63, and Final Report

Gas controt
———| Furnace
Input signal

from controller

The equation which describes the dynamic
temperature relation in this simplified form of a gas

furnace can be expressed by

1o

T,=a,T.+a,Ty+a,T, {
0:(177[1,“{"71, =+ agTR (4)

where a,, a,, a3, a5, and ag are constants which
depend upon the physical dimensions and heat
transfer characteristics for a particular furnace.

2.4. Hot-air ducts. The equation which describes
the dynamical characteristics of the hot-air duct is
given by

Ti=0,T,+®,T, (5

where @, and @, depend on the physical character-
istics of the duct. This relation, which is empirical
in nature, is given in American Society of Heating,
Refrigeration and Air Conditioning Engineers
Handbook (1963).

2.5. The gas control valve. Although the dynamical
behavior of this component has been determined
[9, 14], its response time is negligible compared
with the time constants of the rest of the system, and
therefore has not been included in this study.

3. FORMULATION OF THE SYSTEM EQUATION

Having obtained the mathematical models tor
each of the components shown in Fig. 1, they are
combined to yield the state equation for the system.

Qutside
temperature

troam
boundaries

T

————-—

dif Hot air Hobitable
il -
value Aumidifier duct room space Room

temperature

Cold air

——— )
duct

Fig. 1. Components of the heating system.

DO-14-GV of the University of Michigan, Ann
Arbor, Michigan, summarized in the appendix,
serve as a basis for the model used in the article.
It is characterized by the simplified furnace model
possessing a combustion chamber which is located
inside of another chamber, defined as the heat
exchanger, contains the forced-air to be heated
which possesses a cold air temperature, 7,; a flame
temperature, 7;; and a heat exchanger wall temper-
ature, T,.

This is accomplished in this case in the following
manner. First eliminate 7, and T; in eqs. (1), (2),
and (3) using eqgs. (4) and (5). Then, defining

uy=ayT; (6)
and
R;
My= T, Q)
C(R;+Ry)
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substitute these also into egs. (1), (2) and (3). This
yields

TR=011TR+a1sz+‘113Te )]
Tw=as,Tr+ a5, Ty +ay;3T.+m, ©)
Te=a3]TR+a33Te+U3 (10)

where a;; are combinations of
(Dl’ (DZ’ ay, dy, 4z, dq, dg, Rl, RO’ R, C, cp’ P> vV

whose values can be estimated for any given
physical gas-fired forced-air heating system that is
located in a prescribed habitable enclosure.

Equations (8), (9) and (10) expressed in matrix
form yield the following single vector linear differ-
ential equation:

Xx=Ax+u+m (11)
where
Tg 0
X= TW . u= 0 5
T, Uy

ayy dyz Ay

m= |m;|, A= | ay; az; az

] Lan

Tr average temperature of the space to be
heated.

0 ai;

Tw average temperature of the inside surface of
the outside wall.

average temperature of the heat exchanger
wall.

T, average temperature of the furnace flame.
T, outside atmospheric temperature.
u3 =b3Tf, m2 =d2T0.

The components a;; of the matrix A4, b3, and d,
are parameters of the system.

4. FORMULATION OF THE PERTURBATION MODEL

In this section a perturbation model is formulated
to represent the heating system as referred to some
equilibrium position. First, assume that the
controlled input u and the uncontrolled input m are
such that the system is operating in an equilibrium
condition, in other words Xx=0. In this case any

disturbance which occurs in the system, for example
an opened door, entering people, additional
lighting, etc., causes a deviation in x from its
nominal or equilibrium value.

To obtain the equilibrium values, using eq. (11),
set Xx=0. This yields

Axy+uy,+m=0, (12)

where the zero subscript refers to the equilibrium
vectors. In order to maintain a desirable room
temperature which is a component of the vector x,
it is evident that u, the controllable input to the
system in the equilibrium state, takes on some
value uy. To determine the value of w, required,
consider eq. (12):

dyy 4y2 4y3 Tr,
az1 42 dzs T,
az; 0 as; T,,

0 0

=— 10— |m,

uj, 0

By appropriate manipulations this equation be-
comes:

a;; a3 0 T,
ay, a3 O T,
0 az; 1 Uj,
ag, 0
= |y | Tre— | M2 | - (13)
asg 0

Inspection of eq. (13) reveals that given the
desired room temperature T and the outside
temperature expressed by m, the equilibrium values
of the controllable variable T, and the various
state temperatures are specified. Let x=x,+Jx,
%=%,+0% and u=uy+dou where 0x, du and %
represent deviations from the nominal values of
Xg, Wy, and X, respectively, then

y=Ay+v (14)

where dx=y, du=v.
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This latter equation is the conventional well-
known linear first order matrix differential equation.
The components of the vectors in this equation
represent variations in the state of the system.
It is to be noted that in this case this new perturba-
tion model (14) is valid for large swings from equil-
ibrium since the model of the original dynamic
system is linear.

5. THE OPTIMIZATION CRITERION

The main objective in the optimization of a gas-
fired forced-air heating system is to reduce room
temperature variations due to disturbances, and is
primarily used here to define the optimization
criterion. The square penalizing will discriminate
heavily against occasional large room temperature
variations. This philosophy is justified as long as
the type of control used does not have any signifi-
cant physical limitations. In a gas-fired heating
system, for example, physical limitations are im-
posed by the size of the heat exchanger, which is
a power limitation. Therefore, in order to consider
power limitations, a term in the square error
criterion is added that is proportional to the square
of the control signal. Having these two factors
in mind, the optimization criterion for the forced-
air heating system can be represented as follows:

Jyv= ¥ j "[42(0) +v2(0)]do (15)

n=1 J]0

where J(y, v) is the error criterion to be minimized
o i1s a dummy time variable, 7T is the period over
which the minimization takes place, ¢(s) and v(0)
are defined as:

q:1(0) 10 0] |y

q0)= | gx(0) | = |0 0 0| | ¥,(0)| :
q4(0) I0 0 0 vi(o)
“vl(o)?

V(o)= | vy(0) | . (16)
v3(0)

The first term in the integrand of the quadratic
criterion (15) represents the penality on the room
temperature variations, and the second term is
introduced for power limitation. The weighting
assigned to g%(¢) and v*(s) clearly depends on the
importance of temperature vs. fuel costs.

Most American home owners would be willing

comfort. Since no general criterion could be
found, for the example given, comfort and power
costs were weighted equully the same. o
known set of conditions these weightings could be
changed accordingly.

6. THE OPTIMAL CONTROL LAW

The optimization problem at hand is one of
starting from some initial temperature disturbance
Yo, and driving the system y= Ay-v to the equil-
ibrium state while constraining the original system
to perform in such a way us to minimize the value
of the cost functional J(y, v). Here the period of
optimization is allowed to be very large (i.e. 7-»>x),
since the heating system has to be optimized over
a long period of time.

The method of dynamic programming applied
to this linear time invariant heating system is
guaranteed to provide a closed loop or feedback
control law {6, 7] for a given sct of heating system
parameters, which satisfies the optimization crit-
erion defined in section 5. [t does not pose any
difficulties such as instability of the resulting
equations which could result by applying the
calculus of variations to a system to be optimized
over a semi-infinite 1nterval {as T—o0) [6]. For
these reasons, the method of dynamic programming
is thought to be the most suitable method for the
optimization of the heating system under the
optimization criterion represented by (15). Bell-
man’s Dynamic programming is basically an
optimization process that proceeds backward in
time; that is, the solution is computed over the
last interval of the process and successive solutions
are computed for the remaining intervals ot de-
creasing time until the total solution is obtained
{or the entire process.

In order to apply the functional equation
technique of dynamic programming, this optimiz-
ation problem is embedded within the wider
problem of minimizing:

>

3

S [0+ v2(0)d0

n=1J1

subject to the heating system eq. (14) and the initial
condition y(0)=Yy,, with 1 ranging over the interval
(0, 7). Let the minimum of this cost functional
be:

T

3 op
E(y, )=min ZJ [gi(o)+vi(a)]do. (17)
v n=1/J1¢

Invoking the principle of optimality to eq. (17) the

to pay a modest increase in cost to get the desired #§ 7 functional equation becomes:
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t+e

[42(0)=03(0)]do

E(y, t)=min{ iJ.
v n=1

t

+E(y+ ye, t+8)} (18)

where ¢ is an incremental change in the time ¢. This
equation is reduced, by integration and Taylor
series expansion, to the following expression:

3
E(y, t)=min{ Y. [ga®+vi(n)]e+E(y, 1)
v n=1
3 0E OE A
N
Simplifying

3
minf & [630+120)

s OE OE) .. o
+,,Z‘1y"5y,,+at + (8)_ .

Now since A(e)—0 as ¢—0, gives

min{ > L4 +03(0]

1
+nzly”ayn+at = M ( )

The minimizing control signal vector v*(g) is
obtained by minimizing the sum of terms within
the brackets of eq. (19) with respect to each signal
of the control vector. Minimizing now with respect
to v3(0), keeping in mind the relation between
the vectors q and y, the only non zero component
of the vector v(o), . . . is therefore: 20v%+(0E/dys)
=0, where vi=optimum control signal. Conse-
quently, the condition for minimum error is:

1 OE
03_—7@_)/3' (20)

In order to determine the optimum signal v §,

OF

s
for minimum error must be determined first.
Substituting eq. (10) and the value of q in terms of y

into the functional eq. (19), the condition for
minimum error becomes:

241 0_E : : Y 6_E 95_0 21
J’1+Z ays +n;1ynayn+ at_' . ( )

As seen from eq. (21), the condition for minimum
error is in a partial differential form. To solve such
an equation a power series solution is assumed, and
the coefficients in the series are found by direct
substitution,

Since the integrand of the error criterion function
is a quadratic expression and the dynamic system
is linear, the minimum error function E(y, f) is also
quadratic and can be written as:

E(, 0=KO+ 3 kn(07u()
3 3
+ 21 kgl kmk(t)))m(t)yk(t) (22)

where k,,,(0)=k,.(f), and where k(?), k, (1), k(0
are the parameters to be determined from egs. (21)
and (22). By partial differentiation of eq. (22),
[CE(y, 0)/(0y,) and [(CE(y, 1)]/(0¢) are written as
follows:

OE(y, t)
dy

Jn

=k,()+2 ; k()Y (D) (23)
and

Tkt 3 k)

3 3
T XX kOO0 24)

If these partial derivatives are substituted into
eq. (21) the condition for minimum error becomes:

3

3 2
y%+%[k3+2 z knmym:| +k,+ z k;nym
m=1 1

3 3 3
+ Z Z kr,nkym.))k—*_ z l:kn.}"vn
m=1 k=1 n=1
3
m=1

The condition for minimum error expressed by
(25) is satisfied for all finite values of y,(7), assuming
the k-parameters are independent of y,(¢), only if
each of the coefficients of the constant term,
yu(8), and y (O)y.(t) in eq. (25) vanishes, where
n,m=1,2, 3. Therefore by equating the coefficients
of the constant term, y, and y,y, each equal to
zero, the following simultaneous first order differ-
ential equations in the k-parameters result.
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Jilk, kyy Ky K3y Kygs kaos Kyss Kyas Kysy kpy) =k
Salk, ko kyy ks kygs Kags ksss Kiay kyss kys)=k)

fa(k» kls k2a ks’ kua kzz: k33= k12’ k13’ k23)=k’2

(26)

fxo(ka kl’ k2’ k3, kn, kzz: k33, kxza k13, k23)=k'23

where: fi, f2, ..., fi0 are in general non-linear
functions of the k-parameters, and the primed
k’s refer to the derivatives of the k-parameters with
respect to time.

This method of assuming a solution leads to the
reduction of the problem of solving a partial
differential equation to the problem of solving a
set of first order ordinary differential equations.
The boundary condition for the k-parameters are
deduced directly from the required boundary
condition on the minimum error function. From
the expression for minimum error function for
t=T, the boundary condition is

E[y(T), T1=0 which means that k&(T) =k (T)
=kun(T)=0. (27)

The problem becomes now one of finding the
optimum control system of a one-point boundary
value problem. The parameters of the optimum
control system, k(?), k,.(¢) where m, n=1, 2, 3
can be determined from the set of ten differential
egs. (26) with boundary conditions given by (27).
It is to be noted that the number of parameters
are ten and the number of initial conditions ex-
pressed by (27) are ten.

The solution of the set of differential eqs (26)
as T tends to co, must assume steady state. If the
k-parameters assume steady state values, then the
differential equations given by (26) reduces to a
set of algebraic equations. Therefore, when the
dynamic system is time invariant, the error function
quadratic, and the optimization process is carried
over a semi-infinite time interval, the parameters
of the optimal control law become time-invariant.

Since the heating system is to be optimized over
a semi-infinite time interval for a quadratic
optimization criterion, egs. (17) through (24)
become

E(y)=min 3. | " [43(0)-+03(0)]}do a7

"3 [t
E(y)= min{ Y ’ [qi(a)+ vi(o)]da+ E(v + ,1"6)%
(18"

3

min{ i [gX(o)+vi(o)] +

OE 019
'n'— = ! )
v 1 Y ayn

n=

*__ 10_E 20/
vi= 7~ (20
0EN2 3 JOE
2 . ,
Vitd == ) + Y Juz—=0 21
Tt i—((’).})3) nZI ’ ay'l ( )

E(y)=k+ Zl Kmyml(1)+ Zl k; Ky m(Dy8) (22')

m= m=

where k, k,,, and k,,, where m, n=1, 2, 3 are fixed
constants.

E 3
- =kn+2 Z knmym(t) (23/)
OVn m=1
ok 0 24

OE
also 5}‘3=k3+2[k31h +karya+kizys]. (28)

By substituting (6E)/(dy;) from (28) into (20) gives:

v3

k
=—_2’3" —k31¥1—Kk32y,—kasy;. (29)

Therefore it is necessary to determine the para-
meters ks, ki, k35, and k5 to determine the op-
timum control signal.

Substituting now from egs. (23') and (28) into
the condition for minimum error (21’), and also
using the vector matrix differential equation
v=Ay+yv, the following is obtained:

3 3 2
y%—%[k§+4k3 Z km3Ym+4( Zl kmSym) ]

m=1

3 3 3
+ Z( amnym)[kn"_z Z ksnyn—J:O'
1 s=1

n=1\m=

(30)

Since eq. (30) is satisfied for all values of y,(¢), by
equating the constant term in this equation to
zero, the following is obtained:

ky=0. 3l
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Similarly for the coefficient of y,,:
3
- k3km1 + 2 amnkn=0 (m = 13 25 3)
n=1

and since this is true for all finite values of a
therefore k, =k,=k;=0.

mn>

For the coefficient of y?:
3
l—k%3+4 Z al,,k,,=0. (32)
n=1

For the coefficient of y2:

Equation (29) now becomes:

vi=—[ks 1y +ks2ys+kssys]. (38)

The control function v%, derived here is referred to
as the optimum control law.

The optimal control scheme for the variational
system may be combined with the equilibrium
system developed in section 3 to obtain an optimal
feedback system for the heating process. In block
diagram form the system may be schematically
represented as shown in Fig. 2. In this diagram a
controller is provided which compares the values

3 . .
f the environmental state and the desired state
—k2;44 Y ay,k,,=0. ° .
23 ,,; " 2n (33) and commands the appropriate equilibrium input.
2o
vy + u . b S y
> > x sAx +u +m — Sensors
vy
Je ]
T | - Yo
32
| —

FiG. 2. Block diagram of the optimum heating system.

For the coefficient of y3:
3
—k§3+4 z a3,,k3,,=0. (34)
n=1
For the coefficient of yy,:
3
—kyskas+ Z,l (@1nkontaz,ki)=0.  (35)
For the coefficient of y,y;:
3
—kyskss+ Zl (@1nk3n+ask1)=0.  (36)
For the coefficient of y,y;:
3
—ky3ksst+ Zl (aznk3ntasskan)=0.  (37)

Equations (32) to (37) are in general non-linear
algebraic equations in the parameters k,,,, m, n=1,
2, 3 and require a digital computer for solution.
In the next section a solution of these parameters
for a particular heating system on the digital
computer will be shown.

It should be noted that the number of feedback
loops is equal to the order of the heating system;
it is noted also that the feedback signals are measur-
able state variables.

Since the system was optimized around x,, the
optimum control exists when x, remains constant.
This, of course, is not in general the case. Thus
for values of x, not equal to the one chosen only
approximate optimization is obtained.

7. EXAMPLE

In this section the optimal control scheme devel-
loped above will be applied to a particular heating
system. The domestic enclosure used in this study
was a 12x12x9-7 ft model room developed for
studies of this type. It contained laminated wall
construction of # in. exterior plywood, 1 in. fiber
glass, 0-025 in. sheet of aluminum, 1% in. air-space,
0-032 in. sheet of aluminum, and } in. tempered
masonite. The construction details are summarized
in [1]. The room was instrumented for measuring
the physical variables of the system that have an
important influence on the thermal behavior, such
as inside and outside temperatures, inside and
outside air velocities, and quantity of heat supplies,
etc. From these measurements the thermal resis-
tances, conductivities, and equivalent capacity of
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the walls, and enclosure were determined. These
constants along with constants of a model heat
exchanger determined in a previous study (9],
were used in determining the value of the 4 matrix,
and u as given in eq. (39).

0-0422 0-097
—0-0974 —0-097
—0-489

—0-191
A= 0-2278
0-25 0

0 0
u= 0 T,, m= | 0-0184
0-239 0

T, . (39)

0-239Tgy + 0-239T¢

x= AX +u +m

The University of Michigan Control System
Algorithm Program employing a 7090 digital
computer was used to solve for the k-parameters.
This program was basically obtained from 1BM,
with some modifications added. The modified
program is entitled CSAP and is currently available
at the University of Michigan Center Library.
This program appears as a subroutine on the system
disc and may be entered simply by calling CSAP.
Once the program has been called, it will function
exactly as described in the user’s manual. The
solution for this particular system is:
ke, = 14449, k5, =1-3273, k;,=0.2065, k,, =0-805
k4, =0-4467, k4, =6-36. The optimal control signal
becomes:  vi= —(0-4467y, +0-36y,+0-2065y,).
or 0:2396T,= —(0:44676 T +0-360 T, +0-20655T,).
Hence, the block diagram of the optimum heating
system using this control law follows as shown in
Fig. 3. 1t is to be noted that 67, 6Ty, 6T, and

X0

Sensors

FiG. 3. Block diagram of the optimum heating system.

The variational vector matrix differential equa-
tion as derived in section 3 now becomes y = Ay v
where v =(vy, v,, v3)=(0, 0,0-23957 ;) and y =(y;,
V3, ¥3)=(0Tg, 0Ty, 6T, where y =0Ty, y,=
0Ty, y3=0T,.

The square matrix A determines the system
under consideration, and therefore the & parameters
of the system as defined by egs. (32) to (37) may be
written as follows:

| k2, +0-388ks; — 0-764k,  +0-1688k, =0
k2, — 0388k, + 1-112k, , — 0-3896k,, =0
*k§3*1'956k33+k31:0

kyykyy —0-2884k 5 +0-0422k,, +0-097k 5,
+02278k, , —0-097k,, =0

ey kyy — 068k, +0-0422k 5, +0-097k
+0:25k, =0

_k32k33 +0'2278k31 '_0'5864k32 _0'0971\’33
+0-25k, , 0.

3T, are the variations of temperatures from equi-
librium values, and are defined as follows:

ST, =T;—Tyy, 0T=Tg~ Ty
STw=Ty—"Tyy 0T,=T,~T,.

Therefore, to generate v}, the variational signal,
it is necessary to first generate the equilibrium
values of the temperatures, T, Tg,, Ty, and 7.

For equilibrium conditions: Tp= T, =T,=0,
then: T, = —1-045T +2:05T,, T,—043T,,
+ 1971, Ty, =2:31Tg,— T,,+ 0197,

From these latter equations it follows that having
Tg,, and T, as set inputs, the equilibrium values
Ty T,y and Ty, may be generated.

Having established the equilibrium values, they
may be now combined with the fixed portion of the
heating system and the optimum controller to
provide the optimum control system.

In order to study the performance of this system,
a simulation study was carried out on an analog
computer. The results for two sets of initial con-

ditions have been included for comparison.
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1. First case. The room temperature Ty is set
at 70°F, and the outside temperature is initially
set at 20°F. The system is therefore initially in the
equilibrium state of:

xo=(70, 529, 115)°F , T,,=163-8°F.

The outside temperature 7, is then suddenly
changed from 20°F to 0°F. For these conditions
the room temperature T, the surface wall tem-
perature Ty, the heat exchanger wall temperature
T,, and the control signal temperature 7, were
recorded. These temperature responses are shown
in Figs. 4, 5, 6, and 7 respectively.

Al' variations are maasurad from the original equilibrium values
0-2

From Fig. 4, it is evident that the room temper-
ature Ty decreases gradually from the time the
disturbance occurs until the time when the varia-
tion 67 becomes —O0-15°F; a total of 16 min.
After this, it begins to increase at a slower rate
back toward its original value. In 40 min, the room
temperature attains the value of 69-9°F. This is
expected, since the optimization criterion was
considered over a semi-definite time interval. The
optimum control signal 7, as seen in Fig. 7 in-
creases gradually from the time of the drop in the
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outside temperature. This effect occurs to compen-
sate for the heat loss caused by sudden disturbance.
In Fig. 5, it is noted that the surface temperature
of the wall initially falls rapidly to 45-37°F, then it
gradually begins increasing until it reaches 49°F.
Figure 6 indicates the effect of the disturbance on
the heat exchanger temperature T,. This tempera-
ture initially drops to about 109°F because of
both the decrease in room temperature and the
decrease in surface wall temperature. It then begins
to gradually increase until it reaches within 2-4°F
of its original value. This is caused by the increase
in the flame temperature [5].

2. Second case. For this case the room tempera-
ture is set at 70°F and the outside temperature is
initially at O°F. The equilibrium values are:

x5 =(70, 49, 117)°F, T;,=182-8 F. The outside
temperature then rises suddenly to 40°F. Figures
8 to 11 show the state variables and control signal
responses to this disturbance. The room tempera-
ture response is shown in Fig. 8. This temperature
increases gradually to 70-15°F then falls to 70-05°F.
All variations are mecsured from the original equilibrium values
-2 (;TR
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Fic. 8. Room temperature variation response for case 2.
Fic. 9. Surface wall temperature variation response for
case 2.
FiG. 10. Heat exchanger tir;lsierzature variation 1esponse for

FiG. 11. Flame temperature variation response for case 2.

The wall surface temperature shown in Fig. 9 rises
as a result of the disturbance and then it decreases
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until it reaches 63°F. The heat exchanger tempera-
ture also rises by 6°F and then will decrease grad-
ually to 110°F. This result is illustrated in Fig. 10.
Figure 11 shows the optimal control signal. It is
apparent that the flame temperature changes
gradually to 153-5°F, which implies that the
disturbance caused by an outside temperature rise
from O°F to 40°F, decreases the flame temperature
by 29-3°F to keep the room temperature to within
0-1°F of 70°F.

Comparison. 1f the conventional heating system
is to be compared with the optimal system, the
basis of comparison must be the defined perform-
ance criterion. It is true by definition that the
optimal system developed is the best with respect
to this criterion; however, interesting points can
be made by analyzing the systems in general.

For a conventional heating system the main
properties are: (a) An on-off controller is used.
(b) Only the average room temperature Ty is con-
trolled. For analysis purposes [1], the heat output
of the furnace is adjusted so that the temperature
of the air circulating in the heating system is 120°F
when it is leaving the furnace during the on-period.
During the off-period the temperature of the air is
considered to be 70°F. The outside temperature T,
is held fixed at 20°F, and then allowed to drop
suddenly to zero. Computer runs were made for
the conventional heating system for different values
of thermostat (controller) time constant 7, min,
furnace time constant 7, and hysteresis g°F. The
peak to peak room temperature variation is
measured and is called the cycling amplitude.
Also the time for one complete cycle of the room

heating system, when compared to the maximum
deviation of the optimal system.

(ii) For an outside temperature disturbance the
response and adjustment of the optimum heating
system is superior to the corresponding response
of the conventional heating system. Inthe optimum
system, the temperature begins to fall gradually,
due to an outside temperature drop, until it deviates
to —0-15°F. Then within about 5 min it tends 1o
remain within 0-1°F or less from the original value.
The conventional heating system, on the other hand,
begins to oscillate. The rates of increase and de-
crease in the room temperature depend on the
thermostat time constant,and thermostat hysteresis.
They also depend on the nature of the disturbance.
This is shown in Figs. 12, 13, 14, and 15.

(1ii) The room temperature is continuously
changing in a conventional heating system in a
periodic manner. Since this peak-to-peak variation
1s more than 0-1°F, it is sensed by the human body
as being uncomfortable.
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FiG. 13. A sample of recordings.

temperature is recorded, and is called the cycling
period.

If the conventional heating system is analyzed
and compared to the optimum heating system
it is found that:

(i) The peak to peak variations of the room
temperature are much greater for the conventional

8. CONCLUSION

An optimal heating system for a defined integral
quadratic cost function has been developed which
incorporates the main objective of minimizing room
temperature variations. The optimal control was
shown to have the desirable property of providing
additional feedback loops to account for disturb-
ances in the system. The feedback portions of the
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FiG. 14. Conventional system’s cycling amplitude-hysteresis
curves with Tr as a parameter.
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FiG. 15. Conventional system’s cycling-period-hysteresis
curves with T as a parameter.

optimum control heating system were also shown
to be time-invariant, a characteristic which is
advantageous in practice. Parameters of the
optimum controller were determined through the
use of the Control System Algorithm Program
(CSAP) on the 7090 digital computer at the Uni-
versity of Michigan. The optimum heating system
represents an optimum from the theoretical point
of view for the configuration and cost function
selected. Therefore it represents an upper bound
or standard with which conventional or sub-optimal
systems may be compared. However, for some
specialized installations possessing rigid perform-
ance standards, it may be feasible to utilize a system
such as the optimal.

A sub-optimal system embodying the above
features has been built. The findings in this study
have been reported in another paper [15].
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APPENDIX A
Heating system mathematical model

Room model. Let us consider a room with height
H, width W, and length L. Let the room have three
inside walls and one outside wall. An outside wall
is a wall which possesses an exterior exposure to the
climatic elements. Let the rest of the house be at
a temperature range which is equal to the tempera-
ture range of this room. This means that there will
be no heat transfer through the three inside walls
or the floor or the ceiling. Heat will transfer to the
outside only through the outside wall. Let the
air inlet to the room be a rectangular opening and
let the jet discharge parallel to the inside wall with
one edge of the outlet coinciding with the inside
wall. To simplify the analysis of the system, no
windows or doors are assumed. It can be shown,
however, that this does not change the concepts
obtained from analysis, since this is essentially
equivalent to changing the system parameters: its
heating conductance and capacitance.

From the engineering point of view, the room
space can be assumed to be at a uniform tempera-
ture [1]. In constructing the wall model, the thermal
circuit concept is used. Assuming that heat flows
only in one direction through the wall, the wall
behaves as a distributed parameter RC transmission
line.

Consider now Fig. A.l, which represents the
thermal circuit of a one 7 network wall. The out-
side end of the wall which is exposed to the sun
and wind is equivalent to a known temperature
source T,, the effective air temperature, and it
is a function of time. R, represents the resistance
whose conductance represents the heat flow between
the outside surface of the wall and the surrounding
atmosphere. It is a function of the surface air
coefficient. The inside of the wall is facing the
room heat capacity. R, is the resistance whose
conductance represents heat transfer between the
air in the domestic space and the inside surface
of the wall. It is also a function of the air surface
coefficient. R and C are the equivalent resistance
to heat transfer and heat capacity of the wall
respectively. They are functions of the properties
of the material of the wall.

2

temperature

FiG. A.1. The wall thermal circuit.



752 A. H. ELTiMsady and L. F. Kazpa

Wall boundaries. This wall system has two
degrees of freedom. Usually i, iy, as defined in the
circuit of Fig. A.1, are chosen as the state variables
for such circuit. However, since i, and i, corres-
pond to rate of heat flowing in and out of the wall
and are not easily measurable in practice, another
set of measurable state variables should be chosen.

Let V be the temperature of the air inside the
room; ¥, be the temperature of the inside surface
of the wall; ¥, be the temperature ol the outside
surface of the wall, It can readily be shown that V/
and V, constitute one set of state variable for
this system.

Solving the circuit with ¥ and V; as state
variables yields

— CR(R+Ro) 5, +C(Ri+ R)(R+Ro) 5~

—(2R+Ry)V+(2R+Ry+R)V;—RiEy=0.
(A1)
In this case Ty corresponds to ¥ and T, corres-
pondsto V.
Applying now the first law of thermodynamics

to the domestic air in the room, and rewriting eq.
(A.1) we obtain:

pe,VTp=(pc,QTi—pc,QTr)—k(Tr—T.) (A.2)

— CR(R+R) Ty +C(R;+ RYR+R)T,
—(QR+Ry)Tx+(@2R+Ry+R)T,—RTy=0
(A.3)
where

V' volume of the room

QO rate of flow of air

k  average proportionality constant defining
the heat transfer by convection to the inside
surface of the outside wall

C  equivalent heat capacity of the outside wall

R equivalent resistance of the outside wall

R, equivalent outside air to surface resistance
of the outside wall

R, equivalent inside air to surface resistance of
the outside wall

p  density of air flowing

specific heat of air flowing

Heat exchanger model

There are different kinds of gas furnace in
practice. A typical gas furnace that is most com-
monly used would be the vertical tube combustion
chamber, and Fig. (A.2) shows a heat transfer
schematic for this type of turnace.

\,{‘

Cp = ——— ==

‘
7 |
b H
————i L —
q.!

FiG. A.2. Heat transfer in the furnace.

Considering now the thermodynamic control
volumes to be the material of the heat exchanger
as one and the air circulating around the exchanger
as another, the following set of equations can be
written for the system with the help of the first
law of thermodynamics:

gA)y=hmD Y[ T(t)— TLN)] (A.4)

g (OH=hmD, Y[ T{)—T(D] {AS)

qc(z):p('onTR(t) {A.0)

qt)=pac,Qo T (A7)

, dT()

(1) =qu)+Wet 3 (A.8)
dr (| L
Tt e e gD T d Nl A9

where
D, diameter of the heat exchanger

Y length of the heat exchanger
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T,(f) average temperature of flame

T,(f) average temperature of the heat exchanger
wall

T,(¢) average temperature of the cold air

g,(t) heat flow rate from flue gas to exchanger
wall

g.(1) heat flow rate from exchanger wall to
furnace air

qt) heat flow rate of the cold air
q.(t) heat flow rate of the hot air duct
p,  average air density in the heat exchanger

hy  heat exchanger coefficient between flame
and heat exchanger material

h heat transfer coefficient between heat

exchanger material and circulating air
specific heat of steel

Q, average flow rate of air in furnace
mass of heat exchanger

w,  mass of air in heat exchanger

This set of egs. (A.4) to (A.9) may be summarized
by the following two differential equations:

haneY[Tf(t) - T:a(t)] = hanDeY[Te(t)_ 7‘a(t)]

dT(9)

+ WeCe g7 (A.10)

dT(1)
wacpT = hanDeY[’Te(t) - T:z(t)] - pachaTa(t)

+ 40,0 Tel(1) . (AL11)

Transposing and rearranging these equations
may be expressed in the following form:

7ge(’) =a;T()+a,T,(t)+a;, Tf(t)
(A.12)

T.(=a,T()+asT()+asTx(t). (A.13)

In practice, however, it was found that the heat
capacity of the air flowing around the exchanger
wall is very small compared with the capacity of
the heat exchanger [S]. It is a fact that the time

constant of the heat exchanger, which is defined
as the time necessary for the air in the heat ex-
changer to rise to 63-29 of its final value when the
flame temperature changes abruptly, is proportional
to its capacity. Therefore the heat exchanger
material capacity contributes to most of the ex-
changer time constant. Therefore the state variable
equations for the simplified model take the form:

T.(O=a,T(D+a,T(N+asT(H (A.14)

O=a,T,()+ T (t)+agTx(t). (A.15)

From the engineering point of view, the dynamics
of the gas valve, humidifier, and air filter can be
neglected. For the mathematical model of the
thermostat and air ducts the reader is referred
to the work done by KAzDA and SPOONER [14].

Rearranging the equations representing the fixed
components, the room, air duct and heat exchanger
of the heating system, results in:

Tr=a,,Tr+a,,Ty +a,,7, (A.16)
Tw=a5Tr+as,Ty+as,T,+m, (A.17)
Te=a31TR+a33Te+u3 (A.18)

where the g;; are constants which may be expressed
in terms of Q, p, ¢,, k, V, R, Ry, R;, C, and the
parameters of the air duct. In addition, the vari-
ables u; and m, appearing in egs. (A.17) and (A.18)
above are defined by:

uy=a;T;
R; T
"ZCRAR)
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Résumé—Employant une configuration prescrite du systéme,
cet article discute les modéles mathematiques des composants
utilisés dans le systéme et formule une methode de reglage
d’un systéme de chauffage domestique en accord avec un
critére de performance prescrit. Le probléme optimal traité
est celui de la réduction & zéro de I’écart de la temperature
des locaux par rapport a une valeur de référence prescrite,
tout en minimalisant simultanement la valeur d'une certaine
fonctionnelle de performance ou de colit F. Le developpe-
ment a essentiellement licu en cing étapes;

(a) Le developpement de modéles mathematiques pour
chacun des élements du systéme de chauffage,

(b) La combinaison des modeles mathématiques sous une
forme qui convient a lapplication des techniques
d’optimalisation.

(c) La définition d’un critére d’optimalisation qui englobe
Pobjectif principal de minimaliser les variations de la
température des locaux rapport a une température de
référence prescrite,

(d) Le choix d’une technique d’optimalisation convenant
le mieux au probléme,

(e) La construction d’un systéme de commande optimale
utilisant la technique d’optimalisation developpée.

Un exemple numérique compare les performances du

systéme optimal a celles d’un systéme du type conventionnel
qui peut étre rencontré dans de nombreuses maisons
americaines.

Zusammenfassung—Unter Benutzung einer frither besch-
ricbenen Anordnung wird hier das mathematische Model!
eines Regelungssystems fiir die Heizung eines Wohnhauses
diskutiert und zwar in Bezug auf cin vorgeschriebenes
Giitekriterium. Das Optimierungsproblem besteht darin.
daB3 die Abweichung der Raumtempetatur vom Sollwert
moglichst gegen Null gehen soll, withrend gleichzeitung der
Wert eines Leistungs- oder Kostenfunktionals J minimiert
wird. Die Entwicklung geht im wesentlichen in fiinf
Schritten vor sich.

(a) Die Entwicklung des mathematischen Modells fiir
jedes der Elemente des Heizungssystems.

(b) Kombination der mathematischen Modelle in einer
Form, die fiir die Anwendung der Optimierungstech-
nik geeignet ist.

(¢) Definition eines Optimierungskriteriums, das dem
Hauptziel der Minimierung der Raumtemperatur-
schwankungen in Bezug auf den Sollwert entspricht.

(d) Wahl der fiir das Problem am besten geeigneten
Optimierungstechnik.

{e) Konstruktion eines optimalen Regelungssystems
unter Verwendung der entwickelten Optimieiungs-
technik.

Ein numerisches Beispiel vergleicht die Leistung des

optimalen Systems mit einem System konventionnellen Typs,
das man in vielen amerikanischen Wohnungen finden kann.

Pe3tome—Cnonb3ys DanaHHOE pPACHOIOXEHUE CHCTCMb,
HacToAWAsl CTaThf OOCYXKINACT MaTEeMaTHYECKHE MOMIEJIH
UCTIONB30BAHABIX DJIEMEHTOB CHCTEMBI H  (HOPMYIUPYCT
MCTOA, [UIS YNpPaBJICHUSA CHCTEMOW NOMOBOIO OTOILIEHMA B
COOTBETCTBHHM C 33JaHHbIM KpUTepuem paboTsl. M3yuaemasn
onTUManeHas npoGiieMa COCTOMT B CBEACHUM K HYJLO
OTKJOHCHHMST KOMHATHBLIX TEMIEPATYp OF  3aJaHHOTO
3HAYCHUS, MUHHMM3UPYS [IPH ITOM 3HAYEHHE HEKOTOPOIO
tdyukunonana paboTei MAM UCHBl Y. DTa BHIpaboTka
[IPOMCXOOUT HA NATH dTanax:

(a) BeipaboTKa MaTeMaTHYECKHUX MOJENEH I KaXAoro
37IEMEHTA CHCTEMbl OTOTIJICHUS

(6) KomOunammsa mareMaTHYeckux Mogeneit B (opme
TIOAXOAALIEH K MPUMEHCHHIO TEXHUK ONTHMH3ALMH,

(B) OnpeneneHue KPATEPH ONTHMU3ALAN BKIFOHYAIOWET O
B ccOSt riaBuylo I1€b MUHHMU3ALIH  #3MEHEHMH
KOMHATHBIX TEMIEPATYD MO OTHOILEHMIO K 3aJAaHHOHA
TeMIepalype,

(r) Berbop TexuMKH ontamuzanud nakibonce nopxo-
nsuleit K 3anade,

(1) MNMocTpoeHre cucTEMbl ONTUMAJIBHOIO YIPABICHWS
UCHONB3YIOUIEro BLIPAGOTAHHYIO TEXHMKY ONTHMH-
3aUHd.

UucsioBoil OpHMEP CPaBHMBa:1 paboTy ONTHMALHON

cHCTeMBE ¢ paboTOM CHCTEMBI YCIOBHOTO THIA BCTPEHAEMOM
B MHOTOYHUCJIEHHBIX AMEPUKAHCKAX J0MAax.



