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IN RECENT years researchers have become increasingly involved in the analysis of accident 
data in an attempt to make inferences on the processes of accident “causation.” As a 
result of this interest, many statistical hypotheses have been formulated and examined 
using such data, and many elaborate projects have been undertaken to develop information 
collection and retrieval schemes based upon these data. 

In many cases this increased activity has proceeded in an ad hoc manner. In part this is 
because of the complexity of this type of research. In addition, however, it is due to the 
fact that a general framework has not been utilized to organize and guide this research. 

The purpose of this paper is to introduce such a general framework by applying the 
concepts of probability theory and statistics. A probabilistic approach is desirable because 
of the residual uncertainties which always remain when drawing conclusions from accident 
data analyses. This is due to the nature of the accident process, which is stochastic and 
not deterministic. In the first section of this paper concepts of probability theory are 
utilized to develop the basic analysis. Next, techniques for making inferences on these 
probability distributions are reviewed. Finally, various problems which arise when im- 
plementing this approach are briefly examined. 

It should be recognized that many of the concepts developed here have been utilized 
(either explicitly or implicitly) in applied studies. However, the large number of inappro- 
priate, and in many cases inaccurate, statistical analyses of accident data and the increasing 
interest in this type of analysis make an examination of the foundations appropriate at 
this time. 

It should also be recognized that this article is introductory. The development of more 
sophisticated data analysis methodologies, and the development of better applications of 
such methodologies offer challenging, unsolved research problems. 

PROBABILISTIC BASIS 

For simplicity, assume that the only possible outcomes of the driving process are the 
occurrence of an accident (the event A) or the non-occurrence of an accident (the event A). 
Associated with each of these events is a vector consisting of realizations of the n variables 
(Xi, . . . , Xi ). One may then consider the probabilities associated with events defined in 
the sample space consisting of A and K as well as all possible realizations of the variables 
(Xi, a a * 3 Xjj). 

* This research was undertaken as a part of the Systems Analysis Research Program of the Highway Safety 
Research Institute. 
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Denote a vector-valued event defined from the variables (Xi, . . . , X, (1)) by the 
lower-case symbols (xi, . . . , x,). For instance, consider the variables Xi = driver age 
and X2= year of vehicle. Then, one possible event defined from these variables is: 
(operator less than 20-years old and driving a 1967 vehicle). 

It is also necessary to introduce the concepts of conditional probability into this dis- 
cussion. To introduce the notation let Pr(B 1 CT) denote the probability of the event B 
conditional upon the occurrence of event C. Either B or C may be a vector-valued event. 
For instance, B might consist of the r events (b,, b,, . . . , b,). 

The relevant probabilities in accident data analysis may then be written as: 
Pr(A) = The probability of an accident (the event A). In most cases,this probability will 

reflect the investigator’s subjective and historical information as he starts a 
study-his prior information. 

Pr@) = The probability of the non-occurrence of an accident (the event a). From prob- 
ability theory it is evident that Pr(A)= l-P&$. 

Pi=@,, x2, * . . 9 x,, 1 A) = The probability of the vector-valued event (xi, . . . , x,) con- 
ditional upon the occurrence of an accident. The variables this event is defined 
from may come from o5cial accident reports, on-the-scene accident investiga- 
tions, or other sources of accident data. 

Pi@,, * ’ * 9 x,, 1 A) = The probability of the same vector-valued event (xi, . . . , xm) con- 
ditional upon the non-occurrence of an accident. Essentially this probability 
represents the involvement of the event of interest in a non-accident control 
population. 

The objective of accident data analysis is to examine these four probabilities to predict 
potential accident occurrence. That is, one wishes to determine Pr(.4 1 x1, . . . , x,), 
which is the probability of an accident conditional upon the observed vector-valued 
event (xi, . . . , xn). 

This probability may be obtained by applying Bayes Theorem of probability theory 
(Parzen, 1960). Using this theorem one can calculate: 

Pr(x,, . . . , x, I 4W4 
Pr(A I x1, . . . , xn) = 

pr(xr, * * * , x, 1 A)Pr(A) + Pr(x,, . . . , x, I A)fi(A) * 
(1) 

For example, suppose an investigator is interested in determining the influence of the 
single event “excessive speed” on traffic accident causation along a stretch of freeway. 
Denote the variable “speed” .by S, and, assuming a 70 mph posted speed limit, define the 
event excessive speed by “s>70”. The investigator’s prior experiences with this roadway 
allow him to set the subjective, unconditional probability of an accident along this 
roadway at O-03. Analysis of accident data leads him to infer that the probability of speed 
greater than the 70 mph in the accident population is O-95. That is, 95 per cent of those 
in the accident population were traveling at speeds greater than 70 mph. By taking speed 
measurements along the freeway, the investigator makes the further inference that 25 per 
cent of the non-accident vehicles traveling the route are exceeding the speed limit. 

For this example equation (1) becomes: 

Pr(*70 I A)Pr(A) 
Pr(A I s>70) = 

Pr(s>70 I @r(A) + Pr(s>70 I A)Pr(A) 
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Substituting the above probabilities one obtains: 

(0.95) (0.03) 0.0285 
Pr(A 1 s> 70) = I -- =-= 0.105. 

(0.95) (0.03) + (0.25) (0.97) 0.2710 

In addition to demonstrating the principles involved, this example points out a common 
fallacy in data analytic studies of this type. Even though the frequency of excessive 
speeding in the accident population is very high (O-95), the probability of an accident con- 
ditional upon this excessive speeding is still small (0.105). Consequently, analysis of the 
accident data alone would lead to erroneous inferences. 

The large discrepancy between these two probabilities is easily resolved..The small prior 
probability of an accident (reflecting the fact that accidents are rare events) “deflates” 
the high probability of speeding in the accident population to yield the much smaller 
probability of an accident conditional on such excessive speeding. 

At this point two questions should be considered: 
(1) Why should the subjective probabilities of an accident be incorporated into the 

analysis when they are, in fact, intangible and highly variable? 
(2) How sensitive is Pr(A 1 x1, . . . , x,,) to changes in the four component prob- 

abilities? 
Both of these questions can be answered by transforming equation (1) to a much 

simpler and more illuminating form. To do this it is necessary to convert the probabilities 
of each event to the “odds” in favor of the occurrence of the event. Let 

WA) = Prior subjective odds in favor of accident occurrence. From probability theory 
these can be related to PI(A) by the formula 

Pr(A) Pr(A) 
R(A)= =- 

1 - Pr(A) Pr(A) 

. . . , x,,) = Odds in favor of accident occurrence conditional upon the observed 
event (xi, . . . , x, ). This is sometimes called the “posterior” odds 
and is related to Pr(A 1 x1, . . . , x..) by the formula 

R(A 1 x1, . . . , xn) = 
Pr(A I x1, . . . , ~1 

l-Pr(A Ix,, . . . ,x,,)’ 

Bayes Theorem (1) can then be converted to odds by straight-forward algebraic manipu- 
lation. The final result is: 

i&4 1x1, . . . , xn) = 
Pr(xl, . . . , xn 14 

i WA). 
Pr(xt, . . . , x, I A) 

(2) 

Mx,,...,~. IA) 
The ratio R = is termed the probability ratio or overrepresentation 

Pr(x,, * . * , 48 I A> 
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ratio of the event (xi, . . . , xn). Equation (2) states that the posterior odds in favor of 
accident occurrence, given the observed event (x,, . . . , x,), are equal to the product of 
the probability ratio and the prior odds in favor of accident occurrance. A probability 
ratio ivhich is greater than one means that the prior odds are increased by the occurrance 
of the event. 

In analyzing accident data using relation (2) above, the investigator is not necessarily 
forced to specify 52(A), but only to examine the probability ratio. The sensitivity of 

WA I X1’ * * ’ , x,,) to changes in either the probability ratio or the prior odds is also 
obvious. 

Returning to the earlier example one may write: 

Pr(s>70 1 A) 0.95 
Q(A 1 s>70) = R(A) = - C&4) = 3.8 R(A). 

Pr(s>70 1 A> 0.25 

Hence in this artificial example one may conclude that the event “excessive speeding” 
multiplies the prior odds in favor of an accident by a factor of 3.8. 

STATISTICAL BASIS 

In practice, the investigator rarely has complete information on the two conditional 
probabilities which comprise the probability ratio. Instead, he has samples from the acci- 
dent and non-accident populations and wishes to base his conclusions on these. That is, 
he estimates the probability ratio by utilizing 

I?= 
Pr(x,, . . . ) Xn I A) 

wx,, . . . , Xn I A) 

where the “M notation denotes an estimator of a quantity. Inference procedures for 
developing such estimators are examined in this section. 

The most common approach to developing inferences on probabilities of the above 
form assumes that the investigator has enough knowledge to specify the probability dis- 
tribution up to a set of p unknown parameters (Or, . . . , 0,). He then draws a sample of 
size n from this distribution and utilizes some estimation technique to obtain (8,, . . . , &,). 

In the accident data analysis situation it is necessary to estimate both Pr(x,, . . . , x, I A) 
and Pr(x,, . . . , x, I 1). For simplicity of notation, let x=(x1, . . . , x,,). If both 
relevant distributions have 8=(9,, . . . , 0,) as the set of unknown parameters, then the 
above probabilities may be written as Pr(x 18, A) and Pr(x 18, A>. That is, the 
probabilities are also conditional on the values assumed by the unknown parameters. 

Suppose an investigator draws a sample (x1, . . . , xk)* of size h from the accident 
population and a. sample (x1, . . . , x, ) of size m from the non-accident population. 
He then estimates the parameters of the accident distribution by 6, =F(x,, . . . , xi) and 
estimates the parameters of the non-accident distribution by h = F(x,, . . . , x, ). In 
both cases the function F is dependent upon the chosen estimation technique. Finally 

* Recall that in general each member of the sample is itself a vector-valued event. That is xi =(x1, . . . , x,)~. 
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the desired probability estimators are derived as: 
Pr(x 1 A) =Pr(x 16” , A) 
Pr(x) 1 A( 1) = Pr(x ItI,, A). 

Alternately, one might adopt a Bayesian approach to this estimation problem. The 
investigator, when using this approach, thinks of the unknown parameters as subjective 
random variables. He then develops subjective probability distributions g(8 I A) over 
possible values of the parameters in the accident population and g(0 I ii) over possible 
values in the non-accident population, The estimators then become: 

Pr(x l A) = 
s 

Pr(x I 0, -4 g@ I 4 de 
Pr(x I Z) = Pr(x I 8, Z) g(e I A) de. 

Although this estimation procedure has many desirable properties, it will not be con- 
sidered further in this paper. 

Two examples may be useful in showing the applicability of the first estimation 
technique. Consider again the problem of predicting the effect of the event “excessive 
speed”. Suppose the investigator has reason to believe that the distribution of speed in 
the accident population can be satisfactorily approximated by a normal random variable* 
with two unknown parameters, the mean uLA and the variance o2, . The density of this 
random variable can then be written: 

1 1 

As IP”d4 ,A)= --(+I$ )2 - do<s<co 
26” 

and 

Pr(s>70 Iu”,ooZ, ,A)= As Ii.+,cJ2A ,A)&. 
/ 0 

Similarly the investigator assumes that speed in the non-accident population is also 
normally distributed with unknown mean cl; and variance &I. 

The investigator now randomly samples m vehicles in each of the populations to 
estimate the unknown parameters. Although there are many possible estimators for these 
parameters, the following are generally utilized because of their desirable properties : 

1 m 
b=- z s. 

m j=l’ 

1 m 
-2 o = - Z (Sj -G)2 

m-l j=l 

where si is the jth sampled speed. 
By substituting these estimators in the appropriate probability expressions, the in- 

vestigator can then estimate the probability ratio: 

l Clearly the choice of this probability model introduces some unrealistic assumptions, for a normally dis- 
tributed random variable takes on all values over the real line. Nevertheless the popularity and flexibility of the 
normal model make it of interest in this example. 
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.To illustrate the calculations assume the following estimates 
62” = 16, fiR = 64, $I = 4. Observe that the sample means 

are obtained: PA = 65, 
are similar in the two 

populations, but that the sample variance in the accident population exceeds that in the 
non-accident population by a. factor of four. From tables of the normal distribution one 
can quickly compute 

l_@[““] 1_$!?4?] 

k= 

1-@[“-“iI =l-@,~]=lo6 

A 
where 

z 

s 

1 1 STIi 
cp(z) = - exp (-- ~2) dw and z = -. 

-cc fi 2 o 

Thus, in this example the prior odds in favor of an accident are multiplied by a factor 
of 10.6 when excessive speeding is observed. 

As a second example suppose the investigator is unwilling to assume that speed is 
normally distributed in the two populations. Instead he wishes to estimate Q(A 1~70) 
directly without specifying an underlying distribution of vehicle speed. In this case a 
binomial probability model is appropriate. Let 

Yj = 1 if sj>70 mph, 
Yj =0 if ~j<70 mph, 

where again Sj is the jth sampled speed. 
In this situation estimators of the desired probabilities can be derived directly by using 

the proportion of sample speeds over 70. mph. This estimator may be written as 
1 m 

- ZZ yi . To illustrate the calculations assume a random sample of size m=500 is 
m j=l 
taken in each population. The results show 70 vehicles exceeding 70 mph in the accident 
population and only 20 in the non-accident population. The estimate of li is then 

R= 
70/500 
p= 3.5. 
201500 

It was stated earlier that a probability ratio greater than one means that the odds in 
favor of accident occurrence are increased given observations on the specified event. 
When the probability ratio is estimated by R, it is then nece&ary to test the hypothesis 
that the true R is greater than one. Unfortunately the development of a statistical test 
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of this hypothesis is difficult, since the sampling distributions of these quantities are in 
general complicated. Consequently, informal and approximate tests will probably be 
utilized in assessing the likelihood that the probability ratio is actually greater than one. 

SOME PROBLEMS IN IMPLEMENTATION 

The investigator is confronted with four interrelated problems in applying these 
theoretical techniques to the analysis of real data: 

(1) Selection of the specific variables (Xi, . . . , X, ) to include in the analysis. This 
selection must be based on the objectives of the analysis, the extent of data available from 
the two populations, and possible biases or errors-m the data. 

(2) Selection of the probabilistic models to utilize in the analysis. This selection is 
difficult because of the complex multivariate and interactive nature of the relevant 
variables and events defined from them. It will probably be necessary for the investigator 
to sacrifice some realism in his specification in order to obtain distributions which are 
tractable. 

(3) Selection of a iroper sample size. This decision must be based on the trade-off 
between increasing sampling cost and decreasing sampling error as the sample is enlarged. 
In general the complexity of this trade-off may make informal analysis necessary. 

(4) Selection of the populations to sample. This problem is perhaps the most serious 
of the four mentioned, for it is essential to sample from accident and non-accident pop& 
lations which are “comparable”. Ideally the investigator desires populations which have 
the same “exposure to risk”, but this concept is not yet well-defined or understood in 
accident research.* Consequently, approximations and judgment must .be employed in 
population selection. 

These problems must be solved before the techniques developed in this paper can be 
applied. Nevertheless, by developing certain approximate procedures it is possible to 
apply these methods to the analysis of real problems. This has been done in at least one 
case (Little and Hall, 1968). Furthermore, these probabilistic foundations are useful in 
conceptualizing and organizing research problems as well as in providing a means for 
logically and consistently analyzing accident data. 
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