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It is hypothesized that an individual has a preferred unidimensional risk level in a 
coin-tossing game, and that his preferences are single-peaked over the risk scale. 
Risk was varied by increasing both the monetary denomination (D = le to $1) and 
number of tosses (N = 1 to 20) involved in a game. The rank order preference data 
of 30 subjects within sets of games having either constant D or N, single stimulus 
preference data, and pair comparison preferences between games supported these 
hypotheses. Data also supported the existence of a function R,[(D, N)] which maps 
games onto the risk scale and is monotone increasing in both arguments. However, 
the exact form of the function may vary, depending on the particular set of games 
from which the subject chooses. 

The prevailing expectation theories of individual decision making in a risky situation 

(Edwards, 1954, 1955) all avoid the subjective variable of riskiness. However, this 
variable has been given some attention as a stimulus dimension relevant to choice 
(Coombs and Pruitt, 1960; Royden, Suppes, and Walsh, 1959). In these experimental 

studies, the variance or some other parameter of the frequency distribution of a 
game’s possible outcomes was explored as a potential correlate of risk. The evidence 
supports the hypothesis that variance is a strong correlate of risk in simple game 
situations, but in more complex situations, the concept of risk is elusive and idio- 
syncratic (Wilcox, 1967). Thus we have chosen to treat the concept of risk as being 
undefined in a strict sense, although we do assume the existence of a variable which, in 
addition to expected value, mediates preferences in a consistent manner, can be 
experimentally manipulated in various ways, and for intuitive reasons might be 
identified as risk. 

The present study considers a number of coin-tossing games which vary in two 

aspects: the coin denomination (D) involved in a single toss, and the number of tosses 
(N) composing the complete game. As an example, the game (25@,5) represents a game 
in which 5 quarters are tossed all at once. For each coin landing heads, the game’s 
owner is paid a quarter by a bank. For each tail, the bank is paid a quarter by the owner. 

r This study was supported by USPHS Grant MH-04236 and NSF GB-6782. 
2 The authors wish to thank David Krantz, J. E. Keith Smith, and Amos Tversky for criticism 

of an early draft of this paper. 
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We propose the following axioms about risk and risk-preferences among games 
(D, N), for which expected value is zero. 

Al. For games with expected value zero, there exists a real-valued risk function 
R[(D1 , N,), (DzN,)] which maps pairs qf games onto a risk scale r, is symmetrical in its 
arguments, and is such that 

(i) If D, < D,’ or N1 < N,‘, then 

NV4 , W, CD2 , NJ1 < W4’, W, CD,, WI and 

RF’, > W CD, , Ndl d RKD, 9 %‘h V’, 1 WJI 
(ii)IfO<6,0<n<N,,andD,~N,=(D,+6)(N1-n)then 

R[(D, , W, (4 , NJ1 < ND, + 6, NI - 4, (4, NJ1 

(iii) If IZ min (N1 , NJ and D, < D, then 

R[(D, , NJ, (D, , NJ1 < W4 , N - n>, (8 , N2 + 41. 

A2. For games with expected value zero, the risk of a single game (D, N) is determined 

by the function R,[(D, N)] = R[(D, N), (0, O)]. 

A3. For every individual there exists a unique ideal level of risk I in r, such that the pair 
of games {(Dl , N,), (D, , N,)} is strictly preferred to the pair of games 

if and only if I RKD, , NJ, (D, , NJ] - I I < I R[(D,‘, N,‘), (D2’, N,‘)] - I j . 

In general terms, Axioms Al and A2 state that the risk of playing a game (D, N), or 
pair of such games, increases with both the denominations and number of tosses 
involved. They also assert that D is a stronger risk determinant than N, in the sense 
of Axiom Al (ii) and Axiom Al (iii). 

The Axiom A3 assumes the existence of a single-peaked preference function (Lute 
and Raiffa, 1957) defined over the risk scale r, with I being the most preferred risk 
level. 

These axioms together yield a number of predictions about rank order, pair com- 
parison, and single stimulus preferences within certain sets of games. 

RANK-ORDER PREFERENCES WITH D OR N CONSTANT IN A SET OF GAMES 

Prediction I. Let GN be a set of games, each game of which involves the same 
number of tosses N. Let (Dl , N), (D, , N), (D, , N) be members of GN involving 
denominations D, < D, < D, . In an individual’s preference ordering within 
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GN , (Da , N) cannot be less preferred than both (Di , N) and (Da , N). This prediction 
follows from the assumptions that risk increases as D increases, and that preference is 
mediated by a single-peaked function over the risk scale. 

Prediction II. Let G, and G,, be sets of games involving fixed numbers of tosses 

N and N’, respectively. Let (D, , N) be th e most preferred (ideal) game in G, , and 

similarly (Dj , N’) in G,, . I f  N > N’, then Dj < Dj . I f  N < N’, then Di > D, (see 

“Appendix”). 

Prediction 111 and IV. Similar predictions hold if one considers a set of games Go 

involving a fixed denomination D, interchanging the roles of N and D in Predictions I 
and II. 

Prediction V. Let (Di , N) be the ideal game in a set G, involving a fixed number 
of tosses N. Let (D, Nj) be the ideal game in a set Go involving a fixed denomination 
D. If  Di > D, then Nj > N. If  Dj < D, then Ni < N. 

Justification of Predictions II, IV, and V are given in the “Appendix”. Figure 1 
facilitates an understanding of these predictions. It portrays a space of games where 
the displayed rows and columns of points are actually sets G, and Go , respectively. 

STIMULUS GAME 
-‘- ISO-PREFERENCE CURVE 
- IDEAL TRACE 

20 

I I I I I I I 

IC. rot. $1 
COIN DENOMINATION 

FIG. 1. The space of possible coin-toss games, stimulus games, and subjective iso-preference 
curves. 
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The iso-preference curve over games having risk R,[(D, N)] = 1, which we call the 
ideal trace, represents those games having ideal risk. Other games having a constant 
non-ideal risk level fall on different iso-preference curves, those above the ideal trace 
reflecting risk larger than the ideal, and those below the trace reflecting risk less than 
the ideal. Within a set of games, the one falling nearest the ideal trace should be 
maximally preferred. Predictions II, IV, and V essentially assert that ideal games in 
different sets must mirror a single monotonically decreasing ideal trace through this 
space. 

DEPENDENCY OF PORTFOLIO ALLOTTMENT ON TOTAL N 

Prediction VI. Suppose an individual must toss for denomination D, and/or D, a 
total of N times, but that he may choose the numbers Ni and Ns of times for which 
D, and D, are respectively tossed, so long as Ni + N, = N. Further, let D, < D, , so 
that a game with N - 71 tosses for D, would be less risky than a game with N - 1z 
tosses for D, . Our Axioms Al and A3 predict that the proportion of tosses Nz/N 
allotted to the riskier game involving D, must not increase as N increases. This 
follows because (a) the riskiness of a mixture of two games which differ in riskiness 
will vary directly with the proportion of tosses in the more risky game of the mixture, 
if the total number of tosses of both games is fixed, [Al(iii)], and (b) will vary directly 
with the total number of tosses, if the proportion N,/N is fixed, [Al(i)]. As N increases, 
the proportion of tosses N,/N in the less risky game (DJ must increase to maintain an 
overall risk level closest to I. We speak of this as a monotone shift in portfolio balance 
with total number of tosses. 

In fact, our axioms make an even stronger prediction. If Ni = 1, then Na itself must 
not increase as N increases. (A high risk taker, i.e., one who allots N, = N tosses to 
the riskier D, , might continue with the allottment N, = N as N increases.) This 
holds because, for any given N, the allottment of Ni and Na tosses between two games 
will be that mixture which most closely yields the individual’s ideal risk level. TO 
increase N can only increase the total risk of the mixture, no matter how the additional 
tosses are allotted, hence the additional tosses must all be allotted to the less risky game 
of the mixture, keeping the mixture’s overall risk as close to 1 as possible. 

PRIOR COMMITMENT 

Prediction VII. If an individual were asked outright to make an absolute estimate 
about the number of times (N) he would commit himself to toss for a given denomina- 
tion (D) in a game, this estimate should vary inversely with the proposed denomination. 

EQUATED PAIRS OF GAMES 

Prediction VIII. Two games such as “toss for a dime 10 times” and “toss for a 
dollar 1 time” are called equated games, because they have the same expectation and 
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the same extreme outcomes, i.e., win or lose a dollar. By our axioms concerning 
R(., .) and R,,(e), to toss more often for a smaller denomination, e.g., toss 10 times for 

a dime, is less risky than to toss less often for a larger denomination, e.g., toss once for 
a dollar. Now suppose an individual prefers the less risky of two equated games, e.g., 
A preferred to B. Then by Axiom A3 he must prefer the less risky of two other equated 

games, e.g., C preferred to D, if C is riskier than A and D is riskier than B. This 
follows because the preference of A over B places the optimum risk level in such a 
manner that C must then be closer to it than is D. For example, if an individual 
prefers tossing twice for a nickel to tossing once for a dime, then he must prefer tossing 
four times for a quarter to tossing twice for half-a-dollar. 

An equivalent dual prediction holds if we begin with the riskier D preferred to C. 

That is, if an individual preferred tossing twice for half-a-dollar to tossing four times 
for a quarter, then he should prefer tossing once for a dime to tossing twice for a 
nickel. 

METHOD 

Subjects. Thirty males were chosen at random from a pool of paid volunteers at the University 
of Michigan. They were run in groups of 3-5 in a single session lasting about 45 min. Each 
received a base salary of $1.25. 

Stimuli. Five numbers of tosses (N = 1, 2, 5, 10, 20) and 6 denominations (D = le, 56. 
lOe, 25e, 50e, $1) were employed to construct sets of games portrayed as rows and columns 
of points in Fig. 1. Using these games, the experimenter prepared a stimulus booklet, on the 
pages of which subjects indicated various preferences within sets of games. 

htructions. The subjects were seated around a table and the experimenter read the in- 
structions. The subjects were familiarized with the stimuli by playing representative games. 
Play consisted of tossing the specified number of coins (N) all at once. The difference between 
the number of heads and tails determined what the subject won or lost, respectively. The purpose 
of tossing the coins all at once was twofold: To emphasize that choosing a number of tosses 
preceded the play itself (the play was not a sequential process), and to eliminate irrelevant 
preference or aversion for prolonged participation (the prospect of tossing a penny 20 times 
might be perceived as rather boring, or as a delightful prospect, irrespective of the risk involved). 

After practice and familiarization, the subject was informed that one of the options for which 
he had shown some preference would be chosen at the end of the session, played for real, and 
the outcome added to or subtracted from his wages. The purpose of this instruction, aside 
from the usual invocation of reality, was to convey and emphasize that each decision or choice 
was to be considered by the subject as an isolated one, independent of all others. We wished 
to avoid any cumulative effects on preference of building a “portfolio” of games. 

At this point, each subject was allowed to withdraw from the experiment with 50~ if he had 
any reservations about further participation, because it was possible, although unlikely, for 
him to lose more money than his wages. The remaining subjects (one withdrew and was replaced) 
then received their full wages and the experiment proceeded. 

Procedure. Subjects first indicated their preference order within each triad of the games 
portrayed in the bottom row of points of Fig. 1 (N = 1) and each triad of the third column 
(D = 10~). The triads appeared one per page in the stimulus booklet. These orderings within 
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triads were later decomposed (Coombs, 1964, pp. 53-54) and the individual’s total preference 
ordering obtained by weak stochastic transitivity, which was satisfied by everyone. The games 
in remaining rows and columns (fixed N and D, respectively) were printed one row (or column) 
to a page in one random order administered to all subjects, so that each game occurred on two 
pages, once as an element of a set having fixed N, and once as an element of a set having 
fixed D. The subject was instructed to indicate his preference order on each page by writing 
the integers 1, 2,..., in front of the games. 

Each subject next allotted totals of 5, 10, and 20 tosses between nine selected pairs of de- 
nominations used in generating the stimulus games. One pair was printed to a page, and the 
subject went through all nine, allotting first 5 tosses, then 10, and then 20 between the member 
denominations of a pair. Each time, the nine pairs were in a different order. The pairs of de- 
nominations were selected to vary the riskiness of the resulting games. Thus, tossing for a 
penny and for a nickel (le, 5e) was the least risky pairing. The other eight pairings were (le, lOe), 
(5e, lOe), (se, 25~3, (lot, 25e), (lo& 5Oe), (25e, 5Oe), (25e, $l), and (5Oe, $1). Assuming that 
risk increases with D, this listing is in the order of increasing risk. 

The subject was then asked to specify exactly how many times he would like to commit 
himself to toss at each denomination, given that play would only involve the particular denomina- 
tion for the committed number of tosses. 

Finally, subject made pair comparison choices between members of 10 equated pairs of 
games, such as five tosses of a penny vs. one toss of a nickel, i.e., (le, 5) vs. (5& 1). The other 
nine pairs were (le, 10) vs. (lo& l), (5e, 2) vs. (lOe, l), (56 5) vs. (25e, l), (51, 10) vs. (50~ l), 
(25~ 2) vs. (5Oe, I), (51, 20) vs. ($1, 11, (1% 10) vs. ($l,l), and (506, 2) vs. ($1, 1). 

At the experiment’s end, each subject played one game which he had chosen during the 
session and the outcome was added to or subtracted from his salary. This game came from a 
preselected set, known only to the experimenter, which insured that no subject could lose more 
money than his salary. 

RESULTS 

The sets of stimulus games are presented as a matrix in Table 1, with two numbers 
in each cell. The number on the right indicates the number of subjects who chose 
the corresponding game as their ideal game for that fixed N. The number on the left 
indicates the number of subjects who chose the corresponding game as their ideal game 
for that fixed D. The total for each row or column is the number of subjects who 

evidenced single-peaked preference functions over risk and thus satisfied Prediction 
I, or III, respectively, for that set of games. 

There were 6! (= 720) possible preference orderings for each set of games having 
a fixed N in Fig. 1. Thirty-two of these would satisfy Prediction I. Hence, the prob- 

ability of a subject satisfying this prediction by chance is .044 for any one rank order. 
In a total of 150 rank orders, there were two which violated this prediction, and their 
deviation was minor, In the case of sets having fixed D, there were 5! (= 120) pos- 
sible orderings, of which 16 would satisfy Prediction III. In a total of 180 rank orders, 
there were again only two which violated the prediction, and their deviation was minor. 

To test Prediction II, a rank order correlation (Kendall’s 7) was computed between 
N and the Di associated with the ideal game in each set of games G, . Prediction II 

480/6/3-13 
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TABLE 1 

LOCATION OF IDEAI. GAMES WITHIN SETS OF GAMES HAVING CONSTANT N AND CONSTANT D 

(nos. of subjects given in each cell on the right and left, respectively) 

Denomination 

No. 

of 

tosses l$ 5z lot 251 506 

5 2 4 

2 1 3 2 2 2 5 
___~ i- i3 V6 8 ____-- 

1 4 2 4 2 153 77 127 

D, total 30 30 28 30 30 
single 

peaked 

N, total 

single 

$1.00 peaked 

6 5 30 

1 6 29 

2 6 30 

3 6 30 

18 8 29 

30 

implies a perfect negative correlation (T = -1.0). But because of response variability 
created by error factors, one cannot expect perfect correlation in practice. However, 
the obtained result should deviate significantly from 7 = 0.0 (no relation between 

N and D). Without extensive replication and further statistical development, it 
remains extremely difficult to test Prediction II directly. Table 2a presents the results 
of these computations for 19 subjects. For another 9 subjects, it was impossible to 

compute a 7 value because of complete ties in the data. Every such instance is com- 
patible, however, with Prediction II. Only 2 subjects failed to lend at least some 
support to this prediction. Table 2b reports similar computations testing Prediction 
IV. Again there were 9 subjects for whom a 7 value could not be computed because of 
complete ties in the data. 

An important requirement (Prediction V) was that the two kinds of ideal games 
(ones from sets having variable D with fixed N, and ones from sets having variable N 
with fixed D) should mirror a single ideal trace for any S, as portrayed in Fig. 1. This 
requirement was tested by considering the relative locations of these ideal games in 
the space of Fig. 1. 

Two similar tests were possible. In the first of these, the subject’s ideal games within 
sets having fixed N were treated as given a priori. With these ideal games specified, 
the subject’s ideal games within sets having fixed D are restricted to only certain 
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TABLE 2a 

RANK ORDER CORRELATION OF D WITH N FOR IDEAL GAMFS FROM SETS HAVING FIXED N 

7 -1.0 -.87 -.74 -.60 -.47 

No. of subjects 5 5 5 2 2 19 

Significance level .OOl .008 .03 .07 .14 

TABLE 2b 

RANK ORDER CORRELATION OF N WITH D FOR IDEAL GAMES FROM SETS HAVING FIXED D 

T -1.0 -. 8 -.6 -.4 

No. of subjects 6 9 2 2 19 

Significance level .008 .04 .12 .24 

possibilities by Prediction V. (For example, if a subject most preferred (25c, 5) when 
choosing from games involving five tosses, then when choosing from games involving 
a 104 denomination, his ideal game (lOc, N) must have N > 5.) With D fixed, the 
games of a set were ordered by their N values. 

Discrepancies from Prediction V were measured by the number of positions in this 
order an ideal game deviated from a game compatible with the prediction. (In the 

above example, if a subject’s ideal game was (IO+?, 2) when choosing from games 
involving a 10~ denomination, there would be a resulting discrepancy of at least one 
matrix cell position between the ideal games involving fixed N and D.) The magnitude 
of these discrepancies was used to test the hypothesis that ideal games from the sets 
having fixed D were unrelated to ideal games from sets having fixed N, i.e., that any 

game from a set having fixed D was equally likely to be ideal within the set. I f  ideal 
games were unrelated in this fashion, then the occurrence of at least some discrepancy 
in the ideal game of a set having fixed D would have approximate probability of 0.5. 
There were 11 of 30 subjects for whom the “independence” hypothesis could not be 
rejected at the .05 level. Across subjects, it could be rejected at an infinitesimal level. 

The second analogous test treated the subject’s ideal games from sets having fixed 
D as given a priori, and discrepancies were measured in the subject’s ideal games from 
sets having fixed N. In this test, there were five subjects for whom “independence” 
of the two different ideal sets of games could not be rejected. Of course, as previously 
remarked, our predictions about the relations between sets of ideal games are much 
stronger than those tested by the rejection of an “independence” hypotheses. More- 
over, a satisfaction of Predictions II and IV implies at least some relation between sets 
of ideal games. However, to test Prediction V with more appropriate statistical metho- 
dology would ultimately require unavailable replications and statistical procedures. 
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In more descriptive terms, there were actually 15 subjects whose ideal games were 

perfectly compatible with Prediction V, and hence 15 others for whom compatibility 
was not complete. Seven of these incompatible subjects failed Predictions II and/or IV 
to some extent (T f  -1.0; at most, five of these failures could possibly be attributed 
to discrepancies in the results obtained from data collected by the method of triads and 
by the method of rank order). Thus, there were at least eight subjects having 7 values 
of -1.0 in Tables 2a and 2b, who yet violated the requirement that their ideal games 
reflect a single monotone ideal trace through the space of Fig. 1. 

To test the overall group results, the mode of the ideal games is indicated in each 

row (italics) and column (boldface) of the matrix in Table 1. It is apparent there that 
no violation of the requirement of a single common ideal trace occurs. When median 
ideal are used instead, one discrepancy results, involving a cellular distance of 1. 
Hence, in a statistical sense, the overall results, and the results for most individual 

subjects substantially supported Predictions 1-V. However, there were individual 
instances of violations which cannot be overlooked. 

Table 3 reports, for each pair of denominations, the number of subjects whose shift 
in portfolio balance (Prediction VI) was monotone decreasing with N = 5, 10, and 20 
total tosses. Both the proportion Najlv and absolute number N, of tosses allotted to 
the riskier denomination are considered. 

The test of the weaker prediction, that the proportion of tones allotted to the riskier 

denomination should not increase, was made to judge just how badly the stronger 
prediction was violated. 

TABLE 3 

DEPENDENCY OF PORTFOLIO ALLOTMENT ON TOTAL NUMBER OF Toss= 

Pairs of denominations 

(1,5) (1,10) (5910) (5,25) (10,25) (25,50) (10,50) (25,961) (50,$1) 

Proportion 

Mon. shift as pred. 26 23 21 21 21 21 20 18 20 

Viol. of pred. 4 7 9 9 9 9 10 12 10 
Av no. of com- 2.77 2.57 2.53 2.53 2.43 2.47 2.23 2.17 2.47 

patible pairs 
Significance level .OOl .OOl .OOl .OOl ,002 .002 .02 .02 ,002 

Absolute no. 
Mon. shift as pred. 23 22 16 13 14 15 14 16 14 
Viol. of pred. 7 8 14 17 16 15 16 14 16 
Av no. of com- 2.60 2.33 1.90 1.93 1.80 1.83 1.80 1.77 1.80 

patible pairs 
Significance level .OOl .Ol 
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Violations of Prediction VI were also measured in degree for each subject by count- 
ing the number of implicit pairs in the rank order of proportions N,/N with total IV 

which were compatible with the predicted rank order. Perfectly compatible data would 
yield 3 compatible pairs, while completely random data would yield 1.5. The average 
numbers of compatible pairs are reported in Table 3 for each pair of denominations, 
and their significance level is indicated where it is of interest, using a normal approxi- 
mation to the binomial distribution. 

A typical example of the violations is the instance in which a subject allotted 5, 10, 
and 20 tosses between two denominations as follows (risky/less risky): l/4, l/9, and 
3/17. The 20 tosses should have been distributed in the ratio of not more than 2/18 to 

maintain a nonincreasing proportion, and l/19 to maintain a nonincreasing absolute 
number of tosses for the riskier denomination. Our analysis is conservative in that the 
violations were often minimal, e.g., a violation of 3/17 instead of a compatible 2/l 8. 

Prediction VII was tested by calculating a rank order correlation for each subject 
between the number of times to which he had committed himself to toss and the 
proposed denomination D. The distribution of 7 is reported in Table 4. The four 
subjects not reported in the table had a constant preferred number of tosses for all 
denominations. Such subjects do not, of course, violate the prediction. 

TABLE 4 

RANK-ORDER CORRELATION BETWEEN COMMITTED NUMBER 

OF TOSSES AND PROPOSED DENOMINATION 

7 - 1.00 -.87 -.74 -.33 -.06 +.33 

No. of subjects 14 4 3 2 2 1 26 

Significance level a014 a083 .028 .235 .50 .235 

The maximum number of possible incompatibilities (Prediction VIII) among 
preferences on equated pairs of games was 25 for each subject. The expected number 
of incompatibilities would be nine if choices were unrelated across pairs, and choice 

probabilities between the members of each pair were 0.5. Just six of the subjects 
revealed any incompatibilities at all, and the numbers of incompatibilities for these 
subjects were 1, 1, 2, 2, 4, and 8, respectively. Only the latter two subjects were 
within the range in which random response assumptions could not be rejected at the 

.05 level, and the data lend rather strong support to the prediction. 

DISCUSSION 

The overall confirmation of predictions was substantial. This suggests that subjects’ 
choices are mediated by a single-peaked preference function over a unidimensional 
risk scale, and that there exists a function &[(D, N)] w ic is monotone increasing h’ h 
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with both D and N, mapping games onto the risk scale. Preference data for equated 
pairs of games support the assumption that D is a more powerful risk-determiner than 
N in the sense of Axiom Al(ii) and Axiom Al(iii), at least over the ranges tested in 

this experiment. However, it is important to examine individual failures to confirm 
our predictions, particularly those which violated the existence of a single ideal trace 
(Prediction V) and appeared to be systematic, rather than caused by random error. 
These failures may be described as follows: Ideal games within sets in which D was 

constant reflected an ideal trace, the negative slope of which was too near zero to be 
compatible with ideal games from sets in which N was constant. Equivalently, ideal 
games within sets in which N was constant reflected an ideal trace, the negative slope 
of which was too far from zero to be compatible with ideal games from sets in which 
D was constant. For example, several subjects had ideal games which involved ranges 
from 1 to 20 tosses as the fixed D changed from $1 to l$, whereas the ideal games from 
sets involving a fixed N of from 1 to 20 tosses ranged only from 25~ to 10~. Such 
subjects maximally satisfied Predictions I-IV, but violated Prediction V. The most 
extreme form of such a violation is typified by a subject whose ideal games from sets 
having fixed N were all constant at D = 25&, and whose ideal games from sets having 

fixed D were all constant at N = 5. Such a subject satisfies Predictions I-IV, but 
maximally violates Prediction V. 

In effect, two different ideal traces were revealed in these failures to satisfy Predic- 

tion V, when either D or N was held constant in a set of games. The intersecting locus 
of ideal games from these different sets suggests that, rather than a shift in the ideal 
risk level causing the failures, subjects may have evaluated a game’s risk by &,[.I when 
N was constant within a set of games, and by &,‘[*I when D was constant. An examina- 
tion of the functions measuring the variance, maximum possible loss, and expected 
loss of these games with N and D suggests that &,[.I could have involved expected 
loss, while &,‘[*I could have involved either variance or maximum possible loss. It is 
not clear why subjects should choose to adopt two different decision rules for evaluating 
risk, depending on whether D or N was fixed. Neither is it particularly satisfying to 
assume that they did so. While it is possible to construct a quantitative theory of 

preference under which it would be possible for an individual to prefer always to toss 
for 25~ regardless of the number of tosses involved, or always to toss exactly five times, 
regardless of the denomination involved, such behavior is not natural for any of the 
current theories in which the outcomes and the probabilities of outcomes are relevant 
variables. Such behavior indicates idiosyncratic preference, superstition, or a decision 
rule chosen by subject to minimize his effort in the experiment. 

Subjects also substantially confirmed an overall dependency of pairwise portfolio 
allottment of number of tosses on the total number of tosses required. However, for 
all denominational pairs except the two least risky ones, they violated the stronger 
prediction of no increase in the absolute number of tosses increased. Most of the 
violations reflect a tendency to maintain more balance than called for in the allottment 
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between the two denominations, perhaps reflecting an effect of the instructions to 
“allot N tosses.” Such an effect would be more salient for riskier denominational 
pairs, where there is more imbalance in the allotment to begin with, and the data 
provide evidence of this salience. 

A general interpretation, compatible with the results here, would be that risk is 
monotone with some measure of dispersion in possible gambling outcomes. This 
interpretation of course assumes that expected value is being held constant at all times. 
For the simple games used in the present study, such dispersion directly varied with 
both denomination and number of tosses, while expected value was constant at zero 
in all mixtures of the games. For more complex stimuli, particularly for games having 
a nonzero expectation, we might not expect risk to be monotone with D, N, or more 
generally with dispersion. 

APPENDIX 

Applying Axiom A3, let P(r) be a single peaked preference function over the risk 
scale Y, with maximum at Y = 1. Let R,[(D, IV)] be the risk of a coin-toss game involv- 
ing N tosses for denomination D. 

Proof. (Prediction II). Let (Di , IV) be the ideal game in G, , and (Dj , IV’) the 
ideal game in GN, . 

Case la. Let R,[(Dc , N)] > I, and N > IV’. We suppose Dj < Di and show that 

which means that (Di , IV’) cannot be the ideal game in GN, . Hence it must be true that 
Dj > Di . 

Suppose Di < Di . Then we have 

(9 &Wi , WI < &[P, , WI < &Pi , W 
by the first part of Axioms A1 and A, . 

(ii) RO[(Di , N)] < RO[(Di , IV)] and R,[(Di , N)] 3 I imply that R,,[(D, , N)] < I. 
Otherwise P{R,[(D, , IV)]} > P{R,,[(D, , IV)]} . since P(Y) is single-peaked by Axiom A3, 
and thus (Di , N) would not be most preferred in G, . 

(iii) R,[(D, , N’)] < R,[(D, , N)] and R,[(Dj , N)] <I imply that 

since P(Y) is single-peaked. 

(4 WMP~ , WI) < R%Wi 9 Yl) since P{&[(Dj , N)]} < P&[(D, , IV)]}. 
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(v) The results of (i) and (iv) imply P{R,[(Dj , N’)]} < P{R,[(D, , N’)]} since 
P(Y) is single-peaked. 

This is the desired contradiction. 

Case 1 b. Let R,[(D, , N)] < 1 and N > N’. 

Case 2a and 2b. Let N < N’. 

The proofs are analogous for these cases. 

Proof (Prediction IV). Interchange the roles of D and N in the proof of Prediction 
II. 

Proof (Prediction V). Let (Di , N) be most preferred in G, , and (D, NJ most 

preferred in Go _ 

Case la. Let R,,[(Di , N)] > I and Di > D. We suppose that Nj < N and show 
that 

PIROE(D, Ni>l> < piRO[(D7 N>1I, 

which means that (D, N) would be more preferred than (D, Nj) in CD. This is a 
contradiction. 

Suppose Nj < N. By Al and A2 we have 

%[(D, Nj)] < &[(D, WI < %[(D, 7 N)l. 

As argued above, I < R,[(Di , N)] implies that 

WD> NJ1 < MQ WI < 1. 

Since P(Y) is single peaked, we thus have P{&[(D, Nj)]> < P(R,[(D, N)]). 

Case lb. Let R,,[(Di , N)] < I and Di > D. 

Case 2a and 2b. Let Di < D. 

The proofs are analogous. 
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