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Summary 

6-Aminolevulinic acid synthetase, the initial and rate limiting step in 
hepatic heme synthesis, is induced by both benepyrene and phenobarbital. In- 
duction of this enzyme by benzpyrene results in the stimulation of glycine-2- 
14C incorporation into hepatic microsomal heme in vivo and in the induction of -- 
cytochrome P-450 and N-demethylase activity. 3-Amino-1,2,4-triazole, an in- 
hibitor of the second step in hepatic heme synthesis, prevents the stimulation 
of hepatic heme synthesis and the induction of P-450 and N-demethylase activity. 
It is suggested that induction of 6-aminolevulinic acid synthetase leading to 
increases in hepatic heme synthesis may be the mechanism by which benzpyrene 
induces cytochrome P-450 and certain hepatic microsomal oxidations. 

Pretreatment of animals with 3,4-benzpyrene (BP) and other polycyclic 

aromatic hydrocarbons such as 3-methylcholanthrene results in increased hepatic 

microsomal levels of cytochrome P-450 and in the induction of the hepatic 

microsomal oxidations of certain drugs and carcinogens (l-5). Although the 

exact mechanism by which induction occurs remains to be elucidated, stimulation 

of both heme synthesis and protein synthesis are undoubtedly essential to the 

induction process since, at least during the initial stages of induction, there 

appears to be a good correlation between increases in P-450 and certain micro- 

somal oxidations (10). 

Hepatic mitochondrial 6-aminolevulinic acid synthetase (AU synthetase) 

is the initial and rate limiting step in hepatic heme synthesis (6,7). Pheno- 

barbital (PB) has been demonstrated to induce ALA synthetase in chick embryo 

liver cells in culture and in the livers of experimental animals (6,8,9). Pre- 

vious studies in this laboratory (10) have suggested that PB might exert its 

stimulatory effect on drug metabolism by increasing the rate of hepatic heme 

synthesis which directs the increased synthesis of cytochrome P-450. Since the 
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administration of BP also results in increases in the level of cytochrome P-450 

in hepatic microsomes, stimulation of hepatic heme synthesis vfa induction of 

ALA synthetase is also a possible mechanism for the induction of the hepatic 

microsomal drug-metabolizing system by BP. 

The herbicide 3-amino-1,2,4-triazole (AT), an inhibitor of the second 

step in hepatic heme synthesis, has been employed to inhibit hepatic heme syn- 

thesis and to prevent PB from stimulating hepatic heme synthesis (10). AT has 

also been demonstrated to inhibit the induction of certain hepatic microsomal 

oxidations produced by either PB (10111,12) or by methylcholanthrene (11). 

The present report describes the stimulatory effect of BP on rat hepatic 

ALA synthetase, hepatic heme synthesis, cytochrome P-450 synthesis and on the 

N-demethylation of 3-methyl-4-monomethylaminoazobenzene (3-CH3-M4B). The 

inhibitory effect of AT on these inductions, and the effects of both BP and AT 

on the microsomal levels of cytochrome b5 and NADPH-cytochrome c reductase 

activity are also described. 

Methods 

Male Holtzman rats weighing 130 to 170 g were used throughout these studies. 

Drugs were administered intraperitoneally in the following doses: BP, 20 mg/kg 

in corn oil; AT, 3 g/kg in saline; and PB, 40 mg/kg in saline. Control animals 

received an equal volume of saline and/or corn oil. Rats were fasted for 24 hr 

prior to sacrifice but were given water ad libitum. -- In all experiments, the 

livers from two rats which received identical treatments were pooled upon 

homogenization. ALA synthetase activity was determined in hepatic homogenates 

by a modification of the method of Marver et al. (13). Methods for the 

preparation of microsomes and measurements of the N-demethylation of 3-CH3-MB, 

the activity of NADPH-cytochrome c reductase, the content of cytochromes P-450 

and b5 and the incorporation of isotopic precursor into hepatic microsomal heme 

have been described previously (10). 

Results 

BP administration results in the induction of microsomal cytochrome 
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Table 1. Effects of benzpyrene (BP) and aminotriazole (AT) on th: incorporation 
of glycine-2-14 C into hepatic microsomal heme in vivo. 

Pretreatment Percent of control 2 

BP 131.8 + 1.7 3 

AT 86.1 + 2.8 3 

BP + AT 109.0 + 2.1 

1 Rats received intraperitoneally a 45-min. 
pulse-dose of 30 PC of glyctne-P-l% 16 hr. 
after the administration of drugs. The 
control value was 196.9 cpm/mpmole of 
protoheme. 

r, alues represent the mean + S.E.M. of at 
least three experiments. 

3 p < 0.05. 

P-450 and the induction of certain microsomal oxidations (1,4,5). I f  this 

phenomenon is related to an increase in the synthesis of cytochrome P-450, a 

stimulation of hepatic microsomal heme synthesis should be observed after the 

administration of BP to rats. Table 1 shows that there is a 32% stimulation 

of the in vivo incorporation of glycine-2- 14 C -- into hepatic microsomal heme 16 

hr after BP administration. This stimulation is prevented by AT, an inhibitor 

of ALA dehydratase (10,14), the second step in hepatic heme synthesis. AT has 

previously been observed to inhibit the PB-induced increase in hepatic heme 

synthesis (10). 

The mechanism for the induction of heme synthesis and cytochrome P-450 

may be reIated to an increase in ALA synthetase activity. Table 2 shows that 

both BP and PB produce a marked induction of hepatic ALA synthetase activity 

16 hr after administration to rats. The induction is not affected by AT, nor 

does AT alone alter the level of activity of this eneyme. This indicates that 

both BP and PB induce cytochrome P-450 by stimulating hepatic microsomal heme 

synthesis via induction of ALA synthetase. PB has also been shown to stimulate 
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Table 2. Effects of benzpyrene (BP), phenobarbital (PB), ani aminotriazole (AT) 
pretreatments on hepatic ALA synthetaae activity. 

Pretreatment mpmoles ALA formed/ 
g of liver/hr Percent of control 

Control 15.3 + 0.4 2 

AT 16.0 +_ 0.5 104.9 2 1.7 

BP 79.8 + 9.7 522.4 + 15.8 3 

BP + AT 74.3 _+ 12.1 519.2 + 23.6 3 

PB 225.2 + 28.7 1449.0 2 87.1 3 

PB + AT 193.8 f  15.8 1281.5 +, 52.6 3 

1 Drugs were administered 16 hr. prior to sacrifice. 
2 Values represent the mean + S.E.M. of at least three 

experiments. 
3 p < 0.05. 

synthesis of microsomal heme (10) and AT inhibits this stimulation. Treatment 

of rats with actinomycin D (3 mg/kg) at the same time as either BP or PB 

completely prevented the induction of ALA synthetase. 

Table 3 shows that BP induces cytochrome P-450 and the N-demethylation of 

3-CH3-k%B. That these effects are due to an enhancement of hepatic microsomal 

heme synthesis is indicated from the observation that AT significantly 

antagonizes the increases of both P-450 content and 3-CH3-MAB N-demethylase 

activity. The effects of AT do not result from either interference with the 

assay OK from a direct inhibition (10). However AT begins to lose its effect 

after the first 24 hr. This is likely due to increased levels of endogenous 

ALA which would reverse the inhibition. 

Although BP pretreatment results in an enhancement of hepatic heme 

synthesis and an increase in cytochrome P-450 levels, there was no observable 

effect by either BP or AT on the hepatic microsomal level of cytochrome b5 

during the first 48 hr of treatment (Table 3). This is similar to the effect 
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Table 3. Effects of benzpyrene (BP) and aminotriazole (AT) pretreatment5 on 
microsomal he 
c reductase. T” 

proteins, 3-CH3-mB N-demethylase and NADPH-cytochrome 

Measurement 
Duration 

of Percent of control 2 

Treatment BP AT BP + AT 

P-450 3 

Cytochrome b5 4 

N-demethylase 3-CH3-M4B 5 

NADPH-cytoch ome 
c reductase f  

24 164 2 13* 70 +, 5* 114+ 8 
48 229 + 19* 782 3* 162 z 15* 

24 123 + 23 101 + 15 126 2 19 
48 127 z 22 117 +_ 31 124 +_ 16 

24 151 2 17* 76 + 5* 115 + 18 
48 212 + 21* 76 z lo* 153 z 12* 

24 113 + 10 116 + 10 119 + 9 
48 121 2 13 113 z 13 138 z 17 

1 Drugs were administered every 24 hr. 

‘Values represent the mean 1 S.E.M. of at least three experiments. 
3 Control value was 0.023 AOD 450-490 mu/mg protein. 
4 Control 
5 

value was 0.096 mumoles cytochrome b5/mg protein. 

Control value was 0.69 mumoles HCHO formed/mg proteinlmin. 
6 Control value was 42 mqoles cytochrome c reduced/mg protein/min. 
* 

p < 0.05. 

of PB (10,15). Unlike PB, BP does not induce NADPH-cytochrome c reductase 

activity (Table 3), the microsomal flavoprotein which may be responsible for the 

reduction of cytochrome P-450. This may indicate that in those oxidations 

induced by BP, NADPH-cytochrome c reductaee is not a rate limiting component. 

On the other hand, NADPH-cytochrome c reductase activity may not be represen- 

tative of NADPH-cytochrome P-450 reductase activity (16). 

Discussion 

Within 24 hr after the administration of BP to rats there is an increase 

in the level of microsomal cytochrome P-450 and an induction of certain hepatic 

microsomal oxidations (1,4,5). The proximal mechanism by which BP and related 

compounds produce this effect remains to be elucidated. However, the present 
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studies suggest that, like PB (lo), BP produces a stimulation of hepatic 

microsomal heme synthesis through the enhancement of ALA synthetase activity. 

This leads to an increased synthesis of cytochrome P-450 and the increase in 

certain microsomal oxidations. However, the species of cytochrome P-450 induced 

by BP and related compounds may be different from that induced by PB (2,3, 17) 

which may reflect the fact that certain protein moieties confer specificity to 

P-450. BP and PB may also influence the synthesis of these apocytochromes. 

PA has been demonstrated to induce the rate controlling step in hepatic 

heme synthesis, ALA synthetase (6,8,9), and has also been demonstrated to 

stimulate hepatic microsomal heme synthesis (9,lO). The present studies have 

demonstrated that BP similarly produces an induction of ALA synthetase and a 

stimulation of hepatic microsomal heme synthesis. The latter event is abolished 

by AT, although AT does not prevent the induction of ALA synthetase. Thus, it 

appears that both PB and BP stimulate hepatic heme synthesis through the 

induction of ALA synthetase. 

Further support for the postulate that induction of the drug-metabolizing 

system is dependent upon heme synthesis is seen from the data on the induction 

of cytochrome P-450 and 3-C I$-MAB N-demethylation by BP. When AT is adminis- 

tered together with BP, the stimulatory effects of BP are significantly reduced 

or prevented. Since AT exerts its effect on heme synthesis exclusive of an 

effect on protein synthesis and since any direct inhibitory effect of AT on 

microsomal drug metabolism is minimal (lo), these results suggest that the 

stimulation of hepatic heme synthesis may be the mechanism by which BP induces 

the hepatic microsomal drug-metabolizing system. 
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