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Abstract: The kinematical constraints of helicity amplitudes are studied using the
general ideas of Jackson and Hite. The helicity amplitudes are expressed in
terms of a Taylor series expansion from which all constraints at threshold and
pseudothreshold can be trivially found. The simplicity of this approach is illus-
trated by deriving all of the constraints for 7p — NN and 7p — AN,

1. INTRODUCTION

One of the difficulties in developing dynamical theories for the descrip-
tion of scattering processes has been the determination of which character-
istics of the processes are purely kinematical and which are purely dynam-
ical. The extraction of all of the kinematical aspects of the scattering pro-
cesses 1+2 — 3 +4 from helicity amplitudes [1] has been attempted by sev-
eral authors using many different approaches [2-5]. One of the more inter-
esting methods is that of Jackson and Hite [3] who use non-relativistic ideas
coupled with very elementary mathematics to determine all of the factor-
izable kinematical singularities in the s (c.m. energy squared) plane (they
indicated how one might determine the singularities in the w = Vs plane but
they did not actually carry this out; this was done by Henyey [3]). While
Jackson and Hite outline a general approach to solving the problem of find-
ing the kinematical constraints, they do not actually carry out the mathe-
matics except in one or two specific cases. This paper shows that the basic
ideas used by Jackson and Hite to find the factorizable kinematical singular-
ities can also be used to solve the problem of finding all kinematical con-
straints. We are able to show that the helicity scattering amplitudes for
1+2 — 3 +4 can be expressed in a Taylor series like expansion about each
threshold and/or pseudothreshold and that all of the kinematical constraints
can be extracted from this one simple equation. The simplicity of this
equation is illustrated by studying the reasonably complicated processes
pm — NN and pr — NA.

Although Trueman [6], working independently, has already discussed the
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problem of kinematical constraints from an entirely different point of view,
the present paper affords a deeper insight into the physical origins of the
constraints and shows explicitly that kinematical singularities and con-
straints are caused by the same phenomena. While Trueman uses different
phase conventions and discusses helicity amplitudes rather than parity con-
serving helicity amplitudes as done here, the results of Trueman's work
and this paper can be shown to be completely consistent with one another.
Sect. 2 summarizes the results of this paper and states a set of rules
for finding all of the kinematical constraints. Sect. 3 gives examples of the
use of these rules. In appendix A notations and conventions are discussed
while the results of this paper are derived in detail in appendix B. Finally
in appendix C we review the problem of finding the kinematical constraints
at s = 0 which exist independently of whether or not mq = mg and/or
mg = my and are not included in the results of sect. 2.

2. KINEMATICAL CONSTRAINTS

As is well known the helicity scattering amplitudes for two body scatter-
ing processes 1+2 — 3 +4 have kinematical singularities at the thresholds
(x(m;+m )) and pseudothresholds (+(m;- mj) of the incoming and outgoing
partlcles By carefully investigating why these singularities occur, we have
been able to explicitly separate the general scattering amplitude for two-
body scattering into a sum of terms each having a different degree of singu-
larity at threshold and/or pseudothreshold. After multiplying this sum by
the appropriate factors to eliminate all threshold and pseudothreshold kine-
matical singularities, we essentially have a Taylor series about the thresh-
olds and/or pseudothresholds. We can now use this series to trivially de-
termine all of the kinematical constraints at the thresholds and/or pseudo-
thresholds: for any given process at any threshold or pseudothreshold, 7,
(i.e. 7= x(m;tm )) we set the c.m. energy squared, s, (for the case BF
—BF, use 7= \fs where B represents a baryon and F a fermion) * equal to

72 thus forcing all but the first terms in the sum for each scattering ampli-
tude equal to zero. Since several of these first terms will be proportional,
we have a series of constraints wh1ch are called non-derivative. Next di-
vide the scattering amplitude by 72 (use 72 because of angular momentum
conservation - see appendix B) and then set s = 72 (or Vs = 7 for BF — BF)
and thus all but the first two terms in the series go to zero. For many
scattering processes the number of independent scattering amplitudes is
still larger than the number of unknowns introduced in this expansion and
thus there are more constraints; these are called first derivative con-
straints because they involve the second terms in a Taylor series. Next we
divide the amplitudes by 74 and then set s = 72 (or Vs = 7) and determine if
we have still more constraints (second derivative constraints). We can
continue this process of first dividing by even powers of 7 and then setting

* As indicated by ref. [3] one need only use the Vs plane for BF reactions while for
all other reactions the use of Vs and s planes give identical results (see eq. (12)).
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s = T2 (or Vs= 7) until the number of unknown equals the number of inde-
pendent scattering amplitudes, for then no additional constraints exist.

While the mathematics of developing this method is not difficult we shall
omit it here (see appendix B for details) and simply state the results. The
Taylor series like expansion mentioned above for the s (c.m. energy) chan-
nel parity conserving helicity amplitude free of kinematical singularities
for the process 1+2 —3+4 (see fig. 1) is:

zn
f)\37\4;)\1)\2(sy 7)

SitSITD = (90 iSi- Ni|Sin- Aq) -
=BE <zz] ]lzyz ) ;(M'Aj)DW"E
D Sij=si+sj ((S’ij"')\i - )‘j)!(sij +)\]- - 7\1:)!)2
D iD
X g M pSapSijLapd) (Vs - Ti)= , (1)
]
where:
A=A1-Ag, =23~ 24, S; = spin of ith particle ,

= (-)JP (J = total angular momentum, P = parity) ,

£=S;5-(S;+S) ,

efmA3-M)  for 4,5 =3,4,

B = phase factor = .

e tT(A1-22)  for ,j=1,2.
D = 0,2,4,6,---7

T;z; = symbol for any one of the four possible thresholds or pseudo-
thresholds of particles 4,7 (7,7 can be 1,2 or 3,4). Thus Tij =
= (mj = my).

gf.’ T) = the 7th term in the expansion and is a function of its arguments
where a, b refer to the two particles whose threshold or pseu-

ms.S3.M3 Mg, 54.14

—
t Channe!

my, 4,14 m2.S2.M2

*S Channel

Fig. 1. The kinematics of 1+2— 3+4 where: m, S,\,n are mass, spin, helicity, in-

trinsic parity, Lya(Lg4) is total orbital angular momentum of incoming (outgoing)

particles and P19(Pgy) is center-of-mass linear momentum of incoming (outgoing)
particles.
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dothreshold we are nof studying and L is the orbital angular
momentum.

ap = factor necessary to insure parity conservation. From ref. [3]
we find (ap = @ for 7= + and @y = a- for n = -)

S'+S]'-‘l)

a = z(1-nmm;(-1)7 ), T =my+my ,
3@ m 0TIy 1= mgamy)
= (1= - D3Iy T=mi-mj,
= (-0t ey (@)

for v = 0(3) if S;+S; = integer (half integer).

As indicated above, eq. (1) does not determine the constraints which oc-
cur at s = 0 independently of whether or not m1 = my and/or mg3 = my.
Therefore the results contained in egs. (1), (4) and (5) at pseudothreshold
for m; = m; are only valid when these s = 0 constraints are excluded from
consideration. In appendix C, we discuss the problem of finding these ad-
ditional constraints. For completeness and clarity we list the result: these
constraints at s = 0 for each amplitude such that A, u # 0 are:

~+ N AL T
s, f) =-a
flsM;?\ﬂz( X A u]fhsM;Mkz’

~ : 2 2,, 2 2, >0
az—:t1f(m1 m2)(m3 m4)<0a11 masses unequal ,
. 2 2, >0
=11f(ma-mb)<0, mi=mj, mg#*mp,
=+ if m|=mg = mg=my. (3

Eq. (1) is extremely simple to use in order to find the kinematical con-
straints. Before illustrating this simplicity by studying the reasonably
complicated process 7p —NA, we list two equations (see appendix B for the
derivation) which determine the number of constraints in any process and
the number of terms (i.e., derivatives) that must be included in the expan-
sion of eq. (1) in order to derive all of these constraints.

If M, (M_) is the number of independent amplitudes for 7 = +(-) with
Ags Mp fixed but unspecified, the number of derivatives Np which must be
considered at the threshold or pseudothreshold 7;; of particles ¢,j in order
to determine all of the constraints can be found by solving

n(3+ay)-2 = min (M,,S; +5;-7) , (4)

for n and then setting
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#, n integer
NJ_,=% ’ }ifsi+Sj-v<Mi,

largest integer in n+1, » not integer

(n- 1), n integer

N, = Ji

$ i S;+8;-v =M,
largest integer in n, = not integer

and where N, = 1 means non-derivative constraints, Ny = 2 means first
derivative constraints etc.

Once N. is known the total number of constraints at Tij (again for Ag,2p
fixed but unspecified) C. can be found by

Ci = NxMy - {3(Nx) (Ve - (14 0x) +2(N - D}+ 855, (5
where
1 if min (My, S;+S;-v) = S;+Sj-v and n not integer andn > 1,

;i =
J 0 otherwise,

C, = 0 whenever the right-hand side of eq.(5) is <0 .

The above discussion can be summarized by giving a list of rules for
finding all of the kinematical constraints for the process 1+2 — 3+4 at any
threshold (pseudothreshold) 74j of particles ¢,j where a, b represent the
other two particles (recall that except for BF — BF we can use the s plane).

(i) Using parity conservation and time reversal invariance determine
the total number of independent amplitudes M, for 7 = + and 1 = - with
Ag, Ap fixed but arbitrary.

(ii) Find a; (i.e., @ for n = + and -) using eq. (2).

(iii) Now use M, and oy together with eq. (4) to determine the number of
derivatives, N, which must be considered in order to find all of the con-
straints.

(iv) Next use M, ay, Ny and eq. (5) to find the total number of con-
straints C, that exist at 7;; for A g4, 2p fixed but unspecified.

(v) For each independent amplitude expand eq. (1) with Zp including
the term D = 0 only. Solve this set of equations for all non-derivative con-
straints.

(vi) If N, = 1 expand eq. (1) for each independent amplitude with Zj) in-
cluding only D = 0 and 2. Solve the resultant equations for the first deriva-
tive constraints.

(vii) If N, > 2 expand eq. (1) with Ip now including D = 0,2, 4 and solve
for the second derivative constraints.

(viii) Repeat Ny times this procedure of adding one term to Zp in eq. (1)
and then solving for the constraints.

(ix) After having found all of the constraints at T4 let A4, Xy vary over
all their values consistent with parity conservation and time reversal in-
variance.
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In order to find all of the kinematical constraints repeat steps (i) - (ix)
for each threshold and pseudothreshold.

(x) Use eq. (3) to find the constraints at s = 0 which exist independently
of whether or not my = mg and/or mg = my.

3. EXAMPLES

In order to illustrate this method of finding kinematical constraints and
to show its simplicity, we shall study the two processes p7 — NN and
pm — NA.
(A) pr — NN: Because this reaction involves BB — FF we can work in the
s plane. Usmg parity conservation one easily finds the six independent am-
plitudes: fll 110 fl 1 1100 fl 100’ f___oo
(a) N g’” (normal threshold) Steps (i) and (ii) in the above set of rules
s + - —— _
imply that M, = l(fANANIO)’ M. = z(fANANIO’ f)‘NANOO) and that o, = 1,
a- = 0. Then using steps (iii) and (iv) we have N, = 1, N_ = 1l and C, = 0,
C- = 1. Thus we have no constraints for n = + and one non-derivative con-
straint for n = -. For 7 = - we only need step (v) since N = 1. Using eq.
(1) we have
- (1100|11) o, -
Fapry00 = # =P 1
NN V2

(1000]10) o, -

~ _ Dhutbedl b4 -iﬂ(Xp')\.fn)
Fag00 =P 1T &1 € '

8=
(b) Pg’” (pseudothreshold). We find the same results as at Ng’”.
(c) N?N (normal threshold). Steps (i) and (ii) imply that M, = Zﬁéxpxﬂ,
+ _ b — - sen
f%_;z_)\p)\ﬂ), M. = 20%%)\‘0?\7,’ E'%Kphw) and @, = 0, a- = 1. From (iii) and
(ivy Ny=1, NN =1and Cy =1, C. = 0. For n = + we only need step (v)

m(AN-AN
gl ’ B=ez‘n(N N)

(d) PNN (pseudothreshold). We find the same results as at NNN
= +(-) 1s replaced by n = -(+) everywhere.
(e) s = 0. Using eq. (3)

except

o+ P
-f 11 =7
2

Therefore we can summarize

1

i_
2 2
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at Ng’ﬂ:
- 1 .-
- %%10(8) = Ef%%oo(s) b
Tii10(8) == F1_100(8)
3310 =757 4-100
at Pg’”: same as N
at N;\m:
~+ _m1 et
f_é_ilo(s)_ zf%-%IO(S)
at s = 0 (also PEIN if myy = myp)
F ) <07 1
%%10(8) - -\/—Z_fl llo(s) \/éf—é__l 10(8) H

f%_é_oo(s) :%f:_LOO(S) .

3%
These results agree with the method of invariant amplitudes [7].
(B) pm — AN: As in example (A) we can use the s-plane. In th1s case we
have 12 independent amplitudes (fAAANIO’ f)\A)\NOO y Ap = £, 3, AR = 3,-%).

(a) Np *" see example (A), part (a).
() Pg’ see example (A), part (b).
(c) At the normal threshold NSAN of AN we have

a, =1, ciN -2, N,=1, M, =4,
a =0, cAN_ 4 N.=2, M. =4.

That is we have for n = +, 4 independent amplitudes, with two non-deriva-

tive constraints and for = -, 4 independent amplitudes with four constraints

which are a mixture of non-derivative and first derivative constraints. In-

stead of writing down all of the appropriate equations from eq. (1) we shall

simply list a typical example for finding the derivative constraints:

f =8 [(%3%'%]21} 0,- " <§s2'; ’21> 2,- +<%:23_;%‘%{11> 2,-
$a0 6 &2 76 & &

292

A
X (s- mN+MA)2 +{terms of order (s- (my+ MA)Z)Z}J .

(a) At the pseudothreshold PAN o AN we have the same solutions as in
(c) except 1 = +(-) is replaced by n = =(+).
(e) At s= 0 we have from eq. (3)
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=+ s
7t,410= 4,410
s -
4410 =+ 71,410
Summarizing:
At Ng’”:

1~
74,4101 = 57,400 »
711 (S)=-1“~; 140(8)
27210 2727200

At PQT same results as NO7.
At NN (for a, = {)

- - _—1_ - _ ~
73 4,0 -f%_éhpo(@ =57 10 =57

(non-derivative constraint) ,

B0 1-30,0 * Yt 051000

= finite,
[s-(mp+ mN)z]

(first-derivative constraint) ,

1
V3 73200

At PSA:N have same results as NAIS V except 7 = +(-) replaced by 7 = -(+)

everywhere.
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At s=0:

+
%% 10(8) = f;’é‘lo(S) s

2
73 110(8) = F1_14n(9)
3-310 3-3104

Fi110(8) = Fr1y0(8)”

1
2

I would like to thank Dr. F. Henyey for many helpful suggestions and
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APPENDIX A

This paper shall be concerned with the process 1+2 — 3 +4 where we
define (see fig. 1)

t=(P3-Pp?,
s=(Py +P2)2 = (c.m. energy)2 s

u= (P4-P1)2 ,

Ni’j = w+(m;+m;) P - w+(my;-m;)
wt = i+, wt " i~ ",
NM;Z =w - (m;+my) , Pu;z = w=(m -my),
N;’] =s-(my +m]-)2 (normal threshold) , i,j=1,2o0r 3,4,
PSZ] = 8- (m;-m; ) (pseudothreshold) ,
1,2 51,2 4 53,4
PO O i
1 o/s T

23t+82-s2m2,+(m2— mz)-(mz—m2

)
PO T

N1,2 12 34 34 ’

zZ= costg =
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sin 65 =

2

4
o(s, 1) = st (2 m?- s-1)- S(mg' mi)(mi' mg)- ‘(’”?{' mg)(mg' y)

1
- (mzmz— m2m2)(m2+m2— m2 - m )
174 3 4~ Mg Mgl
where in order to simplify phase problems we have chosen the same scat-
tering angle as ref. [2] (see fig. 2) and where (s, ¢) = 0 is the physical
boundary of the scattering process [8].

—_— -
)z 2
¥4

Fig. 2. Phase convention for the process 1+2 — 3 +4.

We shall study the problem of kinematical constraints using helicity am-
plitudes. Since these amplitudes do not possess a definite parity [1], we
shall follow the common practice [9] of taking linear combinations of the
helicity amplitudes such that the resultant is an amplitude of definite n par-
ity @ = (-)YP where J= total angular momentum and P = parity). These new
amplitudes are called parity conserving helicity amplitudes and are defined
by:

71 (5,00 = 08 cos o))" M vz singgon Ml 1

Agr4,)1h2 Agrg A 1Ay

+ g mg(- 1 max S35 005 (16))” e

- A+p l
where
n; = intrinsic parity , A=A1"29,
S; = spin , L=XA3= Ay .

If we assume the usual partial wave expansion for the helicity amplitudes:

o]
- J J
fA3A4,A1A2(s,L‘) = Zo) (27+ 1) (TMgAg [P M) (6)
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and insert this into eq. (6}, we shall find [9] that:

7 J,M
st_Z)2J+1e Z)(TMrgrg | F T | aMrqng)
Figrgapg® D =2 @I+ DS (2) Mg [FT|TM
J- J(-
eML(Z)(JMA3>\4|F ( mlJM)\l}\g}, (N
where, following ref. [9], we have made the following definitions:

<JMx3x4\FJ’"]JMx1>\2> = (A37\4|FJI7\1>\2)

Sq+S4- J
+ T]T)3’I74("1) 3+4 V(')\3-?\4]F l)‘1>‘2> , (8)

eiﬁ(z) - 12 cos 6)” M (v sin@ ) I""“d;{u(e)

oM Pmax 318 cos o) V¢ 2 s @l @), @
Z =cos 0,
Ama_x= max(lh{’ |U~|) ’

with the J and M suppressed on the right-hand side of eq. (8) for conven-
ience.

Finally for later reference we list two useful formulae [9-11]:

(T ) (A ) )2
thu(g)zﬁ (J+>\I:;§)!(J.x$?$g [cos (6)] [Sm(ze)]“ ff“xb) (Z)’ (10)
(a,b) (@) T o) m
a, __lawm)! a+bin+a
PJ’hmax(Z)_ (a+b+n)In! az=>0 2%(g+q)! (a> (z-1%, (11)
@ = Amax~ *min) » g = e M- u),

b = (Amax +Amin) »
n=dJdAmax ;

where we have followed the phase conventions of ref. [10].
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APPENDIX B

Threshold and pseudothveshold constraints

In this appendix we shall derive eq. (1) which contains the information
necessary to determine all of the kinematical constraints at threshold and
pseudothreshold for the process 1+2 — 3 +4. We shall use the general ap-
proach of Jackson and Hite [3] who showed that factorizable kinematical
singularities occur because of the mismatch between the zeros of F¥ and
the poles of the d¢ A (6)(see eqs. (10) and (11) which imply that

d;\]“ ~ aIZJ max+a22‘] Pmax”1,

where the a are analytic). Jackson and Hite [3] (and Henyey [3] for the case
of baryon-fermion scattering) showed that for all masses unequal the scat-
tering amplitude free of factorizable singularities, FM, can be defined by:

A (s, 1) = (Nl 2) (Nl 2) w(Plz w(P1,2> w

}x37\4 by )\2
- B
(32 () () T (52)

> sz(‘?\l + l ul)ifxg)q Alkz(s’t) , (12)
where

N = 51+S2-Amax-$(1-mma(- 151527

N = S1+S2~ Mmax - (1= myna(- 1) 517527%) |

"‘P:U = §1+S9= Amax - 5(1-Mna(- 1)S17527Y) |

%P =51+ Amax - 5(1-mmyma(- 1) 51927

BN;) = S3+S54- Amax- 2(1- mang) (- 34

oY ;—53+S4 Amax - 3(1- nm3na(-1) 537547Y) |

B

Sa-Syp-
P;) = Sg+S4 - Amax = 2(1-mmgng(-1) 3747y

- -S3+54-
BPw = S3+S4 - Amax - 2(1- mmgng(-1) 3547y

and where
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v=0E) if S; +S; integer (half integer) ,
>‘rna.x = max (A’ FL) s

X=Xy-2g,

po=A3-2g .

For a typical value of s the number on unknowns on the right-hand side
of eq. (6) is greater than the number of independent helicity amplitudes and
thus no relations exist among the different amplitudes. However at thresh-
old and/or pseudothreshold the existence of kinematical singularities sepa-
rates the unknowns into groups according to their degree of singularity.
Multiplying eq. (6) by the appropriate terms (see eq. (12)) to remove all
factorizable kinematical singularities and setting w equal to its values at
some threshold which we want to study, say (m;+m ), only the coefficients
of the worst singularities survive (see below). In many cases the number of
unknowns now left is less than the number of helicity amplitudes so that we
have constraints among the amplitudes (called non-der1vat1ve constraints).
Repeating this process but dividing by (w - (m;+ m])) (we use the square
instead of a linear term because of parity conservation [3]) before setting
w = m;+m; we have not only the coefficients of the worst singularities sur-
viving but also the coefficients of the next worst singularities; if the num-
ber of unknowns in this case is still less than the number of amplitudes we
have first derivative constraints. We can continue this process until the
number of unknowns is greater than or equal to the number of amplitudes.

In order to develop this idea more precisely first replace the helicity
wave functions of eq. (6) by L-S wave functions [1]:

{JM)\)\ )— > |/2s (SA X |2 SN = NLO|IN=A;) [TMLS)

lJMLS) = 2 (SlmZS]m]|SZ]mZ+m])(SZ]mzm]Lm |Jm+mi+mj> |mezm]) R

mi,mj (13)

Sz]=Si+S" M=m+mi+mj,

= projection of S; onto Z-axis ,

which yields:

]?;7 RS (s,t) = 2 (Sl)\182-7\2|512A1-k2>(312K1-7\2L1201J7\1—7\2>
34454142 J L19.S
120212

X 27 (S3A3Sa~Ag|S3arg-rq)(S3ar3-rgL340|Trz-1g)
L34,534
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J+ Jn J- J(=n)
Xie. F + e Z) F
rul? (L12,L34,512:534,5) W() (L19:L34,512,534,9)) ’ (14)

where F(Lyg,L34,519,534,5) is shorthand for ([(2L1g+1)(2Lgy +1)]/
[(2512 +1)(2S34 + D])Z X (IMS34L34 | FY | TMS12L12) and Syj = S; + ;.
Next using eqs. (9), (10) and (11) plus the definition [9]
_J+ J-
eA“(Z) - eA.H.(Z) + eA.‘LL(Z) H
one can easily derive that:

@ ~inep)
J 2J

e = 1
A (T max) (T + Amax)! (T Amin) (T + Amin)1)E

I Mmax (T Aa) @~ Amax = 1.« (T = Appax -1+ 1
J-A -n max . e n+ )
A [Z e @I~ 1. aT-nel)

n=1 n-1

" [T G-2pin®) [] @T-w)
% 2 6=0 w=n

n=0 (n-m)tni27(-1)1+

} , (19

where the term in the square brackets is by definition equal to zJ"Mmax jf
n = 0. And finally, using Racah's equation [12] and a moderate amount of
algebra we have for m an integer:

(m!(ZJ- 2S +m) (2 + 1)(2S - m)!)%

(S\,J - S+mO|JN) =

2J+m+1)!
v-1 m-1
2o | DY TTS+1-0) T (S-2-%)
x( (J-S+m)! (J+x)!(J—x)!>2 > £=0 y=v
(J- (T - S)! (S+A)!(S-A)! =0 m-v v ?
(m-v)! I‘g (J-S+n) Bﬂl (J-S+8)
’)7: =

(16)

where by assumption
n-a n
[T PW=1, [[P® =P, a>0.
n n

For clarity consider explicitly particles ,j(¢,7 = 1,2 or 3,4) and substitute
eqs. (15) and (16) (with S = Sijs A= A4" )\]-) into eq. (4) and collect terms in
powers of A;-A; (note that for any # in éq. (15) the possible powers of A,y
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are the same as for Apjn So that the expansion form is independent of
whether (A;-2;) = Amax Or Amin):

f_" (s) = 8 > <Si>\isj - 7\]‘ lsz'j)\i - )\]> i
A'3>L4:’)‘1}\2 Sl] ((S'L] +7\l~- )\])'(SZ]-F}\]-AZ)')E

J-Amax 2(SZ'+S]-) e
+
x 2 Z (}‘i_}‘j) a " (g Ab!sabysij: Lgps J, 2) , (17)
n=0 m=0

where o " is some complicated function of its arguments; a, b refer to the
other two particles besides %,j; the sum over m goes from zero to 2(SZ-+S]-)
because the ELz‘j in eq. (14) includes values of Ljj from J- (S;+S;) to

J+ (SZ-+SJ-); and Zsij extends only over those values of Sij which can couple

[12] to L = J-(S;+S;) +m+a to give L +S = J. For the definition of 8 (see
eq. (1). From above we know that eq. (17) has kinematical singularities
which can be removed [3] by multiplying by K(1,2, 3,4, w, s), where
K(1,2,3,4,w,s) is symbolic for the terms in the brackets of eq. (12). Using
eqs. (9) - (11) and assuming the usual threshold behavior, FY < PL where P
is the linear momentum, one can easily see that the scattering amplitude
has a zero [3] of order Lj; = J-(S;+5;) + m+a (m positive integer) and a
singularity of order J- Ay 5x~ % (# positive integer) and therefore the de-
gree of singularity at threshold (pseudothreshold) is

(J-Amax-" - (- (SZ-+Sj)+m+oz) =5;+8;= (D+@) =My »

D=wm+n,

a ={(1) depending upon parity conservation (see eq. (3)) .

Because for any D, m =0,1,2,...D, any value of S;; will contribute to at
least one and usually more than one term in the summation of eq. (17) for
instance S;; = S; +S; contributes to all terms in eq. (17) while (if @ = 0)

Sij = S;j+S;j- 1 contributes to all terms except for m = 0 because S;+5;- 1
cannot couple to L = J- (S; +S]-) to give J. Noticing that the coefficients of
a”" in eq. (17) are only functions of Sij for fixed S;, S;, 24, A5, we can easi-
ly see that for these four quantities fixed and for any fixed D the set of all
a”; " with the same value of S;; act effectively as just one unknown function.
Therefore eq. (17) becomes:

(s) = K(1,2,3,4, w, 5) F (s)

#1
AgAg,A 1A 324,A102

D+a,,~&

Si+S;-D-a
ICHOYCTED FRITD WED P
=52 é "o ].ZJZ ) (7\1"7‘]’) n

T
D Sij=si+sj ((Sij +X;- )\j)!(SZ'j +)x]- R E

1
XgSDi;."(RaKbSabSijLabJ)(\/g'Tij)z , (18)
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where D = 0,2,4, ... because of parity conservation (L must change by 2),
Esij is restricted to those values of S;; which can couple to L= J- (SZ-+S]-) +

+D+atogive L +S=J, gSDz"jn is the sum of the ™" of the same S;; men-

tioned above and 7;; is symbolic for any one of the four thresholds:
+(m;x m]-). This is eq. (1).

As an aid in using eq. (18) we shall derive an equation for determining
the number of 'derivatives' which must be investigated in order to find all
constraints (recall that first derivative means including those terms whose
singularities are of the second highest degree as well as those of the
highest order; second derivative implies including terms whose singulari-
ties are of the third, second and highest order, etc.) and we shall also de-
termine the total number of constraints for any two-body scattering pro-
cess. Recall the important qualification discussed following eq. (2).

As before, consider any threshold or pseudothreshold of particles i, j(we
shall not include any of the constraints at s = 0 which occur independently
of whether or not m; = m;, i.e., whether or not pseudothreshold is also at
s = 0). Let M, be the number of independent amplitudes for n = + and A4, X,
arbitrary but fixed. From eq. (18) we can see that the D = 0 term intro-
duces (1+a) unknowns since when D = 0 only Sij = S;+S; or S;+S;- 1 (if
a # 0) can couple to the minimum value of Lto give J. If M, > (1+a) then
there are constraints among the f77‘73)\ 41D at Vs = Tij (non-derivative con-

straints) because if Vs = 74 all of the terms but D = 0 vanish and we then
have M, equations in 1+« unknowns. Since D = 2 introduces (1 + a + 2)

more unknowns, if M, > (1+a)+(1+a+2) we have more constraints (first
derivative constraints) at Vs = 74j because dividing each f{?3>\4,7\1>\2(s) by

(Vs = 74j) and then setting Vs = 7;; leaves only the D = 0, 2 terms (there is
no trouble with the singularity in the D = 0 terms because via non-deriva-
tive constraints we know how to take combinations of the f to cancel these
singular terms). Similarly if My > (1+a)+(1+a+2)+(1+a+2) we have sec-
ond derivative constraints, etc. This procedure continues until we have the
number of unknowns = My or until D > S; +S]- because then the introduction
of larger D does not introduce more unknowns into eq. (18) (i.e., the num-
ber of spins in Zg;; cannot become larger). A simple counting procedure
will yield eq. (4).

In order to find the total number of constraints add up the number of
constraints for each value of D which gives constraints (e.g., if Ny = 2 we
have (M, - (1+a)) + (M, - (1+a+1+a+2)) constraints). This procedure gives
eq. (5). The §Z-]- is added because if for D = D the Esij in eq. (18) extends

from S;; = §; +5;j to |Sz‘ - Sjl +1 and we still have M; > number of unknowns
(i.e., we have constraints for D = D) and we then let D become Dg+2, in-
stead of introducing 1+ +2 new unknowns we introduce only 1+a+1 because
there is only one new spin which can be included in Esij; therefore we have

one less unknown than is normally true and hence only one extra constraint.
Finally note that eqs. (13), (17), (18) imply that gg_{q:‘* ¢gg;:'7=' at
i ij
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at Vs = 7;; because the values of Li]- (i.e., m) differ and therefore we do not
expect any constraints between amplitudes of opposite 77 at Tij = Vs.

APPENDIX C

s = 0 constraints

In this appendix we derive the constraints which occur at s=0 independ-
ently of whether or not a pseudothreshold also happens to be at s = 0. We
find that while eq. (1) only gives constraints among amplitudes of the same
1, the s = 0 constraints are between opposite 1 amplitudes. In order to find
these constraints, we use eqs. (8) and (12) to write down the amplitude free
of kinematical singularities at s = 0 for the case of all unequal masses:

2(|7\‘+‘ ul)f}*s}\tl 7\1)\2(8) = s%(‘)“”L '“l) s-%(l)\- 6“!)(term finite at s = 0)

@Ml o2t D porm pinste at s 0y, (21)

2) >0

4’ <0
(adopt the convention of choosing positive square roots in definition of

cos fg). If x and 11 # 0, then either the first or second term is zero depend-
ing upon the sign of € and relative sign of A, 1; therefore f>\3)\4 7\1}‘2

where € = + 1 if (cos 0)¢_g = # 1 which is true if (m?- mg)(mg- m

f7(\3)\)4 Ao at s = 0 for A, u # 0. This result is called a conspiracy be-

cause we have a constraint between amplitudes of different quantum num-
bers. If A and/or u = 0 eq. (21) becomes
s+ u ) 7

fA3A4 }\,1)\ (S) = (finlte term at s = 0)

+ 7 (finite term at s = 0) ,

which implies that 7/ are independent. Using eq. (13) and the fact that at s =0
no restrictions are put on L12, S12, L34, S34 (other than Ljo+ Syg =

= L34 +S34 =J) one can see that if the A's differ for two amplitudes the am-
plitudes are independent at s = 0 regardless of whether or not X or u = 0.

We can therefore summarize our discussion of constraints by saying
that for each amplitude such that A, 1 # 0 we have

~. pe }\Ii g
A s) = -
arpe™ |ML| Mgl
d=+if (ml- mz)(m3 - my) Z 8 all unequal masses

:tif(mi-m%)zg, m,=m

i j ma;émb

+if my = mg = mg = my . (22)

This is eq. (3)
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