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Al~raet--The paper discusses an adaptive pattern recognition program that learns to recognize coded line 
drawings, and to describe the structure of the pattern by giving the hierarchical organization of its subparts, and 
the spatial relationships between them. Emphasis is on mechanisms that allow learning (directed by feedback 
from a human trainer), and on the methods of abstracting, storing, and retrieving chunks of graphic information 
for use in subsequent pattern recognition and description. Some similarities to the perceptual process in humans 
are noted. 

1. INTRODUCTION 

MUCH pattern recognition research has been oriented towards the problem of categoriza- 
tion-assignment of one of a fixed set of names to a given pattern. The program described 
herein is a result of work on what we feel is a more difficult problem--producing a structural 
description of a pattern. 

By a structural description, we mean an explanation of what the meaningful subpatterns 
or elements of the pattern are, how they are related to each other, and how they group 
together to form higher level meaningful subpatterns. This is the sort of thing that people 
do every day in describing a visual scene to someone else, but little is known about the 
processes they use, even in the simple case of a static line drawing. 

We feel that the ability to construct such descriptions is important to a pattern recognizer 
for two reasons. Firstly, an internal hierarchical representation of the structure of the pattern 
allows the same recognition process to operate iteratively on higher and higher levels of 
representation as recognition progresses, thus increasing the complexity of the recognition 
without increasing the complexity of the process which performs it. Secondly, output of a 
structural description (as opposed to a single name) allows meaningful feedback to be 
generated. 

Our primary methodological viewpoint is that, when a problem solving program is to 
perform tasks of the order of difficulty of human perception, the reasonable thing to do is 
endow the program with the ability to "learn" the desired behavior from one who knows 
how to do it. The production of a "tentative" structural description of a pattern provides a 
trainer with material from which he can infer how the program arrived at its answer and 
what it needs to do better next time. Proper feedback then allows the program to modify 
itself and improve its performance. 
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The program we have developed is the outcome of attempts to program such an adap- 
tive process in the area of pattern recognition and to explore ways of representing data 
and ways of organizing a growing memory. It is written in SNOBOL3, an interpretive 
string manipulation language, is quite long, and is by no means efficient. Nor has it been 
tested on a substantial number of patterns. Many crucial parts of the program are filled 
with stopgap measures. 

But the program does give structural descriptions of patterns, can be trained in the 
above sense, develops a set of pattern characterizers that is hierarchically organized and 
can grow almost indefinitely, and in general exhibits several kinds of behavior which we 
are inclined to call "learning." 

The following sections describe the data structures and operation of the program, and 
include examples of output descriptions and training sequences. Figure 1 shows a small- 
scale and slightly idealized sample of the kind of behavior the program exhibits: 

Input: 

Output: 

Feedback : 
Output : 

Feedback : 
Output : 
Feedback : 
Output:  

FIG.  1. 

THERE IS A (SMALL SEMICIRCLE TO THE LEFT OF SMALL 
SEMICIRCLE) ABOVE A L O N G  S T R A I G H T  LINE 
CIRCLE ABOVE LONG S T R A I G H T  LINE 
THERE IS A CIRCLE (CONSISTING OF  SMALL SEMICIRCLE 
TO THE LEFT OF  SMALL SEMICIRCLE) ABOVE A LONG 
S T R A I G H T  LINE 
CIRCLE ABOVE STRING 
THERE 1S A CIRCLE ABOVE A STRING 
BALLOON 
THERE IS A BALLOON (CONSISTING OF  CIRCLE ABOVE STRING) 

S a m p l e  o f  d e s c r i p t i v e  a n d  l e a r n i n g  b e h a v i o r  o f  p r o g r a m .  

It should be pointed out that the program is designed to handle patterns of much 
greater complexity than this example, including patterns with more than one object, i.e. 
with several non-contiguous groups of strokes. 

2. DATA REPRESENTATION 

Input 

With the following limitations, the program attempts to handle any line drawing, that is, 
any pattern made up solely of thin lines, black on white. Input to the program is not the 
line drawing itself, but a coded abstraction of the drawing containing much less information 
than the original. The drawing is digitized in the usual manner, i.e. projected on a grid, 
100 × 100, a cell in the grid being considered black if any line passes through it. Then the 
digitized image is segmented, at least at every line intersection, and possibly more often, 
in order to turn the picture into a network of straight lines and arcs. This is done by hand, 
but could be done by a curve-following device (e.g., KAZMIERCZAK ;(5) SHERMAN(12)). Each 
of these "primitive strokes" is then coded as a triple of numbers, the numbers being 
measures of the slope, length, and curvature of the stroke. The precision of this coding can 
be varied, but there can be no more than nine values on each scale. 

Next, the smallest possible rectangle is drawn about each stroke, and each stroke is 
given a serial number. Input to the program is a list of stroke descriptions, each description 
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containing serial number, grid coordinates of the circumscribing rectangle, slope-length- 
curvature code, and the numbers of all other strokes which it touches. A stroke description 
has an internal format which looks like: 

4 - -  0 4 0 9 0 9 0 6 , 2 3 0 . T . 3 , 5  

which says that stroke 4 lies within the rectangle whose left edge is at 04, right edge at 09, 
top edge at 09, and bottom edge at 06; that it has slope of 2, length 3, and curvature zero ; 
and that it touches strokes 3 and 5. This coding is highly redundant, but the redundancy 
simplifies subsequent pattern matching. 

\ \ \  
7 6 5 4 3 2 1 0 

Slope 

actual code 

1 1 
2-3 2 
4-8 3 
9-20 4 
21-99 5 

Length 

25: 

2C 

15 

1( 

B) 

1 
r-] 

J! 
I I 
i I 
I I 

-- -- -J h . . . .  ,"I 

4 ~ . . . .  j F - - -  

0 . . . . .  5 . . . .  i 0  . . . .  ~ ' ' ' ~ d  

SAMPLE LINE DRAWING, SHOWING BOUNDING 
RECTANGLES AND STROKE NUMBERS 

3 4 0 1 2 

Curvature 

I=I0101916,420.T.2,3 

2=I0151513,034.T.I,3 

3=06101506,340.T.I,2,4 

4=02050504,230.T.3,5 

5=02020400,430.T.4 

A) THE STROKE CODING SYSTEM C) CODED FORM OF THE DRAWING 

FIG. 2. The scheme for encoding line drawings. 

There is fairly good evidence (see, for example, HUBEL;(4) BARLOW,(2) and LETTV1N, 
MATURANA, MCCULLOCH and PITTS (6) that in animals, and presumably humans, the net- 
work of neurons in the retina, lateral geniculate, and the early stages of the visual cortex 
performs a comparable abstraction of an input pattern, i.e. reduction to lines and contours, 
and coding of attributes like position in the visual field, orientation, length, and curvature. 
This, we think, is support for the proposition that preprocessing of the type assumed by the 
program does occur in human pattern recognition. 
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The only assumptions made on the preprocessing (which hopefully could also be 
accomplished by a computer program) are that patterns be segmented in a consistent 
manner, with breaks at least at every line intersection, and that the number of "discernible" 
degrees of slope, length, and curvature is not more than nine per attribute--as suggested 
by the ability of human subjects to make absolute judgments as to these aspects of a 
pattern (MILLERtS)). Such coding thus defines the "smallest perceivable unit" for this 
program as an uninterrupted line segment, described to a certain precision as to slope, 
length, curvature, and position in the input pattern. 

Relations 

One of the problems in the design of an effective pattern recognition program is selection 
of the set of relations used to describe the ways the individual pattern elements are to be 
combined. This problem is one of those that our program was designed to investigate, and 
we have adhered to the philosophy that such a set is best acquired during real pattern 
recognition experience--with the program selecting relations which occur in the patterns 
themselves, and developing from these a set of useful ones. 

The program works with an expanding set of binary spatial relationships between 
objects. For definiteness, let us refer to them as S-relations. The S-relation between two 
pattern elements is simply the relative position of the rectangles which surround the two 
objects, and is defined as the quadruple of signed numbers formed by subtracting cor- 
responding coordinates of the two rectangles. To give a little more power to this relation 
format, tolerances are allowed on these relative differences--there is room in the relation 
format for both a minimum and a maximum value for each signed number. S-relations 
may be given names; internally they are referenced by serial numbers (e.g., R2, R37). 

An S-relation is represented internally as in the following example: 

3.3,0.9,- 1 .1 , -40 . -  1,ff 

If this relation were numbered R7, then if an object A is to be in R7 to B, (the left-most 
coordinate of A minus the left-most coordinate of B) can be at least 3 and at most 3, 
(the right-most coordinate of A minus the right-most coordinate of B) can be at least 
0 and at most 9, and so on for top and bottom. If the relation has a name, the name 
replaces the asterisk. 

This system seems to be general enough to express familiar spatial relations like "above", 
"to the left of, . . . .  enclosed by," "touching at the bottom," and so on, though the English 
names are often so ambiguous as to require a set of S-relations as referent. Moreover, the 
system can express relationships (like R7 above) which have no natural language cor- 
respondent, but which might prove useful in associating pattern elements on the micro 
level. 

As an example of a "meaningful" relation, consider 0.99,- 99.0,- 99 . -  1 , - 9 9 . -  I, 
which defines "under," in the sense that for A to be under B, it must lie completely within 
the left-right boundaries of B, its top must be below that of B, and its bottom must be below 
the bottom of B. 

Certain types of spatial relations cannot be expressed in this format but it has proven 
useful, and general enough to allow the program to produce fairly natural pattern de- 
scriptions. 
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The set of S-relations which the program "knows about," and uses in its descriptions 
of the pattern, is drawn originally from the input patterns themselves, and is modified with 
experience. In this respect, the program is similar to those of UHR (14) and UHR and VOS- 
SEER,(I 3) which also extract their operators from the input patterns. When a new pattern is 
given to the program, the S-relation between each pair of primitive strokes that touch is 
computed and added to the program's memory. Some of these S-relations prove useful in 
generating descriptions which satisfy the trainer, and are retained. Most of them, however, 
are not of general utility, and are erased before the next pattern is processed. Feedback 
from the trainer can cause broadening of tolerances on S-relations, assignment of a publicly 
understood name to them, or generation of S-relations between non-touching objects. 

Thus there are continual additions to and deletions from the set of relations that the 
program uses in recognizing patterns, reflecting both the set of  patterns seen to date, and 
the trainer's guidance. 

Memory 

The memory of the program consists of these relation definitions, and a set of "in- 
ferences" (so called because they are used to infer the existence of a familiar subpattern), 
which are template-like chunks of information that represent subpatterns which the 
program has seen before and has found useful. The format of an inference can be sym- 
bolized as: 

OBJECT 1 S-RELATION OBJECT 2 WEIGHT NEWNAME 

The objects involved are either numerical codes for primitive strokes, or names learned 
through feedback for primitive strokes, or for a collection of them. NEWNAME is 
either a new name for OBJECT 1, or for a new whole formed by the pair of objects when they 
occur in the given relation. The first of these two renaming possibilities enables the program 
to attach a particular name to a part due to its context, and the second type enables it to 
combine two parts into a whole. The weight associated with the inference is meant to be a 
measure of the degree of confidence with which the program can use the inference. The 
weights are adjusted up and down (from an initial neutral value) by the program on the 
basis of its experience. 

Varients of the scheme used to adjust weights have not been explored in this program. 
This process includes both what we sometimes called "conditioning," where the re- 
weighting function may derive from very complex hypothesized mechanisms, and "appor- 
tionment of credit," where the problem solver that makes use of a large hierarchical network 
of transformations must decide how much credit (and therefore how much reweighting) to 
apportion to each part of the network, as a function of success or failure. The ability to do 
this may reasonably well be a crucial part of any adaptive problem solving program, and 
an appropriate set of rules can be quite complex (see, for example, AMAREL(1)). 

The present weighting algorithm is very unsophisticated, sufficient only to allow the 
weights to change in the right directions: after each feedback session, each inference used 
correctly (to the trainer's satisfaction) in building the description is weighted up by one. 
Those which were incorrectly used are weighted down one. Those not used remain un- 
changed. The current range of weights is 1-9. If the weight becomes zero, the inference is 
erased from memory. 
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The inferences are represented in SNOBOL as strings of symbols, as in the following 
examples: 

44-77-00.R 1.66-77-00/P,9,ANGLE 

Interpretation: If the two stroke types 470 and 670 (the doubling of numbers is a 
tolerance mechanism, explained shortly) occur in R1 in a pattern, they form, with 
certainty 9, an angle. 470 and 670 are both long straight lines, with different slopes. 
The "P" means that the inference does something to the Pair of objects. 

CIRCLE.R42.HAT/F,5,FACE 

Interpretation: If a circle occurs in R42 to a hat, then that circle (the First of the two 
objects), can henceforth be considered a face, with certainty 5. 

Note that the inferences contain no absolute positional information. They can apply equally 
well anywhere on the pattern. 

Original plans were to allow tolerances on primitive stroke descriptions in memory 
(that is, on the slope, length, and curvature numbers) so that an object in an inference 
could be a class of primitive strokes. This would be done by using two digits for each 
attribute--the first a minimum value, the second a maximum. Thus inferences could contain 
things like 07-11-00, which would match a stroke with any slope (0-7), length 1, and curva- 
ture 0, i.e. any very short, straight line. 

Problems arose, however, in trying to develop an algorithm to modify these tolerances 
in accordance with feedback. Therefore, the data structures of the program (and those 
routines which operate on them) were written to allow tolerances in hope of eventual 
experimentation, even though only zero tolerance descriptions are currently used. 

Recognition structure 

As the program makes progress towards recognizing the picture, its developing concept 
of the pattern is stored as a labeled directed graph structure ("graph" being used here in 
the mathematical sense of a set of nodes connected by edges). The base is the network of 
primitive strokes making up the original line drawing, with edges representing the "touch- 
ing" relation. Higher level nodes are constructed on this base by applying inferences to it, 
and those nodes in turn are used to construct still higher level nodes. This process results in 
a more or less pyramidal structure, with the highest node of the graph being the name of 
the pattern which said graph represents. Lower nodes are names of subordinate objects, 
while edges represent part-whole relationships, contiguity relationships, or spatial re- 
lationships. Internally, each node is represented by a list element containing pointers to 
sub- and super-parts, and a pointer to the inference which was used to create the node. 

Such a structure is a detailed representation of a visual concept, in a form particularly 
well suited for transformation into a structural description of the pattern. In particular, 
the hierarchical nature of the structure makes it easy to vary the amount of detail in the 
description. 

3. PROGRAM OPERATION 

Having considered the data structures used by the program, let us turn to how these 
structures are built up and used. 
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After input of the pattern, program operation is an iterative process of "recognizing" 
the pattern, describing it as well as it can, processing feedback (i.e. learning), then back to 
recognition. 

To motivate the detailed discussions that follow, we will begin with a short example, 
giving input to the program, and the program's response, for a training sequence leading to 
recognition of a drawing of a balloon. For simplicity, we assume the program begins with a 
blank memory. 

\j I=I0101202,440.T.2,3 

2=06102213,441.T.I,3 

3=II152213,444.T.I,2 

ACTUAL DRAWING CODED INPUT 

FIG. 3. Input for the balloon example. 

Program's description: THERE IS A GROUP OF STROKES WITH THE 
FOLLOWING STRUCTURE 
440/1/ IN R1 TO 441/2/ 
AND IN R2 TO 444/3/ 

441/2/ IN R3 TO 440/1/ 
AND IN R3 TO 444/3/ 

444/3/ IN R5 TO 440/1/ 
AND IN R6 TO 441/2// 

(Note that this is simply an expansion of the input pattern graph, with the addition of 
labeled relations (whose definitions the program had now stored) between touching 
strokes--for the trainer's convenience in responding. Stroke serial numbers are set off 
by slashes.) 

Feedback from trainer: (1) IN R1 TO (2) ARE CIRCLE 
(3) IS STRING 

(From this feedback, the program generates and adds to memory the following in- 
ferences :) 

44-44-00. R 1.44-44-11/P,4,CI RCLE 
44-44-44.R5.44-44-00/F,4,STRING 
44-44-44. R6.44-44-11/F,4 ,STRING 
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Program's description: THERE IS A 
CIRCLE/4/ CONSISTING OF 440/1/ IN R1 TO 441/2/ 
THERE IS ALSO A GROUP OF STROKES WITH THE 
FOLLOWING STRUCTURE 
STRING/3/ IN R5 TO 440/I/ 

AND IN R6 TO 441/2/ 
(Note that a new object (CIRCLE) has been found, and that the previously unnamed 
a nA is now called STRING.) 

Feedback from trainer: (4) AND (3) ARE BALLOON 
(This feedback causes the program to generate the S-relation R7 between CIRCLE 
and STRING, and the following inference :) 

CIRCLE.R7.STRING/P,4,BALLOON 
Program's description: THERE IS A 

BALLOON/5/ CONSISTING OF CIRCLE (CONSISTING 
OF 440/1/ 
IN R1 TO 441/2/) IN R7 TO STRING 

Feedback from trainer: (4) ABOVE (3) 
SMAXDEPTH = "2" 

(Here he causes the name ABOVE to be associated with R7, and limits the "depth" of 
subsequent descriptions to two.) 

Program's description: THERE IS A 
BALLOON/5/ CONSISTING OF CIRCLE/4/ ABOVE 
STRING/3/ 

Recognition 

In the recognition phase, the program considers one object at a time, checking its 
memory for elements which have been made out of that type of object (the type of an 
object is its name, e.g., ANGLE, BALLOON, 441) in the past. For each such potential 
new element, the pattern is searched for the requisite context or related object, and then 
checked to see if that object is in the requisite S-relation. 

The problem of finding--in a possibly very large memory--just those inferences which 
might apply to an object (that is, those in which that object type occurs as a component) 
is simplified by accessing memory associatively. The program contains a dictionary which 
associates each object type with a list of pointers to those inferences which might apply to it. 
Given an object in the pattern, the program simply tries out inferences named on this 
pointer list, and does not have to search the entire set of inferences. 

The recognition process starts with the primitive stroke which has the highest number 
of connections with other strokes (this hopefully is an information-rich part of the pattern). 
If no applicable inferences can be found, it simply moves on to the stroke with the next 
higher serial number. If an inference is found that matches the pattern, a new node in the 
recognition structure is created--with the name given in the NEWNAME part of the 
inference, and with a bounding rectangle which surrounds both subparts. For a renaming 
type inference, the new name is simply added to the old node as an alias. 

When an inference matches, the newly created node is made the current object of the 
memory search. Thus if the program puts two semi-circles together to make a circle, it 
will begin trying out things it can make out of a circle. The program tends to keep working 
in an area in which it is having success. 
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This is a departure from a large number of conventional pattern recognition schemes-- 
those which have a rigid recognition strategy which is independent of the pattern. They 
measure a certain fixed number of things about each pattern regardless of the structure of 
the particular pattern under observation. This program moves in the direction of having 
the pattern itself, in conjunction with memory of previous patterns, direct the recognition 
process. 

Once a pattern element has been combined with something else to form a higher level 
element, it remains available for additional combination with other elements, and for use 
as a context object. This means that as the gross organization of the pattern is completed, 
the more detailed organization is still there for reference. Other hypotheses about what 
the pattern is can build on part of the organization contributed by the first hypothesis, 
without having to start over again at the primitive stroke level. In theory, when the program 
"gets off the track" on a particular section of the pattern, it could detect the step at which 
it was mislead, and go back to that step for a new approach. In practice, nothing this 
sophisticated is attempted. Whenever a sub-pattern looks to the program as if it might be 
more than one thing, all possibilities are pursued. The program may make simultaneous 
alternate hypotheses about the input. 

The routine to make the final choice among alternate hypotheses is not yet written, 
and may be quite difficult. There could be many kinds of overlap and conflict in a multi- 
hypothesis structure: two hypotheses about the same area of the pattern, two about 
slightly overlapping areas, a hypothesis based on a very weak inference, etc. The general 
plan is to resolve conflicts using the weights of the inferences used to construct them, and 
the height of the structures which they represent. This may not be enough information to do 
a realistic job of decision making, since essentially it consists only of relative frequency of 
occurrence of the pattern elements. 

One additional mechanism, which was found necessary to avoid repeated application 
of the same inference to the same component of the pattern, should be explained. As the 
recognition process proceeds, the program appends to each object description (each node) a 
list of inference numbers--those which possibly apply, but have been found not to (due 
to lack of the requisite second object in the pattern, or to the two objects not falling in the 
right relation). Thus whenever the program looks at an object, it knows not to try to apply 
a certain set of inferences. Included on this "don't  try" list are numbers of those inferences 
which have been successfully applied to the object. These lists effectively block the program, 
as it goes over and over the pattern, from redoing work it has already done. 

The lists of inferences not to try must be modified as new objects are recognized--- 
since the new object may be the one that the program had earlier looked for and not found. 
This necessitates some complex housekeeping, but probably makes the program more 
efficient in the long run. One of the most time-consuming processes in the program is the 
graph-matching procedure used to check for match of an inference (which can be thought 
of as a two-node, one-edge graph) against the larger graph of the pattern. The pattern must 
be serially searched for all occurrences of the requisite context or second object, and a 
relation check must be made for each occurrence. Thus anything which avoids repetition 
of graph matching is a great help. 

The program continues to cycle through its list of "found objects" (i.e. nodes in the 
recognition structure) until a complete pass has been made without finding any inferences 
which apply to any object. This generally takes many cycles, since the normal course of 
events is for an object found on one cycle to be combined with or used as context for 
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another object on the next cycle. To put it another way, the program reconsiders each 
old object at each new addition. 

Description 

Two examples of the program's output are given in Fig. 4. It is a parenthetically nested, 
structural description of the pattern, which can be varied in depth and detail. Areas of the 
pattern which were not recognized are restated more or less in input form, and linkages 
into those parts of the pattern which were recognized are given. The intent is to give the 
trainer material to work from in composing his feedback, and the descriptions are far from 
polished English. 

- - - T H E R E  IS A - -  
(ANGLE/10/CONSISTING OF 620/6/IN R12 TO 2 2 0 / 7 / ) - - A N D  A L S O - -  
(LANGLE/9/CONSISTING OF 020/2/IN R4 TO 430/3/)----AND A L S O - - -  
(LANGLE/8/CONSISTING OF 430/1/IN R2 TO 020/4/) 
THERE IS ALSO A GROUP OF PRIMITIVE OR RENAMED PRIMITIVE STROKES WITH THE FOL- 
LOWING STRUCTURE 
BASE (5) IN R9 TO 620/6/ 

AND IN R10 TO 220/7/ 

- - T H E R E  IS A - -  
(STICKBOY/23/CONSISTING OF (UPPERBODY/20/CONSISTING OF (ARMS/18/CONSISTING OF 
LEFTARM/13/IN R32 TO RIGHTARM/15/) IN R34 TO (HEAD/14/CONSISTING OF SEMICIRCLE/l/  
TOTHELEFTOF SEMICIRCLE/2/)) IN R35 TO (LOWERBODY/22/CONSISTING OF (BODY/19/CON- 
SISTING OF NECK/1 l / I N  R22 TO TRUNK/12/) IN R33 TO (LEGS/21/CONSISTING OF LEFTLEG/16/ 
IN R31 TO RIGHTLEG/17/))) 

FIG. 4. Samples of the program's description format. The upper example is from an intermediate 
stage in learning to describe a square and triangle pattern, while the lower is the final description of a 

simple stick-figure. 

Feedback and learning 

Feedback is given as a series of simple, fixed format statements, each of which mentions 
one or two of the objects mentioned by the program in its description. The program, with 
reference, if necessary, to its internal concept of the pattern (what we have been referring 
to as the recognition structure), analyzes the feedback and makes Changes to memory. 
These changes consist of addition of new inferences to memory, weighting down of old 
ones, or naming of relations. 

To simplify analysis of the feedback, objects must be referred to by serial number rather 
than by name. This makes the feedback rather artificial looking, but it does eliminate the 
possibly complex problem of determining what the trainer meant when he used an object 
name which occurred more than once in the description. Feedback statements must be in 
one of the following fixed formats: 

(1) (n) IN Rk TO (m) IS newname 
(2) (n) IN Rk TO (m) ARE newname 
(3) (n) WITH (m) IS newname 
(4) (n) AND (m) ARE newname 
(5) (n) IS newname 
(6) (n) relationname (m) 
(7) NO, NOT (n) 

where n and rn are object serial numbers, k is a relation serial number, and relation- 
name and newname are any sequence of non-blank alphanumeric characters. 



A teachable pattern describing and recognizing program 229 

In Formats 1 and 2, the relation to be used in the inference is named explicitly, and must 
already be in the program's memory. This format is used primarily in responding to descrip- 
tions consisting of contiguous primitive strokes and primitive relations. 

In processing Formats 3 and 4, the (zero-tolerance) S-relations between the two given 
objects is generated, added to memory, and then used in the inference. This allows inclusion 
of relations between nontouching objects. 

Format 5 is an experimental one, meant to be a convenience in getting the program to 
rename a primitive stroke due to context. It causes generation of many F-type inferences as 
there are objects touching the given one : i.e. the program will henceforth rename the stroke 
due to any one of its possibly many contexts (using "context" here in the narrow sense of 
"relation to a contiguous stroke"). 

Format 6 is used for naming relations. The program finds the number of the relation 
between n and m, and assigns it the given name. In the event that the program already has in 
memory a relation with this name, it will broaden the tolerance on that relation to make it 
include the new instance. The program is thus able to broaden its concepts of spatial rela- 
tions. It cannot, however, narrow them, or build disjunctive relational concepts. 

Format 7 provides a means of telling the program "no"  on any particular object, i.e. 
that the inference used to create that object was wrongly used, and should be weighted 
down. This is the only mechanism currently available for "extinguishing" the program's 
responses. 

This set of  formats is sufficient for at least crude training of the program, but is still 
somewhat unnatural and restrictive. Two more formats, as yet unimplemented, have been 
suggested to help alleviate the problem. One would be a way to tell the program that an 
object can be renamed regardless of context (e.g. that any stroke with curvature zero can 
be considered a straight line). 

Another would tell the program "Yes, your name for object n is correct, but a better 
name in this instance is - - "  This would provide a way of correcting the program 
without weighting down any inferences. 

The trainer is not allowed to "skip a level" in giving his feedback. That is, he cannot give 
a name to a collection of more than two objects. Confronted with the initial description of 
the earlier example, he cannot simply say "This is a balloon," and let the program figure 
out how to organize all those pattern components into something which will be useful in 
later recognition of balloons. The trainer must work "from the bottom up" in training the 
program. 

In one sense, this is not too unreasonable psychologically. Even humans get confused 
when feedback differs extremely from the way they see it. Prohibition of level skipping acts 
as a kind of "confusion filter," which serves the valuable purpose of preventing highly 
speculative learning. 

4. DISCUSSION 

The work reported herein can be viewed as relevant to numerous problem areas in 
pattern recognition research and artificial intelligence, including pattern description, use 
of a growing system of  pattern inter-relationships, utilization of feedback, abstraction and 
storage of graphic information, organization of pattern characterizers, and learning. 

In view of the reasonable similarity of, the program's input, and some of  its processing 
to certain stages of the perceptual process in living beings, it might be of some value as a 
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conceptual tool in thinking about visual perception--a very limited kind of visual percep- 
tion. It would be premature, however, to call it a good model of the perceptual process. 

The program is similar in some respects to the NAMER program of LONDF. and 
SIMMONS. tT~ Both recognize and generate sentences about line drawings, and both abstract 
concepts which correspond to spatial relationships. There are two major differences. 
NAMER does not produce hierarchical descriptions, being limited to sentences telling 
the spatial relationship of a single pair of objects. Also, NAMER incorporates a non- 
iterative, categorization type of pattern recognition, in which a fixed set of 96 characterizers 
is computed on each of the two input patterns, and a weighted correlation to stored sets of 
values of these characteristics produces the most probable name for the pattern. In our 
program, the set of characterizers grows with experience, and the part-whole structure of 
the pattern guides the recognition process: each new part "recognized" determines a new 
set of tests to be made on the pattern. 

There are many areas for further research that we would like to pursue. One of these is 
to work more on the problem of interfacing programs of this type with the problem of 
comprehending and using natural language. Clearly the pattern description format could 
stand improvements, and the feedback language could be enriched in many ways. It is 
interesting to note, in this respect, that LONDE and SIMMONS (7) have had some success with 
using a simple generative grammar to generate sentences about line drawings. The work 
of UHR (14) is also relevant, and QUILLIAN (11) is currently working on a "teachable" language 
comprehender. 

Another area needing investigation is machine realization of the type of pattern pre- 
processing we have assumed for this program. There may well be significant problems in 
decomposing an arbitrary line drawing into the network of non-overlapping strokes that 
the program requires. 

In our experience with the program to date, the particular inference and relation 
representation used has been quite natural, and not at all restrictive. The attributes of 
slope, length, and curvature, rectangle occupied by the stroke, and the touching relation 
seem to be both sufficient for effective pattern recognition and natural for describing 
patterns. One area which needs further exploration, however, is the difficulties that might 
arise in training the program on a substantial environment of complex drawings. 

One possible limitation is the fact that characterizers in memory are limited to only two 
objects, linked by one S-relation. It seems plausible that some pattern characterizers would 
not fall naturally into this format, either because they involve more than two objects, or 
because the crucial relating function cannot be expressed in the S-relation format. As an 
example of the latter difficulty, consider the intuitive notion of an angle: two straight lines 
(of any length) meeting at a point and having different slopes. The qualities of zero curva- 
ture and arbitrary line length can be represented in an object type, but not the simple 
fact that the strokes can have any slope at all as long as the two are different. This quality 
would currently have to be represented by a large set of inferences, one for each possible 
combination of different slope numbers. Thus a graceful generalization of the intuitive 
notion of angle could not be achieved without using an inordinate amount of memory. 

We believe, however, that a useful class of pattern types can be generalized without 
resorting to such a procedure. In the examples given, there has been only one inference 
leading to a given object type. In the general case, there will be more than one, and in fact 
the ability to represent a concept as the disjunction of several different lower level patterns 
is very valuable. It should be noted also that conjunction of lower level patterns can be 
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handled, though not elegantly, by introducing an intermediate artificial object type: 

OBJECT1 R1 OBJECT2 IS OBJECT# 
OBJECT# R2 OBJECT3 IS OBJECT4 

so that a subpattern is of type OBJECT4 if it is both in R1 to an OBJECT2 and in R2 to 
an OBJECT3. 

It would certainly be desirable to improve the relation system. The program currently 
has no means of narrowing, or making more precise, the definition of a relation, and cannot 
learn or use properties of relations--as does, for instance, the fact retrieval program of 
ELLIOT. (3) 

It should also be noted that, though some of the most impressive features of the program 
are related to learning, learning can occur only on the level of data acquisition and erasure. 
Much more subtle and powerful kinds of learning are conceivable, among them reorganiza- 
tion and reassociation of data, and adaptation of the learning strategy itself, i.e. learning 
to learn. Little work has yet been done on endowing programs with these abilities. 

In conclusion, many writers (e.g. NARASIMHAN, (1°) MINSKY (9) have discussed the impor- 
tance, in the processing of visual data, of the ability to describe patterns, in addition to 
categorizing them. This program has demonstrated ability to produce structural descrip- 
tions of patterns of moderate complexity, to learn a set of names and relations from which to 
build descriptions, to vary the detail of those descriptions, and to do an effective job of 
abstracting and storing "chunks" of visual information, and using them in subsequent 
pattern recognition and description problems. 

SUMMARY 

This paper discusses the structure and operation of a computer program, written in 
SNOBOL3, which learns to recognize-and describe two-dimensional line drawings. 

Input to the program is a coded version of the drawing, in which the drawing is de- 
composed into elementary "strokes", each described by its slope, length, and curvature. 
The program attempts to find, in the coded input pattern, previously learned subpatterns 
of the form stroke-relation-stroke. The recognition procedure is dependent on both the 
prior experience of the program, and the structure of the pattern currently being examined. 
The relations used are essentially classes of relative positions of two strokes, or two groups 
of strokes. 

A structural description of the pattern is produced, using learned names for familiar 
subpatterns and familiar spatial relations, and elementary stroke codes in unfamiliar parts 
of the pattern. A human trainer responds, offering corrections, and naming new subpatterns. 
By analyzing this feedback, the program adds to and revises its memory of significant 
subpatterns and useful spatial relationships, and then makes another attempt at describing 
the pattern. 

Included in the paper are detailed descriptions of the input coding system, the internal 
representation of subpatterns and relations among subpatterns, and of the feedback 
procedures. Samples of actual output are shown, and a short "training sequence," showing 
effects of feedback on the program's memory, is presented. 

The paper points out some similarities between the program's behavior and the per- 
ceptual process in humans, and concludes with a short discussion of possible extensions 
and relationships to other areas of pattern recognition and artificial intelligence. 
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