
Pattern Recognition Pergamon Press 1969. Vol. I, pp. 219-232. Printed in Great Britain

A Teachable Pattern Describing and
Recognizing Program

R. W . S A U V A I N

Department of Computer and Communication Sciences and
Mental Health Research Institute, The University of Michigan

and

L. U H R

Department of Computer Sciences, University of Wisconsin

(Received 24 October 1968)

Al~raet--The paper discusses an adaptive pattern recognition program that learns to recognize coded line
drawings, and to describe the structure of the pattern by giving the hierarchical organization of its subparts, and
the spatial relationships between them. Emphasis is on mechanisms that allow learning (directed by feedback
from a human trainer), and on the methods of abstracting, storing, and retrieving chunks of graphic information
for use in subsequent pattern recognition and description. Some similarities to the perceptual process in humans
are noted.

1. INTRODUCTION

MUCH pattern recognition research has been oriented towards the problem of categoriza-
tion-assignment of one of a fixed set of names to a given pattern. The program described
herein is a result of work on what we feel is a more difficult problem--producing a structural
description of a pattern.

By a structural description, we mean an explanation of what the meaningful subpatterns
or elements of the pattern are, how they are related to each other, and how they group
together to form higher level meaningful subpatterns. This is the sort of thing that people
do every day in describing a visual scene to someone else, but little is known about the
processes they use, even in the simple case of a static line drawing.

We feel that the ability to construct such descriptions is important to a pattern recognizer
for two reasons. Firstly, an internal hierarchical representation of the structure of the pattern
allows the same recognition process to operate iteratively on higher and higher levels of
representation as recognition progresses, thus increasing the complexity of the recognition
without increasing the complexity of the process which performs it. Secondly, output of a
structural description (as opposed to a single name) allows meaningful feedback to be
generated.

Our primary methodological viewpoint is that, when a problem solving program is to
perform tasks of the order of difficulty of human perception, the reasonable thing to do is
endow the program with the ability to "learn" the desired behavior from one who knows
how to do it. The production of a "tentative" structural description of a pattern provides a
trainer with material from which he can infer how the program arrived at its answer and
what it needs to do better next time. Proper feedback then allows the program to modify
itself and improve its performance.

219

220 R.W. SAUVAIN and L. UHR

The program we have developed is the outcome of attempts to program such an adap-
tive process in the area of pattern recognition and to explore ways of representing data
and ways of organizing a growing memory. It is written in SNOBOL3, an interpretive
string manipulation language, is quite long, and is by no means efficient. Nor has it been
tested on a substantial number of patterns. Many crucial parts of the program are filled
with stopgap measures.

But the program does give structural descriptions of patterns, can be trained in the
above sense, develops a set of pattern characterizers that is hierarchically organized and
can grow almost indefinitely, and in general exhibits several kinds of behavior which we
are inclined to call "learning."

The following sections describe the data structures and operation of the program, and
include examples of output descriptions and training sequences. Figure 1 shows a small-
scale and slightly idealized sample of the kind of behavior the program exhibits:

Input:

Output:

Feedback :
Output :

Feedback :
Output :
Feedback :
Output:

FIG. 1.

THERE IS A (SMALL SEMICIRCLE TO THE LEFT OF SMALL
SEMICIRCLE) ABOVE A L O N G S T R A I G H T LINE
CIRCLE ABOVE LONG S T R A I G H T LINE
THERE IS A CIRCLE (CONSISTING OF SMALL SEMICIRCLE
TO THE LEFT OF SMALL SEMICIRCLE) ABOVE A LONG
S T R A I G H T LINE
CIRCLE ABOVE STRING
THERE 1S A CIRCLE ABOVE A STRING
BALLOON
THERE IS A BALLOON (CONSISTING OF CIRCLE ABOVE STRING)

S a m p l e o f d e s c r i p t i v e a n d l e a r n i n g b e h a v i o r o f p r o g r a m .

It should be pointed out that the program is designed to handle patterns of much
greater complexity than this example, including patterns with more than one object, i.e.
with several non-contiguous groups of strokes.

2. DATA REPRESENTATION

Input

With the following limitations, the program attempts to handle any line drawing, that is,
any pattern made up solely of thin lines, black on white. Input to the program is not the
line drawing itself, but a coded abstraction of the drawing containing much less information
than the original. The drawing is digitized in the usual manner, i.e. projected on a grid,
100 × 100, a cell in the grid being considered black if any line passes through it. Then the
digitized image is segmented, at least at every line intersection, and possibly more often,
in order to turn the picture into a network of straight lines and arcs. This is done by hand,
but could be done by a curve-following device (e.g., KAZMIERCZAK ;(5) SHERMAN(12)). Each
of these "primitive strokes" is then coded as a triple of numbers, the numbers being
measures of the slope, length, and curvature of the stroke. The precision of this coding can
be varied, but there can be no more than nine values on each scale.

Next, the smallest possible rectangle is drawn about each stroke, and each stroke is
given a serial number. Input to the program is a list of stroke descriptions, each description

A teachable pattern describing and recognizing program 22l

containing serial number, grid coordinates of the circumscribing rectangle, slope-length-
curvature code, and the numbers of all other strokes which it touches. A stroke description
has an internal format which looks like:

4 - - 0 4 0 9 0 9 0 6 , 2 3 0 . T . 3 , 5

which says that stroke 4 lies within the rectangle whose left edge is at 04, right edge at 09,
top edge at 09, and bottom edge at 06; that it has slope of 2, length 3, and curvature zero ;
and that it touches strokes 3 and 5. This coding is highly redundant, but the redundancy
simplifies subsequent pattern matching.

\ \ \
7 6 5 4 3 2 1 0

Slope

actual code

1 1
2-3 2
4-8 3
9-20 4
21-99 5

Length

25:

2C

15

1(

B)

1
r-]

J!
I I
i I
I I

-- -- -J h ,"I

4 ~ j F - - -

0 5 i 0 ~ ' ' ' ~ d

SAMPLE LINE DRAWING, SHOWING BOUNDING
RECTANGLES AND STROKE NUMBERS

3 4 0 1 2

Curvature

I=I0101916,420.T.2,3

2=I0151513,034.T.I,3

3=06101506,340.T.I,2,4

4=02050504,230.T.3,5

5=02020400,430.T.4

A) THE STROKE CODING SYSTEM C) CODED FORM OF THE DRAWING

FIG. 2. The scheme for encoding line drawings.

There is fairly good evidence (see, for example, HUBEL;(4) BARLOW,(2) and LETTV1N,
MATURANA, MCCULLOCH and PITTS (6) that in animals, and presumably humans, the net-
work of neurons in the retina, lateral geniculate, and the early stages of the visual cortex
performs a comparable abstraction of an input pattern, i.e. reduction to lines and contours,
and coding of attributes like position in the visual field, orientation, length, and curvature.
This, we think, is support for the proposition that preprocessing of the type assumed by the
program does occur in human pattern recognition.

222 R . W . SAovArsand L. Una

The only assumptions made on the preprocessing (which hopefully could also be
accomplished by a computer program) are that patterns be segmented in a consistent
manner, with breaks at least at every line intersection, and that the number of "discernible"
degrees of slope, length, and curvature is not more than nine per attribute--as suggested
by the ability of human subjects to make absolute judgments as to these aspects of a
pattern (MILLERtS)). Such coding thus defines the "smallest perceivable unit" for this
program as an uninterrupted line segment, described to a certain precision as to slope,
length, curvature, and position in the input pattern.

Relations

One of the problems in the design of an effective pattern recognition program is selection
of the set of relations used to describe the ways the individual pattern elements are to be
combined. This problem is one of those that our program was designed to investigate, and
we have adhered to the philosophy that such a set is best acquired during real pattern
recognition experience--with the program selecting relations which occur in the patterns
themselves, and developing from these a set of useful ones.

The program works with an expanding set of binary spatial relationships between
objects. For definiteness, let us refer to them as S-relations. The S-relation between two
pattern elements is simply the relative position of the rectangles which surround the two
objects, and is defined as the quadruple of signed numbers formed by subtracting cor-
responding coordinates of the two rectangles. To give a little more power to this relation
format, tolerances are allowed on these relative differences--there is room in the relation
format for both a minimum and a maximum value for each signed number. S-relations
may be given names; internally they are referenced by serial numbers (e.g., R2, R37).

An S-relation is represented internally as in the following example:

3.3,0.9,- 1 .1 , -40 . - 1,ff

If this relation were numbered R7, then if an object A is to be in R7 to B, (the left-most
coordinate of A minus the left-most coordinate of B) can be at least 3 and at most 3,
(the right-most coordinate of A minus the right-most coordinate of B) can be at least
0 and at most 9, and so on for top and bottom. If the relation has a name, the name
replaces the asterisk.

This system seems to be general enough to express familiar spatial relations like "above",
"to the left of, enclosed by," "touching at the bottom," and so on, though the English
names are often so ambiguous as to require a set of S-relations as referent. Moreover, the
system can express relationships (like R7 above) which have no natural language cor-
respondent, but which might prove useful in associating pattern elements on the micro
level.

As an example of a "meaningful" relation, consider 0.99,- 99.0,- 99 . - 1 , - 9 9 . - I,
which defines "under," in the sense that for A to be under B, it must lie completely within
the left-right boundaries of B, its top must be below that of B, and its bottom must be below
the bottom of B.

Certain types of spatial relations cannot be expressed in this format but it has proven
useful, and general enough to allow the program to produce fairly natural pattern de-
scriptions.

A teachable pattern describing and recognizing program 223

The set of S-relations which the program "knows about," and uses in its descriptions
of the pattern, is drawn originally from the input patterns themselves, and is modified with
experience. In this respect, the program is similar to those of UHR (14) and UHR and VOS-
SEER,(I 3) which also extract their operators from the input patterns. When a new pattern is
given to the program, the S-relation between each pair of primitive strokes that touch is
computed and added to the program's memory. Some of these S-relations prove useful in
generating descriptions which satisfy the trainer, and are retained. Most of them, however,
are not of general utility, and are erased before the next pattern is processed. Feedback
from the trainer can cause broadening of tolerances on S-relations, assignment of a publicly
understood name to them, or generation of S-relations between non-touching objects.

Thus there are continual additions to and deletions from the set of relations that the
program uses in recognizing patterns, reflecting both the set of patterns seen to date, and
the trainer's guidance.

Memory

The memory of the program consists of these relation definitions, and a set of "in-
ferences" (so called because they are used to infer the existence of a familiar subpattern),
which are template-like chunks of information that represent subpatterns which the
program has seen before and has found useful. The format of an inference can be sym-
bolized as:

OBJECT 1 S-RELATION OBJECT 2 WEIGHT NEWNAME

The objects involved are either numerical codes for primitive strokes, or names learned
through feedback for primitive strokes, or for a collection of them. NEWNAME is
either a new name for OBJECT 1, or for a new whole formed by the pair of objects when they
occur in the given relation. The first of these two renaming possibilities enables the program
to attach a particular name to a part due to its context, and the second type enables it to
combine two parts into a whole. The weight associated with the inference is meant to be a
measure of the degree of confidence with which the program can use the inference. The
weights are adjusted up and down (from an initial neutral value) by the program on the
basis of its experience.

Varients of the scheme used to adjust weights have not been explored in this program.
This process includes both what we sometimes called "conditioning," where the re-
weighting function may derive from very complex hypothesized mechanisms, and "appor-
tionment of credit," where the problem solver that makes use of a large hierarchical network
of transformations must decide how much credit (and therefore how much reweighting) to
apportion to each part of the network, as a function of success or failure. The ability to do
this may reasonably well be a crucial part of any adaptive problem solving program, and
an appropriate set of rules can be quite complex (see, for example, AMAREL(1)).

The present weighting algorithm is very unsophisticated, sufficient only to allow the
weights to change in the right directions: after each feedback session, each inference used
correctly (to the trainer's satisfaction) in building the description is weighted up by one.
Those which were incorrectly used are weighted down one. Those not used remain un-
changed. The current range of weights is 1-9. If the weight becomes zero, the inference is
erased from memory.

224 R.W. SAUVAXN and L. UHR

The inferences are represented in SNOBOL as strings of symbols, as in the following
examples:

44-77-00.R 1.66-77-00/P,9,ANGLE

Interpretation: If the two stroke types 470 and 670 (the doubling of numbers is a
tolerance mechanism, explained shortly) occur in R1 in a pattern, they form, with
certainty 9, an angle. 470 and 670 are both long straight lines, with different slopes.
The "P" means that the inference does something to the Pair of objects.

CIRCLE.R42.HAT/F,5,FACE

Interpretation: If a circle occurs in R42 to a hat, then that circle (the First of the two
objects), can henceforth be considered a face, with certainty 5.

Note that the inferences contain no absolute positional information. They can apply equally
well anywhere on the pattern.

Original plans were to allow tolerances on primitive stroke descriptions in memory
(that is, on the slope, length, and curvature numbers) so that an object in an inference
could be a class of primitive strokes. This would be done by using two digits for each
attribute--the first a minimum value, the second a maximum. Thus inferences could contain
things like 07-11-00, which would match a stroke with any slope (0-7), length 1, and curva-
ture 0, i.e. any very short, straight line.

Problems arose, however, in trying to develop an algorithm to modify these tolerances
in accordance with feedback. Therefore, the data structures of the program (and those
routines which operate on them) were written to allow tolerances in hope of eventual
experimentation, even though only zero tolerance descriptions are currently used.

Recognition structure

As the program makes progress towards recognizing the picture, its developing concept
of the pattern is stored as a labeled directed graph structure ("graph" being used here in
the mathematical sense of a set of nodes connected by edges). The base is the network of
primitive strokes making up the original line drawing, with edges representing the "touch-
ing" relation. Higher level nodes are constructed on this base by applying inferences to it,
and those nodes in turn are used to construct still higher level nodes. This process results in
a more or less pyramidal structure, with the highest node of the graph being the name of
the pattern which said graph represents. Lower nodes are names of subordinate objects,
while edges represent part-whole relationships, contiguity relationships, or spatial re-
lationships. Internally, each node is represented by a list element containing pointers to
sub- and super-parts, and a pointer to the inference which was used to create the node.

Such a structure is a detailed representation of a visual concept, in a form particularly
well suited for transformation into a structural description of the pattern. In particular,
the hierarchical nature of the structure makes it easy to vary the amount of detail in the
description.

3. PROGRAM OPERATION

Having considered the data structures used by the program, let us turn to how these
structures are built up and used.

A teachable pattern describing and recognizing program 225

After input of the pattern, program operation is an iterative process of "recognizing"
the pattern, describing it as well as it can, processing feedback (i.e. learning), then back to
recognition.

To motivate the detailed discussions that follow, we will begin with a short example,
giving input to the program, and the program's response, for a training sequence leading to
recognition of a drawing of a balloon. For simplicity, we assume the program begins with a
blank memory.

\j I=I0101202,440.T.2,3

2=06102213,441.T.I,3

3=II152213,444.T.I,2

ACTUAL DRAWING CODED INPUT

FIG. 3. Input for the balloon example.

Program's description: THERE IS A GROUP OF STROKES WITH THE
FOLLOWING STRUCTURE
440/1/ IN R1 TO 441/2/
AND IN R2 TO 444/3/

441/2/ IN R3 TO 440/1/
AND IN R3 TO 444/3/

444/3/ IN R5 TO 440/1/
AND IN R6 TO 441/2//

(Note that this is simply an expansion of the input pattern graph, with the addition of
labeled relations (whose definitions the program had now stored) between touching
strokes--for the trainer's convenience in responding. Stroke serial numbers are set off
by slashes.)

Feedback from trainer: (1) IN R1 TO (2) ARE CIRCLE
(3) IS STRING

(From this feedback, the program generates and adds to memory the following in-
ferences :)

44-44-00. R 1.44-44-11/P,4,CI RCLE
44-44-44.R5.44-44-00/F,4,STRING
44-44-44. R6.44-44-11/F,4 ,STRING

226 R.W. S^uv^rs and L. Um~

Program's description: THERE IS A
CIRCLE/4/ CONSISTING OF 440/1/ IN R1 TO 441/2/
THERE IS ALSO A GROUP OF STROKES WITH THE
FOLLOWING STRUCTURE
STRING/3/ IN R5 TO 440/I/

AND IN R6 TO 441/2/
(Note that a new object (CIRCLE) has been found, and that the previously unnamed
a nA is now called STRING.)

Feedback from trainer: (4) AND (3) ARE BALLOON
(This feedback causes the program to generate the S-relation R7 between CIRCLE
and STRING, and the following inference :)

CIRCLE.R7.STRING/P,4,BALLOON
Program's description: THERE IS A

BALLOON/5/ CONSISTING OF CIRCLE (CONSISTING
OF 440/1/
IN R1 TO 441/2/) IN R7 TO STRING

Feedback from trainer: (4) ABOVE (3)
SMAXDEPTH = "2"

(Here he causes the name ABOVE to be associated with R7, and limits the "depth" of
subsequent descriptions to two.)

Program's description: THERE IS A
BALLOON/5/ CONSISTING OF CIRCLE/4/ ABOVE
STRING/3/

Recognition

In the recognition phase, the program considers one object at a time, checking its
memory for elements which have been made out of that type of object (the type of an
object is its name, e.g., ANGLE, BALLOON, 441) in the past. For each such potential
new element, the pattern is searched for the requisite context or related object, and then
checked to see if that object is in the requisite S-relation.

The problem of finding--in a possibly very large memory--just those inferences which
might apply to an object (that is, those in which that object type occurs as a component)
is simplified by accessing memory associatively. The program contains a dictionary which
associates each object type with a list of pointers to those inferences which might apply to it.
Given an object in the pattern, the program simply tries out inferences named on this
pointer list, and does not have to search the entire set of inferences.

The recognition process starts with the primitive stroke which has the highest number
of connections with other strokes (this hopefully is an information-rich part of the pattern).
If no applicable inferences can be found, it simply moves on to the stroke with the next
higher serial number. If an inference is found that matches the pattern, a new node in the
recognition structure is created--with the name given in the NEWNAME part of the
inference, and with a bounding rectangle which surrounds both subparts. For a renaming
type inference, the new name is simply added to the old node as an alias.

When an inference matches, the newly created node is made the current object of the
memory search. Thus if the program puts two semi-circles together to make a circle, it
will begin trying out things it can make out of a circle. The program tends to keep working
in an area in which it is having success.

A teachable pattern describing and recognizing program 227

This is a departure from a large number of conventional pattern recognition schemes--
those which have a rigid recognition strategy which is independent of the pattern. They
measure a certain fixed number of things about each pattern regardless of the structure of
the particular pattern under observation. This program moves in the direction of having
the pattern itself, in conjunction with memory of previous patterns, direct the recognition
process.

Once a pattern element has been combined with something else to form a higher level
element, it remains available for additional combination with other elements, and for use
as a context object. This means that as the gross organization of the pattern is completed,
the more detailed organization is still there for reference. Other hypotheses about what
the pattern is can build on part of the organization contributed by the first hypothesis,
without having to start over again at the primitive stroke level. In theory, when the program
"gets off the track" on a particular section of the pattern, it could detect the step at which
it was mislead, and go back to that step for a new approach. In practice, nothing this
sophisticated is attempted. Whenever a sub-pattern looks to the program as if it might be
more than one thing, all possibilities are pursued. The program may make simultaneous
alternate hypotheses about the input.

The routine to make the final choice among alternate hypotheses is not yet written,
and may be quite difficult. There could be many kinds of overlap and conflict in a multi-
hypothesis structure: two hypotheses about the same area of the pattern, two about
slightly overlapping areas, a hypothesis based on a very weak inference, etc. The general
plan is to resolve conflicts using the weights of the inferences used to construct them, and
the height of the structures which they represent. This may not be enough information to do
a realistic job of decision making, since essentially it consists only of relative frequency of
occurrence of the pattern elements.

One additional mechanism, which was found necessary to avoid repeated application
of the same inference to the same component of the pattern, should be explained. As the
recognition process proceeds, the program appends to each object description (each node) a
list of inference numbers--those which possibly apply, but have been found not to (due
to lack of the requisite second object in the pattern, or to the two objects not falling in the
right relation). Thus whenever the program looks at an object, it knows not to try to apply
a certain set of inferences. Included on this "don't try" list are numbers of those inferences
which have been successfully applied to the object. These lists effectively block the program,
as it goes over and over the pattern, from redoing work it has already done.

The lists of inferences not to try must be modified as new objects are recognized---
since the new object may be the one that the program had earlier looked for and not found.
This necessitates some complex housekeeping, but probably makes the program more
efficient in the long run. One of the most time-consuming processes in the program is the
graph-matching procedure used to check for match of an inference (which can be thought
of as a two-node, one-edge graph) against the larger graph of the pattern. The pattern must
be serially searched for all occurrences of the requisite context or second object, and a
relation check must be made for each occurrence. Thus anything which avoids repetition
of graph matching is a great help.

The program continues to cycle through its list of "found objects" (i.e. nodes in the
recognition structure) until a complete pass has been made without finding any inferences
which apply to any object. This generally takes many cycles, since the normal course of
events is for an object found on one cycle to be combined with or used as context for

228 R.W. SAUVAIN and L. UHR

another object on the next cycle. To put it another way, the program reconsiders each
old object at each new addition.

Description

Two examples of the program's output are given in Fig. 4. It is a parenthetically nested,
structural description of the pattern, which can be varied in depth and detail. Areas of the
pattern which were not recognized are restated more or less in input form, and linkages
into those parts of the pattern which were recognized are given. The intent is to give the
trainer material to work from in composing his feedback, and the descriptions are far from
polished English.

- - - T H E R E IS A - -
(ANGLE/10/CONSISTING OF 620/6/IN R12 TO 2 2 0 / 7 /) - - A N D A L S O - -
(LANGLE/9/CONSISTING OF 020/2/IN R4 TO 430/3/)----AND A L S O - - -
(LANGLE/8/CONSISTING OF 430/1/IN R2 TO 020/4/)
THERE IS ALSO A GROUP OF PRIMITIVE OR RENAMED PRIMITIVE STROKES WITH THE FOL-
LOWING STRUCTURE
BASE (5) IN R9 TO 620/6/

AND IN R10 TO 220/7/

- - T H E R E IS A - -
(STICKBOY/23/CONSISTING OF (UPPERBODY/20/CONSISTING OF (ARMS/18/CONSISTING OF
LEFTARM/13/IN R32 TO RIGHTARM/15/) IN R34 TO (HEAD/14/CONSISTING OF SEMICIRCLE/l/
TOTHELEFTOF SEMICIRCLE/2/)) IN R35 TO (LOWERBODY/22/CONSISTING OF (BODY/19/CON-
SISTING OF NECK/1 l / I N R22 TO TRUNK/12/) IN R33 TO (LEGS/21/CONSISTING OF LEFTLEG/16/
IN R31 TO RIGHTLEG/17/)))

FIG. 4. Samples of the program's description format. The upper example is from an intermediate
stage in learning to describe a square and triangle pattern, while the lower is the final description of a

simple stick-figure.

Feedback and learning

Feedback is given as a series of simple, fixed format statements, each of which mentions
one or two of the objects mentioned by the program in its description. The program, with
reference, if necessary, to its internal concept of the pattern (what we have been referring
to as the recognition structure), analyzes the feedback and makes Changes to memory.
These changes consist of addition of new inferences to memory, weighting down of old
ones, or naming of relations.

To simplify analysis of the feedback, objects must be referred to by serial number rather
than by name. This makes the feedback rather artificial looking, but it does eliminate the
possibly complex problem of determining what the trainer meant when he used an object
name which occurred more than once in the description. Feedback statements must be in
one of the following fixed formats:

(1) (n) IN Rk TO (m) IS newname
(2) (n) IN Rk TO (m) ARE newname
(3) (n) WITH (m) IS newname
(4) (n) AND (m) ARE newname
(5) (n) IS newname
(6) (n) relationname (m)
(7) NO, NOT (n)

where n and rn are object serial numbers, k is a relation serial number, and relation-
name and newname are any sequence of non-blank alphanumeric characters.

A teachable pattern describing and recognizing program 229

In Formats 1 and 2, the relation to be used in the inference is named explicitly, and must
already be in the program's memory. This format is used primarily in responding to descrip-
tions consisting of contiguous primitive strokes and primitive relations.

In processing Formats 3 and 4, the (zero-tolerance) S-relations between the two given
objects is generated, added to memory, and then used in the inference. This allows inclusion
of relations between nontouching objects.

Format 5 is an experimental one, meant to be a convenience in getting the program to
rename a primitive stroke due to context. It causes generation of many F-type inferences as
there are objects touching the given one : i.e. the program will henceforth rename the stroke
due to any one of its possibly many contexts (using "context" here in the narrow sense of
"relation to a contiguous stroke").

Format 6 is used for naming relations. The program finds the number of the relation
between n and m, and assigns it the given name. In the event that the program already has in
memory a relation with this name, it will broaden the tolerance on that relation to make it
include the new instance. The program is thus able to broaden its concepts of spatial rela-
tions. It cannot, however, narrow them, or build disjunctive relational concepts.

Format 7 provides a means of telling the program "no" on any particular object, i.e.
that the inference used to create that object was wrongly used, and should be weighted
down. This is the only mechanism currently available for "extinguishing" the program's
responses.

This set of formats is sufficient for at least crude training of the program, but is still
somewhat unnatural and restrictive. Two more formats, as yet unimplemented, have been
suggested to help alleviate the problem. One would be a way to tell the program that an
object can be renamed regardless of context (e.g. that any stroke with curvature zero can
be considered a straight line).

Another would tell the program "Yes, your name for object n is correct, but a better
name in this instance is - - " This would provide a way of correcting the program
without weighting down any inferences.

The trainer is not allowed to "skip a level" in giving his feedback. That is, he cannot give
a name to a collection of more than two objects. Confronted with the initial description of
the earlier example, he cannot simply say "This is a balloon," and let the program figure
out how to organize all those pattern components into something which will be useful in
later recognition of balloons. The trainer must work "from the bottom up" in training the
program.

In one sense, this is not too unreasonable psychologically. Even humans get confused
when feedback differs extremely from the way they see it. Prohibition of level skipping acts
as a kind of "confusion filter," which serves the valuable purpose of preventing highly
speculative learning.

4. DISCUSSION

The work reported herein can be viewed as relevant to numerous problem areas in
pattern recognition research and artificial intelligence, including pattern description, use
of a growing system of pattern inter-relationships, utilization of feedback, abstraction and
storage of graphic information, organization of pattern characterizers, and learning.

In view of the reasonable similarity of, the program's input, and some of its processing
to certain stages of the perceptual process in living beings, it might be of some value as a

230 R.W. SAUVAIN and L. UHR

conceptual tool in thinking about visual perception--a very limited kind of visual percep-
tion. It would be premature, however, to call it a good model of the perceptual process.

The program is similar in some respects to the NAMER program of LONDF. and
SIMMONS. tT~ Both recognize and generate sentences about line drawings, and both abstract
concepts which correspond to spatial relationships. There are two major differences.
NAMER does not produce hierarchical descriptions, being limited to sentences telling
the spatial relationship of a single pair of objects. Also, NAMER incorporates a non-
iterative, categorization type of pattern recognition, in which a fixed set of 96 characterizers
is computed on each of the two input patterns, and a weighted correlation to stored sets of
values of these characteristics produces the most probable name for the pattern. In our
program, the set of characterizers grows with experience, and the part-whole structure of
the pattern guides the recognition process: each new part "recognized" determines a new
set of tests to be made on the pattern.

There are many areas for further research that we would like to pursue. One of these is
to work more on the problem of interfacing programs of this type with the problem of
comprehending and using natural language. Clearly the pattern description format could
stand improvements, and the feedback language could be enriched in many ways. It is
interesting to note, in this respect, that LONDE and SIMMONS (7) have had some success with
using a simple generative grammar to generate sentences about line drawings. The work
of UHR (14) is also relevant, and QUILLIAN (11) is currently working on a "teachable" language
comprehender.

Another area needing investigation is machine realization of the type of pattern pre-
processing we have assumed for this program. There may well be significant problems in
decomposing an arbitrary line drawing into the network of non-overlapping strokes that
the program requires.

In our experience with the program to date, the particular inference and relation
representation used has been quite natural, and not at all restrictive. The attributes of
slope, length, and curvature, rectangle occupied by the stroke, and the touching relation
seem to be both sufficient for effective pattern recognition and natural for describing
patterns. One area which needs further exploration, however, is the difficulties that might
arise in training the program on a substantial environment of complex drawings.

One possible limitation is the fact that characterizers in memory are limited to only two
objects, linked by one S-relation. It seems plausible that some pattern characterizers would
not fall naturally into this format, either because they involve more than two objects, or
because the crucial relating function cannot be expressed in the S-relation format. As an
example of the latter difficulty, consider the intuitive notion of an angle: two straight lines
(of any length) meeting at a point and having different slopes. The qualities of zero curva-
ture and arbitrary line length can be represented in an object type, but not the simple
fact that the strokes can have any slope at all as long as the two are different. This quality
would currently have to be represented by a large set of inferences, one for each possible
combination of different slope numbers. Thus a graceful generalization of the intuitive
notion of angle could not be achieved without using an inordinate amount of memory.

We believe, however, that a useful class of pattern types can be generalized without
resorting to such a procedure. In the examples given, there has been only one inference
leading to a given object type. In the general case, there will be more than one, and in fact
the ability to represent a concept as the disjunction of several different lower level patterns
is very valuable. It should be noted also that conjunction of lower level patterns can be

A teachable pattern describing and recognizing program 231

handled, though not elegantly, by introducing an intermediate artificial object type:

OBJECT1 R1 OBJECT2 IS OBJECT#
OBJECT# R2 OBJECT3 IS OBJECT4

so that a subpattern is of type OBJECT4 if it is both in R1 to an OBJECT2 and in R2 to
an OBJECT3.

It would certainly be desirable to improve the relation system. The program currently
has no means of narrowing, or making more precise, the definition of a relation, and cannot
learn or use properties of relations--as does, for instance, the fact retrieval program of
ELLIOT. (3)

It should also be noted that, though some of the most impressive features of the program
are related to learning, learning can occur only on the level of data acquisition and erasure.
Much more subtle and powerful kinds of learning are conceivable, among them reorganiza-
tion and reassociation of data, and adaptation of the learning strategy itself, i.e. learning
to learn. Little work has yet been done on endowing programs with these abilities.

In conclusion, many writers (e.g. NARASIMHAN, (1°) MINSKY (9) have discussed the impor-
tance, in the processing of visual data, of the ability to describe patterns, in addition to
categorizing them. This program has demonstrated ability to produce structural descrip-
tions of patterns of moderate complexity, to learn a set of names and relations from which to
build descriptions, to vary the detail of those descriptions, and to do an effective job of
abstracting and storing "chunks" of visual information, and using them in subsequent
pattern recognition and description problems.

SUMMARY

This paper discusses the structure and operation of a computer program, written in
SNOBOL3, which learns to recognize-and describe two-dimensional line drawings.

Input to the program is a coded version of the drawing, in which the drawing is de-
composed into elementary "strokes", each described by its slope, length, and curvature.
The program attempts to find, in the coded input pattern, previously learned subpatterns
of the form stroke-relation-stroke. The recognition procedure is dependent on both the
prior experience of the program, and the structure of the pattern currently being examined.
The relations used are essentially classes of relative positions of two strokes, or two groups
of strokes.

A structural description of the pattern is produced, using learned names for familiar
subpatterns and familiar spatial relations, and elementary stroke codes in unfamiliar parts
of the pattern. A human trainer responds, offering corrections, and naming new subpatterns.
By analyzing this feedback, the program adds to and revises its memory of significant
subpatterns and useful spatial relationships, and then makes another attempt at describing
the pattern.

Included in the paper are detailed descriptions of the input coding system, the internal
representation of subpatterns and relations among subpatterns, and of the feedback
procedures. Samples of actual output are shown, and a short "training sequence," showing
effects of feedback on the program's memory, is presented.

The paper points out some similarities between the program's behavior and the per-
ceptual process in humans, and concludes with a short discussion of possible extensions
and relationships to other areas of pattern recognition and artificial intelligence.

232 R.W. SAUVAIN and L. UHR

Acknowledgement--This research was partially supported by NIH grants MH 05254 and MH 12266, and by
NSF grant GP-7069.

REFERENCES

1. S. AMAREL, On the Automatic Formulation of a Computer Program which Represents a Theory, in Self-
Organizing Systems 1962 (Edited by YOVITS), Spartan Books (1962).

2. H. B. BARLOW, J. Physiol. 119, 69 (1953).
3. R. ELLIOT, A Model for a Fact Retrieval System, TNN-42. University of Texas Computation Center, May,

1965.
4. D. H. HUBEL, Scient. Am. 209(5), 54 (1963).
5. H. KAZMIERCZAK, The Potential Field as an Aid to Character Recognition. Information Processing, p. 244.

Paris: UNESCO (1960).
6. J.Y. LETTVIN, H. R. MATURANA, W. S. McCULLOCH and W. H. PITTS. Proc. IRE47, 1940 (1959).
7. O. L. LONDE and R. F. SIMMONS, NAMER : A Pattern Recognition System for Generating Sentences about

Line Drawings, TM 1798. Systems Development Corporation, Santa Monica, California, 1964.
8. G.A. MILLER, Psych. Rev. 63, 81 (1956).
9. M. MINSKY, Steps toward artificial intelligence, Proc. IRE, 49(1) 8 (1961).

10. R. NARASIMHAN, Syntax directed interpretation of classes of pictures, Communications of the ACM, 9, 166,
March, 1966.

11. R. QUILLIAN, The Teachable Language Comprehender, to appear in Communications of the ACM. In press.
12. H. SHERMAN, A Quasi-topological Method for the Recognition of Line Patterns. Information Processing,

p. 232. Paris: UNESCO (1960).
13. L. UHR and C. VOSSLER, Proc. WJCC, 19, 555 (1961).
14. L. UHR, Behav. Sci., 9(2), 258 (1964).

