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Low-angle X-ray diffraction arising from 40 to 50 A particles within wet frog 
retinal receptor disk membranes at 26°C was not consistent with a planar 
crystalline lattice of the particles within the disk membranes. The nature of the 
diffraction suggested the possibility of a planar liquid-like arrangement of the 
particles. Such an arrangement is supported by the observation that the planar 
ordering of the particles is easily altered by their interaction with globular 
protein molecules non-specifically adsorbed to the disk membranes. In view of 
the above, we obtained diffraction patterns from our wet disk membrane pre- 
parations at several temperatures between 4.6 and 42*6”C, and applied a Fourier 
analysis to the diffracted intensities appropriate for a planar liquid-like arrange- 
ment of the 40 to 50 A particles. The analysis gave the planar radial distribution 
function description of the supposed planar liquid-like arrangement of the 
particles. These radial distribution functions, derived from the diffracted inten- 
sities, were examined in terms of their shape and variation with temperature, 
and compared with the known predictions from statistical mechanics for a liquid- 
like arrangement of particles whose pair potential contains both attractive and 
repulsive terms. This comparison for the derived radial distribution functions 
demonstrated that the observed diffraction data from the 40 to 50 A particles 
were indeed consistent with a planar liquid-like arrangement of these particles 
within the disk membrane. 

Our radial distribution function analysis allowed model scattering factors for 
the particles to be tested. It was found that only hard sphere cross-sectional 
electron densities for the particle with diameters of 40 to 44 A or reasonably 
hard, soft-sphere cross-sectional electron densities, with a core of uniform elec- 
tron density 38 to 40 A in diameter and a total diameter of 44 to 46 A, gave 
good agreement. 

A similar analysis was applied to the diffracted intensities arising from the 
antirhodopsin molecules adsorbed to the wet disk membranes which had been 
treated with our antirhodopsin serum and is discussed relative to the preceding 
paper (Blasie, Worthington & Dewey, 1969). A comparison of the radial distri- 
bution functions for the antirhodopsin molecules adsorbed to the antirhodopsin 
serum treated disk membranes and the 40 to 50 A particles of the untreated disk 
membranes at identical temperatures showed the particles to be the photo- 
pigment molecules. 

The mathematical derivation of the planar radial distribution function and a 
critical evaluation of the errors involved are presented in the Appendices. 

1. Introduction 
In the previous paper (Blasie, Worthington & Dewey, 1969), we describe low-angle 
X-ray diffraction from particles 40 to 50 A in diameter within frog retinal receptor 
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disk membranes. We demonstrated that these particles were the photopigment 
moleoules of these disk membranes. However, inasmuch as the quantitative treat- 
ment of the low-angle X-ray diEraction data was dependent on the calculations 
presented in this paper, we shall still refer to the photopigment molecules as 40 to 
60 A particles of the receptor disk membranes and again prove that they are indeed 
the photopigment molecules. 

We have shown (B&e, Dewey, Blaurock & Worthington, 1965 ; Blasie et al., 1969) 
that low-angle X-ray diffraction from wet pellets of isolated disk membranes have 
cylindrical symmetry about an axis normal to the plane of the disk membranes. 
With the X-ray beam incident along this axis, we record diffraction information 
relating to electron density variation within the plane of the disk membranes. It is 
reasonable that such diffraction arises from the planar arrangement of the 40 to 60 A 
particles within the disk membranes (see footnote-t p. 428 of this paper). 

In the previous paper, we showed that non-specific adsorption of serum albumin 
to the disk membranes disrupted the ordering of the 40 to 60 A particles within the 
disk membranes. Thus, the ordering of these particles is easily altered by weak 
interaction with a foreign protein such as albumin. Table 1 of that paper shows that 
the two low-angle X-ray diffracted intensity maxima obtained from untreated wet 
disk membranes at 26.0°C correspond to a Bragg spacing ratio (d,/d,) of 1.52 f O-01. 
It is unlikely that a planar crystalline lattice of the 40 to 50 A particles could account 
for such a Bragg spacing ratio even if thermal motion of the particles about the 
lattice points occurred. Furthermore, the shape of the two intensity maxima, the 
first being moderately sharp compared to the second broad diEuse maxima, is rather 
characteristic of X-ray diffraction from a liquid-like arrangement of the particles 
(see for example James, 1948, chapter 9). This then suggests that these particles 
have a planar liquid-like arrangement within the receptor disk membranes. 

The radial distribution function theory for liquids is well known from statistical 
mechanics (see Kirkwood, Lewinson & Alder, 1952; Hill, 1966). This function and 
its temperature dependence has been characterized for particles interacting via 
repulsive potential functions only as well as potential functions containing both 
repulsive and attractive terms such as the Lennard-Jones “6-12” potential. Thus, 
we decided to explore the low-angle X-ray diffraction arising from the 40 to 50 A 
particles in the disk membranes over a reasonable temperature range, to calculate 
their radial distribution functions assuming a planar liquid-like ordering of these 
particles, and to test this hypothesis by comparison with the predictions of statistical 
mechanics for such a system. Such a test would involve the general shape and asymp- 
totic behavior of the radial distribution functions, its temperature dependence, and 
its prediction of a four nearest neighbors for the crystalline state, i.e. the square 
array of these 40 to 6OA particles occurring in partially dried receptor disk membranes, 
as established by electron microscopy and low-angle X-ray diffraction (Blasie et al., 
1965). This paper describes the results of such an investigation. 

2. Materials and Methods 
A detailed account of the experiment4 methods and equipment used w&s presented in 

the previous paper (Blaeie et al., 1969). For the present p&per, the following description 
is given. 

Specimens of frog (Raw pi@e9~) retinal receptor disk membranes and disk membranes 
t-ted with antirhodopsin sem were prepared in the 8&me mcmner ae described previously. 

I&w-angle X-ray &&+&ion patterns were ~ld&md with the X-ray beam in&dent 
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normal to the planes of the disk membranes, i.e. along the sedimentation axis, in all cases. 
All exposure times were 2 hr in duration and the disk membrane preparations remained 
fully hydrated, i.e. wet, with frog Ringer’s solution for the duration of the exposure. 
The desired temperature of the specimen was maintained within + 0.2 deg. C with the tem- 
perature chamber described in the previous paper and the specimens were allowed to 
equilibrate for 30 min in the chamber before the 2-hr exposure was begun. Low-angle 
patterns were obtained from untreated wet disk membranes at 4.6, 26.0 and 42*5”C and 
from wet disk membranes treated with antirhodopsin serum at 26*O”C. Low-angle patterns 
were obtained from different untreated disk membrane preparations at different tem- 
peratures as well as from the same disk membrane preparation at temperatures in 
sequence with 2-hr exposure times at each temperature with a 30-min equilibration time 
between exposures. Such diffraction patterns at a given temperature showed no apparent 
differences with respect to the history of the specimen. 

Microdensitometer tracings were made of all diffraction patterns in the range of 
0.006 < T* < 0.024 AL-l. The error in intensity measurement was + 5% judging from 
the noise level on the microdensitometer trace. Background scattering for this camera 
and these specimens was known over the same angular range and was subtracted from 
the tracing obtained with the receptor disk membranes. 

The low-angle data was recorded using a narrow X-ray beam of small finite height 
(1 mm). A discussion of possible smearing effects due to the finite height of the X-ray 
beam is given. Because our effective slit height was only 1 mm any slit correction is small 
and hence the corrected intensity can be expanded in terms of the uncorrected intensity 
and its derivatives (see Guinier & Fournet, 1955, p. 119). By substituting the parameters 
of our camera (height of beam 1 mm; specimen-to-film about 6 cm) into this expression 
only the first derivative needs to be evaluated because, within the observed angular 
range, the coefficients of higher derivatives are vanishingly small. The maximum slit 
correction occurs on the upward slope of the first peak (r* = 0.01 A-r); this correction 
is 53% of the diffracted intensity at T* = 0.01 A-1. F or comparison the slit correction 
on the downward slope of the second peak r * = 0.02 A-l is 51.5%. The correction is 
zero at the minima and maxima of the diffraction patterns. Hence any slit correction 
did not exceed 3% and, as this magnitude was within the range of experimental error in 
recording the intensities, slit corrections were not applied. 

The diffracted intensity curves corrected for background were used to calculate res- 
pectively the radial distribution functions for the 40 to 50 A particles of the receptor disk 
membranes at the various temperatures mentioned and for the antirhodopsin molecules 
adsorbed to antirhodopsin serum treated disk membranes. The diffraction theory on 
which the analysis is based will be presented in the section Fourier Analysis of the 
Diffracted Intensities with references to the Appendices. All non-trivial integrations and 
computations were performed on an IBM 7090 computer. 

3. Results 
The low-angle X-ray diffraction patterns obtained from wet receptor disk mem- 

branes at 4.5, 26.0 and 42.5% are shown on Plate I. Figure 1 shows their respective 
microdensitometer tracings. We note that the first intensity maxima remains rela- 
tively constant in position, shape, and magnitude while the second diffuse maxima 
broadens, becomes less intense, and shifts its position to larger r* values (r* is the 

(2 sin 0) 
reciprocal space distance where r*(,&-l) = x 

1 
= -where d(A) is the Bragg 

d(& 
spacing) with increasing temperature. Plate II and Figure 2 shows the low-angle 
pattern obtained from wet antirhodopsin serum treated disk membranes at 26.O”C 
and its microdensitometer tracing. We note the positions of the intensity maxima 
in reciprocal space are nearly identical to those for untreated wet disk membranes 
at 26.0% although the diffracted intensity maxima are much sharper and more 
intense for the former. 
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r* (A-‘) 

FIG. 1. Microdensitometer traoings of the low-mgle X-my dsaation petterne shown in Plate I. 
The observed relative intensity I,,,,,&*) is plotted aa a function of the reciprooal apace distance r*. 

. . . . .) 42.5’ f 0.2 deg. C; - - -, 26.0’ f 0.2 deg. C; - . -, 04.5’ f 0.2 deg. C. 

FIQ. 2. Microdensitometer tracing of Plate II (antirhodopsin serum treated disk membranes 
at 26.0’ f 0.2 deg. C) compared with that of Plate I(b) (untrested disk membranes at 26.0’ f 
0.2 deg. C). 

- - -, Untreated, 26’ f O-2 deg. C; - . -, entirhodopsin serum treated, 26’ f 0.2 deg. C. 

4. Prew Discussion of the Results 
The nature of the low-angle X-ray diffraction arising from the 40 to 50 1(1 particles 

within wet receptor dish membranes &a well as its temper&ure behavior is not 
characteristic of a planar crystalline lattice arrangement of the particles within the 
membranes. Over the temperature range investigated the ratio of the Bragg spacings 
for the two intensity maxima observed et any given temperature was not repre- 
sentative of a planar crystalline &rray of these particles within the disk membranes. 
Furthermore, the position (in reciprocal space) and the shape of the second intensity 
maxima changed as a continuous function of temperature while the first intensity 
maxima remained relatively constant in position and shape. The effect of temperature 
on a crystalline lattice, i.e. the effect of isotropic thermal motion of particles about 
their respective lattice points, does not shift the relative positions of the diffracted 
intensity maxima in reciprocal space. It merely multiplies the diffracted intensity 



(b) 
PLATE I 

PLATE 11 

PLATE I. Low angle X-ray diffraction patterns obtained from completely wet ultracentrifugal 
pellets of frog retinal receptor disk membranes. The beam incident was along the sedimentation 
axis, that is, normal to the planes of the disk membranes as verified in the previous paper (Blasie 
et al., 1969). Exposures were 2 hr in duration and were obtained at the following temperatures: 
(a) 42.5’ i 0.2 deg.C; (b) 26.0’ f 0.2 c1eg.C; (c) 4.5’ f 0.2 deg.C. 

PLATE II. Low-angle X-ray diffraction pattern obtained from a completely wet ultracentrifugal 
pellet of frog retinal receptor disk membranes which had been treated with our antirhodopsin 
serum before sedimentation. The incident beam was normal to the planes of the disk membranes 
and the exposure was 2 hr in duration at 26.0” + 0.2 deg.C. 

fanhgp. 420 
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maxima by a factor exp( -2M) where M is directly proportional to the square of r* 
and increases with temperature (see, for example, Guinier, 1963). 

Such temperature dependent X-ray diffraction is characteristic of a liquid-like 
arrangement of the 40 to 50 A particles within the disk membranes. Inasmuch as 
the low-angle X-ray diffraction from the wet disk membranes is cylindrically sym- 
metric about an axis normal to the planes of the disk membranes, the observed 
diffraction is characteristic of a planar or two-dimensional liquid-like arrangement 
of the 40 to 50 i% particles within the membranes. This is indeed reasonable since 
these particles are confined to the disk membrane. Since the position of the second 
intensity maxima shifts to larger reciprocal space distance values with increasing 
temperature while the position of the first intensity maxima remains unchanged, 
it is apparent, in a qualitative sense, that most probable center-to-center distances 
for the 40 to 50 A particles decrease with increasing temperature. For a planar 
liquid-like arrangement of the particles, such behavior would indicate that the area 
available to the particles was independent of temperature and hence the particles 
occur with a constant average density over the entire disk membrane. This is also 
reasonable since these particles are confined to the disk membrane and their popula- 
tion per disk membrane is presumably conservative with temperature variation. 

In view of the above evidence, we decided to apply a Fourier analysis for a planar 
liquid-like arrangement of the 40 to 50 A particles to the low-angle X-ray diffraction 
from the untreated wet receptor disk membranes obtained at several temperatures. 
Such a Fourier analysis would give the radial distribution function representation 
for the planar liquid-like arrangement of the particles and the statistical function 
along with its temperature dependence could be compared with the well-known 
predictions of the statistical mechanics for simple liquids. 

For the purpose of the previous paper, a similar Fourier analysis was applied to 
the low-angle X-ray diffraction arising from antirhodopsin molecules adsorbed to 
the surface of antirhoclopsin serum treated disk membranes. The radial distribution 
function for the antirhodopsin molecules obtained from this analysis may then be 
compared with that of the 40 to 50 d particles of untreated disk membranes allowing 
a quantitative comparison of the planar liquid-like arrangement of the adsorbed 
antirhoclopsin molecules with that of the 40 to 50 A particles themselves. 

5. Predictions from the Statistical Mechanics of Simple Liquids 
Inasmuch as we have used the radial distribution function approach to the 

statistical mechanics of a planar liquid, we wish to discuss the properties and inter- 
pretation of this statistical function. The general properties of radial distribution 
functions and their temperature dependence are well known for real particles whose 
interaction potential contains both attractive and repulsive terms such as the 
LennarclJones potential. For a detailed account of these properties the reader is 
referred to Kirkwood et al. (1952) or Hill (1956). For the purpose of this paper, it 
will suffice to state these properties as follows: the radial distribution function for 
a particle in a two-dimensional or planar liquid is a function of the radial co-ordinate 
T (A), is temperature dependent, and will be designated as S~rp,(r); the function 
should ideally be zero for r less than the particle diameter, i.e. the distance of closest 
approach for the particles; the radial distribution function has a fist maxima (for 
T greater than the particle diameter) whose amplitude is greater than 2nrp0 where 
p,, is the average density of particles over the disk membrane area; this first maxima 
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is followed by successive oscillations of diminishing amplitude about 2nrp0 such that 
L% 2nrp,(r) = Bmp,. Such a distribution represents the time-averaged probability 

density of particles occurring within an annular ring in the plane of the disk mem- 
brane of radius r and width dr centered about an arbitrary particle. The suocessive 
maxima of this function for T greater than the particle diameter, are denoted the 
first, second, etc. neighbor peaks with reference to the origin and the area under 
these peaks represents respectively the time-averaged number of first, second, etc. 
nearest neighbors for any arbitrary particle in the plane of the disk membrane. 
The nth nearest neighbors occur within an annular ring in the plane of the mem- 
brane centered about an arbitrary particle whose radius is that of the nth maxima 
in the radial distribution function and whose half-width is the half-width of the nth 
maxima. 

With increasing temperature, the nearest neighbor peaks become broader and of 
lesser amplitude and shift toward the origin provided that a constant average density 
of particles is maintained. The first nearest neighbor peak approaches the particle 
diameter or distance of closest approach for the particles and the number of first 
nearest neighbors decreases. With decreasing temperature, the nearest neighbor peaks 
become sharper and have greater amplitude and shift away from the origin such that 
position of the first nearest neighbor peak approaches the lattice constant of the 
crystalline state and the number of first nearest neighbors approaches that of the 
crystalline state. 

Having discussed the properties and temperature behavior of radial distribution 
functions describing a planar liquid-like arrangement of partioles as predided from 
statistical mechanics for particles interacting via a “real” interaction potential in a 
system of constant average particle density over the plane, we wish to discuss the 
Fourier analysis of the diffracted intensity from the 40 to 60 A particles of the disk 
membranes at various temperatures which gives the experimentally determined 
radial distribution functions for the particles at those temperatures. 

6. Fourier Analysis of the Diffracted Intensities 
The radial distribution function analysis has been used in the study of spherically 

symmetric liquid and amorphous systems composed of atoms and small molecules. 
The radial distribution function representation for such systems is obtained by 
applying the Fourier integral theorem to the X-ray diffraction intensities (James, 
1948). The radial distribution function approach applies equally well to macro- 
molecular systems but seems not to have been previously used. Most X-ray studies 
on macromolecular systems are confined to dilute aqueous solutions of on0 macro- 
molecular species so that intermolecular effects and solvent structure can be neg- 
lected; these studies only give macromolecular shape. It is appropriate to apply the 
radial distribution function analysis to our macromolecular system as the packing 
of the 40 to 50 A particles in the disk membrane is sufficiently dense to show diffrac- 
tion due to intermolecular effects. The Fourier analysis (as applied to simple liquids) 
needs modification as we are studying a planar arrangement of these densely packed 
macromolecules in a complex system, namely a biological membrane, containing 
additional macromolecular species. The X-ray diffraction treatment is given in the 
Appendices and references conoerning related analytical prooedures as applied to 
atomic and small moleoule liquids are given there. An important consequence of 
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using such an analysis is that we are able to make a study of macromolecular shape 
directly from our radial distribution function curves. 

The radial distribution function B~rrp,(r) describing a planar liquid-like arrange- 
ment of particles in the disk membranes is given in terms of the observed diffracted 
intensity Iobbs.(r*) as follows (see Appendix 1 for details): 

27mp,(r) = 2mpo + 2n-r KL(r*) 

Nfi @*I 
(1) 

l,,Tobs.(r*) is the observed intensity (on a relative scale) cylindrically symmetric about 
an axis normal to the plane of the disk membrane, i.e. the sedimentation axis, with 
r* as defined in the Results section. I ,&r*) is brought to an absolute scale via the 
normalization constant K (see Appendix 2 for intensity normalization methods). 
f,(r*) is the scattering factor for each of the N particles composing the planar liquid 
(see Appendix 4 for the determination of the particle scattering factors). 

However, in practice one does not observe diffracted intensity over all of reciprocal 
space and the integral in equation (1) is terminated at some upper limit rz introducing 
transform truncation errors in the derived radial distribution function (see Appendix 
3 for a determination of such errors). 

Assuming that the number of 40 to 50 A particles per disk membrane is conserved 
upon partially drying the disk membranes, p,, may be determined knowing that the 
particles occur in a square array in partially dried disk membranes with one particle 
per unit cell, i.e. per 4900 A2 of disk membrane area. 

Scattering factors were calculated for the 40 to 50 A particle of the untreated disk 
membranes and for the cylindrical antirhodopsin molecule adsorbed to the anti- 
rhodopsin serum treated disk membranes according to the methods discussed in 
Appendix 4. The radial distribution functions were then calculated for the particles 
of the untreated wet disk membranes using the normalized intensity data obtained 
at 4.5, 26.0 and 42.5% as well as for the antirhodopsin molecules adsorbed to the 
serum treated disk membranes using the normalized intensity data at 26.0% for 
this case. The integral in equation (1) was terminated when KI(r*)+N$(r*) for 
r* >r,* (see Appendix 3) and was integrated numerically with an IBM 7090 using 
Simpson’s three point rule sampling the normalized intensities at intervals of Ar* = 
0401 A-l. The results of such calculations are shown in Figures 3 and 4. The cal- 
culation of nearest neighbor numbers was carried out via a numerical integration 
(Simpson’s three-point rule with an IBM 7090) of the radial distribution function 
over the interval of the radial co-ordinate r containing the nearest neighbor peak 
concerned (these nearest neighbor peaks were extrapolated to the abscissa such that 
the sum of the nearest neighbor peaks gave the radial distribution function). The 
results are shown in Table 1. 

7. Discussion of the Fourier Analysis 

It is apparent from Figure 3 and the section Predictions from the Statistical 
Mechanics of Simple Liquids that the properties and temperature behavior of the 
derived radial distribution functions for the 40 to 50 A particles of the disk mem- 
branes are in excellent accord with those predicted from statistical mechanics. All 
of the derived functions go to 2~rp, for large r in the proper manner, contain the 
required first maxima for r greater than the particle diameter (i.e. the first nearest 
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FIU. 3. Plenar radial distribution functions for the particles of the wet untreated disk mem- 
branes at 4.6’ f 0.2 deg. C, 26.0” f 0.2 deg. C and 42.6’ f 0.2 deg. C. The radial distribution 
functions were calculated according to Appendices 1,2, and 4 using the beet model p&i& eoatter- 
ing faator ea deeoribed iu Appendix 4. 

. . . . ., 42.6’ f 0.2 deg. C; - - --, 26.0’ f 0.2 deg. C; -. -, 04~7 f 0.2 deg. C. 

neighbor peak), and have only small oscillations in the region of r less than the 
particle diameter which can be accounted for mainly by transform truncation effects 
(see Appendix 3). Furthermore, the number of first nearest neighbors decreases and 
the position of the f&t nearest neighbor peak shifts toward the origin approaching 
the particle diameter with increasing temperature as seen in Table 1. The fist nearest 
neighbor peak also broadens and decreases in amplitude with increasing temperature 
as seen in Figure 3. Conversely, the first nearest neighbor peak becomes sharper 
with greater amplitude, and shifts away from the origin with decreasing temperature. 
The position of the firat nearest neighbor peak approaches the unit cell dimension of 
the crystalline state of 70 A and the number of first nearest neighbors approaches 

TABLE 1 

Temp. 
P-3 

1st Nearest Time-average 2nd Neareet Time-average 

neighbor eeparation of neighbor separation of 

number 
1st nearest 2nd near& 

neighbors (A) number neighbors (A) 

40 to 60 A Particles 4.6-&0*2 3.8 64.0 6.6 112.0 
of untreated wet 26*0+0’2 3.0 66.0 6.1 103.0 
disk membranes 42*6&0.2 2.6 52.0 6.8 94-o 

Antirhodopsin 
molecules adsorbed 26.OAO.2 3.1 58.0 6.2 113.0 
to antirhodopsin 
mnlm treated wet 
diek membranes 
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the value of that of the crystalline state of 4-O at a temperature slightly above 
freezing as seen in Table 1. Since the radial distribution functions for the 40 to 50 A 
particle of the retinal receptor disk membrane are of the proper character and 
temperature behavior as those predicted from statistical mechanics for particles 
interacting via an interaction potential containing both attractive and repulsive 
terms, we conclude that these 40 to 50 A particles do indeed occur in a planar liquid- 
like arrangement within the receptor disk membranes. 

We should also like to point out that the radial distribution function is particularly 
sensitive to errors in the scattering factor for the particles in the region of small r 
for T less than the particle diameter. Thus, using the procedure and criteria discussed 
in Appendix 4, scattering factors appropriate for spherical lipid micelles were shown 
to be inconsistent with the diffracted intensity data since they invariably induced 
severe oscillations in the radial distribution functions for small T. The scattering 
factor most consistent with the diffracted intensity data was that appropriate for 
a globular protein molecule based on a reasonably hard “soft-sphere” cross-sectional 
electron density for the scattering particle with a core of uniform electron density 
38 to 40 A in diameter and a total diameter of 44 to 46 A. 

With reference to Figure 4 and Table 1 it is apparent that the planar liquid-like 
arrangement of the antirhodopsin molecules adsorbed to the antirhodopsin serum 
treated disk membranes is nearly identical to that of the 44 to 46 A globular protein 
molecules of the untreated disk membranes at the same temperature. This follows 

/ I I I I I I I I I I I I I I 

0.200 

-0~05ol I I I I I I I I I I I I 1 I I 
0 IO 20 30 40 50 60 70 80 90 100 HO I20 130 140 150 

FIG. 4. Planar radial distribution function for the particles of the wet untreated disk membranes 
at 26.0’ f O-2 deg. C compared with that of the cylindrical rtntirhodopsin molecules adsorbed to 
the antirhodopsin serum treated disk membranes at 26.0’ f 0.2 deg. C. Again, best model particle 
scattering factors were used in both cases as described in Appendix 4. 

-----, Untreated, 26” f 0.2 deg. C; - .-, antirhodopsin serum treated, 26’ f 0.2 deg. C. 
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ahme the position of the 6rst nearest neighbor peak and the number of first nearest 
neighbors are nearly identical for the two cases. Inasmuch as the antirhodopsin 
molecules have been shown to specifically bind the photopigment molecules of the 
retinal receptor disk membranes (Dewey, B&e, Davis & Barr, 1969; Blasie et al., 
1969), we conclude that the 44 to 46 A globular protein molecules of the wet receptor 
disk membranes are indeed the photopigment molecules of these membranes. 

In Appendix 4, we show that the best scattering factor for the cylindrical anti- 
rhodopsin molecule adsorbed to the surface of the antirhodopsin serum treated disk 
membranes is based on a “hard-cylinder” cross-seotional eleotron density for the 
molecule 32 f 1 A in diameter with the cylinder axis normal to the plane of the disk 
membrane. The nearest neighbor peaks of the radial distribution function for the 
antirhodopsin molecules adsorbed to serum treated disk membranes are considerably 
sharper and are shifted away from the origin slightly compared to those of the 
photopigment molecules alone. This is consistent with the following. The specific 
one-to-one binding of the cylindrical antirhodopsin molecules to the photopigment 
moleoules in the disk membrane greatly increases the surface area available for 
nearest neighbor interaction as compared to that of the photopigment molecules 
alone. This may result in a sharpening of the interaction potential and hence the 
radial distribution function for the planar liquid-like arrangement of the anti- 
rhodopsin-photopigment complex. 

Thus, our experimental results are consistent with the idea that the photopigment 
molecules of frog retinal receptor disk membranes most likely have a core of uniform 
electron density 38 to 40 A in diameter with a total diameter of 44 to 46 A, and 
occur in a planar or two-dimensional liquid-like arrangement within the wet frog 
retinal receptor disk membranes. 
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APPENDICES 
The derived radial distribution functions are sensitive to two types of errors; the 

experimental error in the intensity measurement and the errors induced in the 
Fourier inversion procedures. The origin of the experimental errors have been des- 
cribed in the Materials and Methods section. 

Jl’hem am three kinds of errors induced by the Fourier inversion procedures, 
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These are the intensity normalization error, the transform truncation error and the 
error in the scattering factor for the scattering particle concerned. 

It can be shown that the upper limit of the experimental errors (f5%) carried 
over into the derived 2rrr{p(r) - p,,&, values is &5% but the actual error is thought 
to be somewhat less. Hence it is permissible to analyse our derived radial distribution 
for nearest neighbor numbers and peak heights to at least this accuracy of ~5% and 
considerations are given in Appendix 2 that the error concerned is somewhat less. 
It is also permissible to distinguish between certain model scattering factors (dis- 
cussed in Appendix 4). We note that an analysis of errors induced by the Fourier 
inversion procedures is meaningful and the results obtained will be significant. 

We first derive the radial distribution function and then discuss the formulation 
for the intensity normalization constant K, the scattering factors for the 40 to 50 A 
particle and the antirhodopsin molecule, and the above-mentioned errors. 

Appendix 1. Derivation of the Planar Radial Distribution Function 
Diffracted intensity I(r*) arising from an electron density distribution u(r) is 

given by: 

I(r*) = \Svu(r) exp (27G r-r*) drl”. (2) 

Our diffraction patterns have cylindrical symmetry about an axis normal to the 
planes of the disk membranes and hence we resolve r and r* in the usual cylindrical 
co-ordinates r, 0, Z and r*, 8* and Z*, respectively. For our specific case, the dif- 
fracted intensity I(r*) becomes I(r*) = I(r*) I@*). 

Suppose, for a moment, that the disk membranes consist of only a single com- 
ponent, the 40 to 50 A particles. Furthermore, these particles occur with a planar 
liquid-like arrangement and their number density may be described by a planar 
radial distribution function denoted by 2mp,(r). Then, with the beam incident 
normal to the planes of the disk membranes, we would record a relative intensity 
I(r*). From the diffraction theory of liquids as applied to planar liquids (see, for 
example, James, 1948; Oster & Riley, 1952), equation (2) becomes: 

I(r*) -I, = K,I,(r*) = NfE(r*){l - jr2m{po - p(r)},J,(2rrrr*)dr} (3) 

where I, is the unobservable diffracted intensity at the origin and KPIP(r*)-+O as 

r*-+O. f,(r*) is the scattering factor for each of the N particles per disk membrane 
and p. is the average density of particles in the disk membrane, i.e. p. = N/A where 
A is the area of the disk membrane. The observed relative intensity I,,(r*) has been 
brought to an absolute scale via the intensity normalization constant K,, which is 
given by (see Appendix 2 for details) : 

P= s 

m NZ2 

K 0 
2nr*fE(r*) dr* ----$ 

(4) 
N 

s 
*2vr*I,(r*)dr* 
0 

where 2, is the number of electrons per particle. 
Equation (3) may be inverted by the Fourier-Bessel theorem (Watson, 1962) to 

give : 

(p(r) - p,), = Jr2nr*($$$/ - l)J,(2nr*)dr*. (5) 



428 J. K. BLASIE AND C. R. WORTHINUTON 

Of course, the disk membranes do not consist of only a single component. If the 
40 to 50 A particles were globular protein molecules, the other major component of 
the disk membrane would be phospholipid. From our birefringence data (Blasie 
et al., 1905; Blssie, unpublished results), the phospholipid molecules are most likely 
oriented with their long axis normal to the plane of the disk membrane. Hence 
phospholipid-phospholipid intermolecular vectors in the plane of the disk membrane 
would be less than 10 A in mqnitude. If the 40 to 50 A particles are embedded either 
partially or completely in the phospholipid, the medium surrounding the particles 
may be considered essentially ss 8 continuum in the treatment of low-angle X-ray 
diffraction data obtained with the beam incident normal to the planes of the disk 
membranes. If, however, the 40 to 50 b particles were spherical lipid mice&s, then 
the other major component would most likely be amorphous non-globular proteint 
and/or Ringer’s solution. Hence the medium surrounding the 40 to 50 ,& particles 
would probably consist of intermolecular vectors less than 10 A in magnitude, and 
again present essentially a continuum for the treatment of our low-angle diffractiondata. 

To see the effect of such a surrounding medium on the low-angle X-ray diffraction 
arising from the 40 to 50 A particles, consider the following: let the average electron 
density of the medium surrounding the 40 to 50 A particles be (5 ; let the 40 to 50 A 
particles (p-particles) have a cross-sectional electron density a&) (i.e. E spherical 
particles) with some cylindrically symmetric distribution function t,&(r) in the plane 
of the disk membrane ; and let ah., .(R,) be the cross-sectional electron density for a 
hard sphere of unit density and radius R, where R, is the maxina~~ radius of the 
p-psrticles. Then for the p-psrticles embedded in the medium with mutual exclusion, 
we have for the electron density in the plane of the disk membrane U(T) where * is 
the convolution symbol tt: 

+I = 6 - +~idR~)*$~(~)~ + u,,P(~)*&,P(~). (‘3) 
Then for the following Fourier-Bessel trsnsforms$ denoted by + and spherically 
symmetric Fourier transforms$$ denoted by g : 

I@*) + u(r)*u( I) 
6 + aqr) 

udW h.s.(~*, R,) ~f,m.(Rp) 

%(d 5 f&+*) 
AM = ~D,(~*)* 

t We heve 8ssumed throughout these pa ers that the 40 to 60 A particles give rise to the two 
observed intensity maxima for r* < O-040 x- l, from the wet disk membmnes. This ia reason8ble 
inesmuch 8s upon drying of the membrsnes, these rnexims shift in 8 aontinuous feshion in 
reciprooal space finally becoming the (10) and (11) refleotions of a square planer lattice of 40 
to 50 A particles. The existence of these particles in dried disk membranes has been independently 
verified by electron microscopy (Blesie et d., 1966). The absence of other intensity mexime in 
the low angle region suggests t&t there 8re no signif%ent number of other globular membnrne 
components with d&meters greater than 10 A. 

tt a (r) * b (r) = ha (r’) b (r-r’) dr’. 

$a@)%~ A(r+):a(r)= 
s 

,37*W WY-*) 2rr*dr*. 

A@*) = ,3r)J,(2mr*) 2wdr. 
s 

$$ t(r) 4 T(r*): t(r) = fomT(r*) sine (2rrrr*) 4nr*adr* 

T(r+) = ,” 
s 

t(r) sine (2nrr*) 4nradr 
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We have for the observable diffracted intensity: 

I(r*) -I, = I,,,,(r”>O) = 1 - Gf$+y zf,z(r*)qr*). ( P r* 
If the disk membrane consisted of the p-particles alone (G-+0), we would have in 
this formulation : 

IJr*>O) = f;(r*) z;(r*) (8) 
for the observable intensity. The relationship between Ip(r*) of equation (5) and 
lobS.(r*) of equation (7) is given by: 

Ioboas.(r*>O) = 1 - Gi 
( 

fIls.W 2 
f, @*I I 

IJr*>O) E c(r*)I*(r*>o). 

For the treatment of low-angle X-ray diffraction from the p-particles, the presence 
of such a medium surrounding the p-particles results in a reduction of the expected 
diffracted intensity from the p-particles alone by a factor of c(r*). 

Using equation (9), let us now write equation (5) in terms of the observed diffracted 
intensity, l,,b,.(r*>O), from the 40 to 50 A particles in the disk membrane. We then 
have : 
644 - POIP = co 
s [ II N.P 

2nr* 
~2m*f;(f+yar* --y 

I 
( 

c-l(r*)Iobs.(r*) 

1s ~277r*o~1(r*)Iobs,(r*)dr* 

.fi(r*) 1 - 1 1- J,(27rrr*)dr*. (10) 

0 J 
For any of the up(r) models tested in Appendix 4, it may easily be shown that 
fb.s.(%)/fp(r*) ana h ence c-l(r*) is only slowly varying with respect to Iobs,(r*) in 
the region r*<r*, (we note that in the notation of Appendix 4 a u,,(r) model is defined 
as u,,,(r) and thenf,(r*) and {p(r) - pO}P becomef,(r*) and {p(r) -p,},, respectively). 
Then, using the convolution theorem, the Fourier-Bessel transform of {c-l(r*) 

Iobs.(r*)} reduces, in good approximation with less than 4% error, to just the Fourier- 
Bessel transform of lobs.(r*). Hence, we obtain: 
{f(r) -fob = 

J,(2wr*)dr* !11) 

i.e. equation (1) of the section Fourier Analysis of the Diffracted Intensities where 
K/N is defined a8 the term in [ ] in equation (11). Let us now define 

KIobs.(r*) 
Nf$*) - 1 

I 
= i,(r*) 

and equation (11) becomes 

or 

{f(r) - foX = I;2 3-m*i,(r*)J,(27wr*)dr* 

GW - fob + W*). 

W) 
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We note that identical arguments hold for the case of the antirhodopsin serum 
treated disk membranes. In this case, the medium surrounding the adsorbed anti- 
rhodopsin molecules is phosphate buffered saline which is also essentially a con- 
tinuum in the treatment of low-angle diffraotion data. Hence, for the case of anti- 
rhodopsin serum treated disk membranes, f, and 2, take on their respective forms 
for the antirhodopsin molecule (as described in Appendix 4) in equation (12) and 
we then obtain (p(r) - po}p for the adsorbed antirhodopsin molecules. 

Appendix 2. DiEkacted Intensity Normalization 
For our cylindrically symmetric system, the Patterson function P(r) becomes 

P(r)P(z) where P(r) is given by: 

P(r) = /;2 rrr*I(r*)J,(2mr*)dr* = u(r)*u( I) (13) 

where o(r) is again an electron density distribution in the plane of the disk membrane. 
For r = 0, we would have: 

P(0) = so”2 rrr*I(r*)dr = 
s 

;2fiu+)dr. (14) 

Again suppose that the disk membrane consists of a single component, the 40 to 
60 A particles (p-particles). Then: 

s 
;27&(r)dr = N/;2mc#r)dr. 

But from Appendix 1, we know that : 

up(r)z,q,(--r) = S,m2m*f;(r*)J,((2mr*)dr* 

and 

~~{up(r)&-r)} = /;2me;(r)dr = /;2m*f;(r*)dr. 

Also, I@*) would become I@*) = K&r*) + I, where I, is again the unobserved 
diffraction at the origin. Then we would have: 

j;Zm*K&(c*)dr* + j-r2 rrr*I,dr* = N 
I 

;2m*f;(r*)dr*. (14 

Of course, 
f 

;2rrr*l,dr* 
N2Z2 

= 2 
A 

where 2, and A have the same definitions as in 

Appendix 1. Hence, we have for Kp : 

KP s ;2,i-r*f,(r*)dr* -y 
-= 
N 

I 
;2m*IJr*)dr* 

W 

Then, using equation (9) and the arguments presented in Appendix 1 where c-l(r*) 
is slowly varying, we have: 

K s 

NZ2 
;2m*f;(r*)dr* ---$ 

-= 
N 

s 
*2w*I,,,,&*)dr* 
0 

(17) 

for the case of the 40 to 50 A particles occurring in a natural disk membrane. The 
factor N/A may be replaced by A,, where A, is the average area of the disk membrane 
available to one particle. A, may be easily determined assuming that the total 
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number of particles per disk membrane is conserved upon partial drying and we 
know that in the partially dried state one particle occurs per unit cell, i.e. per each 
4900 82. 

Thus, with the particle scattering factors from Appendix 4, the diffracted inten- 
sities may be normalized for the 40 to 50 A particles of the receptor disk membrane. 

In the previous paper (Blasie et al., 1969), we show that the diffracted intensity 
from the antirhodopsin serum treated disk membranes may be considered to arise 
solely from the antirhodopsin molecules adsorbed to the disk membranes. Hence, 
using the scattering factor for the cylindrically symmetric antirhodopsin molecule 
[f,(r*)] cylindrically symmetric about the Z* axis also reduces to f,(r*) in the 
Z* = 0 projection) and using a procedure identical to that outlined above, the 
diffracted intensities from the serum treated disk membranes may also be normalized. 

The integrals occurring in equation (1’7) are also terminated at r,,*. This truncation 
error as well as errors associated with particle scattering factors and observed in- 
tensity measurement may well induce errors in the intensity normalization constant. 

For the treatment of intensity normalization errors in spherically symmetric 
systems, see, for example, the presentation of Paalman & Pings (1963). In our planar 
system, for an error in intensity normalization of E such that the normalization 
constant K becomes K (1 + l ) and using Fourier transforms cylindrically symmetric 
about the Z* axis, one can easily show that the calculated radial distribution function 
2~rp,,~,.(r) containing the normalization constant K (1 + 6) is related to the true 
radial distribution function 27rrptr, (r) containing the normalization constant K as 
follows : 

27dPcadd -PO&l = 274 + 4 {Pm&) - POIP + 237e~o*Jl(2~0*). (18) 

As an independent check on the intensity normalization constant, one can show 
that Kl,,,,(r*)+Nf~(r*) for r* 2 r,*. For r* > r,,* = O-024 d-l, the K/N derived 
in this Appendix and &(r*) calculated in Appendix 4 resulted in: 

AL.. -ft @*I 
I 

fib-*) 
< 0.02 for r* > 0.024 8-l 

and hence E < O-02. With r: = 0.024 A-l, the major contribution from the second 
term in equation (11) is confined to the region where, r < 25-O A. However, these 
contributions are small (C < 0.02) and the small oscillations for small r in the radial 
distribution function 2mp,(r) as calculated from equation (1) are not characteristic 
of J,(x) about the origin and can be completely accounted for by transform trun- 
cation errors and particle scattering factor errors (see following Appendices). Thus, 
apparently only the 6rst term, the linear perturbation of {2mptl.ue(r)}, on the right 
side of equation (18) limits our determination of nearest neighbor peak heights and 
nearest neighbor numbers to within *27&. 

Appendix 3. Transform Truncation 
With reference to equation (12), of Appendix 1, we see that p=(r) of the true radial 

distribution function is given by the following equation: 

b(r) -PO& = Jr2 rrr*i,(r*)J,(2rrr*)dr*. (19) 
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In practice, the integral is terminated at some T,* where KI&r*)+Nfi(r*) i.e. 
i&*)-+0 for r* > r,* which results in the presence of a Fourier-Bessel component 
of minimum wavelength, in the truncated radial distribution function denoted in 
primed notation as follows: 

{p’(r) - po},, = j” 27rr*i,(r*) J,(2wrr*)dr*. 

Equation (20) is equivalent to the following: 

where 

b’(r) - P-oh = p m* w(r*)i&*)J,,(2m*)dr* 

W(r*) = 
1 for r* 5 rO*o 
Oforr* >r,*’ 

(21) 

The Fourier-Bessel transforms (denoted by +) of i,(r*) and w(r*), are: 

&(T*) = {P(r) - Poh 

wtr* ) + 27r(r,*)a 
J1P7796) 

2n-w: 
E W(r). (22) 

The convolution theorem allows us to write equation (21) as: 

- j~m{~(4 - pojpW(r - Ghv’dr = {p(r) - po},,* W(r). - (23) 

To see the effect of transform truncation on Bmp,(r), we suppose for the moment 
that p,,(r) may be approximated by a sharply varying (with respect to W(r) ) maxima 
in the neighborhood of the Crst nearest neighbor peak at rl and the area under this 
maxima is N,. Then, from convolution theory, equation (23) becomes approximately 
[with less than 10% error if the half-width of pP(r) is less than three-tenths the 
half-width of W(r)] : 

and : 

2m&(r) z 2wN1 W(r - rl). (25) 

For T,* = 0.024 A-l, Figure 5 shows the effect of transform truncation on the true 
radial distribution function about its first nearest neighbor maxima at rl. Thus the 
truncated radial distribution function exhibits a first nearest neighbor maxima which 
may be broader and of lesser amplitude than that of the true radial distribution 
function. However, we have shown (Blasie & Worthington, 1968, Abstr. Ann. 
Meetkng Biqhya. Sot.) that model radial distribution functions, in which nearest 
neighbor numbers were conserved with respect to the radial distribution functions 
derived from the diffracted intensities as the nearest neighbor peak half-widths were 
varied, which predicted the normalized observed intensities with reliability factors 
of less than 10% had nearest neighbor peak half-widths only slightly smaller than 
those of the distribution functions determined from the diffracted intensities. Such 
reliability factors were calculated in the usual sense sampling the experimental and 
predicted intensity functions at identical intervals of dr* = OMU 8-l. Thus, the 
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FIQ. 5. Effects of transform truncation about the first nearest neighbor peak in the region of 
the planar radial distribution function where r is less than the particle diameter. Truncation 
effects were calculated according to Appendix 3, for comparison with the planar radial distribution 
function of 40 to 60 A particles of the untreated disk membranes at 26.O’C. 

primary effect of transform truncation as seen in Figure 5 is to induce small amplitude 
oscillations of the approximate form, 

JI &7(~ --rdrcl* > 
r {2n(r - r&-,*} 

about the first nearest neighbor peak at rl in the derived radial distribution functions 
in the region for T less than the particle diameter where the function should be zero. 
It is apparent from equations (23), (24) and (25) that the effect of transform truncation 
on only the first nearest neighbor peak results in significant contribution in the 
small-r region and hence Figure 5 shows the probable form of such oscillations for 
small T. 

It will be shown in the following Appendix that errors in the particle scattering 
factor also affect the radial distribution function primarily in the region of r less 
than the particle diameter. A method will be prescribed for the elimination of these 
errors thereby obtaining the “true” scattering factor for the scattering particle 
concerned. It is apparent that after the elimination of the particle scattering factor 
errors, one will still be left with the transform truncation error in the region of small r. 

It should also be noted that according to Appendix 1, K,I,(r*)-+ 0 as r*+ 0 and 
hence, so must KI,,,,(r*) according to the arguments presented there. Of course, 
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we do not reoord 1&p*) near the origin and hence 1,&r*) must be extrapolated 
to zero as r*-+ 0. It may easily be shown that an error in this extrapolation will add 
a low fiequenoy osoillation (of period 140 to 150 A) of extremely small amplitude 
in the derived radial distribution function. For our purposes, its effeot on the derived 
radial distribution function is negligible. 

Appendix 4. Particle !Scattedng Factors 
For the treatment of particle scattering factor errors in the spherically symmetric 

case, see, for example, Kaplow, Strong & Averbach, 1965. For our cylindrioally 
symmetric system, we suppose that the true particle scattering factor f,(r*) is related 
to the model particle scattering factor f&*) through a slowly varying error function 
‘(r*) as follows: 

f;(r*) = (1 + 4r*,>f:(r*,. w 

Then, from equation (21) of Appendix 3 we have: 

P’rl.&) -Po = I 
,m2~*w(r*)i,~,(r*)Jo(2mr*)dr. 

Substitution of equation (26) leads to: 

PI&-) --Po = j3 e-*(1 + +*)}w(~*)i~(r*)J,(2rrrr*)dr 

+ som2 rrr*w(r*)+*)Jo(2rrrr*)dr* 

For : L&*) + h,d9 --pal, +*I + JW), ad defining 
(1 + I} + H(r), and +*) + E(r), 

we have: 

(27) 

(28) 

uzl(~) -/Jo) = w*tt’w*ha -Pal + W)*Jw. (29) 

Remembering that W(T)* (PP(r) - po} = {p’&) - po} and for I slowly varying, 
H(r)*{&) - po} x b;(r) - po}. Thus equation (29) becomes: 

z 
I 

;2&lu(r*)e(v*)Jo(2~*)d~ z 1: 2m*+*)Jo(2m*)dr*. (30) 

It is apparent that for r0 * = 0.024 A-l, the major contribution to the right side of 
equation (22) occurs for r 5 25 A due to the nature of J,(x). For the 40 to 50 A 
particles of the receptor disk membranes and the 32 A diameter antirhodopsin mole- 
oules adsorbed to the antirhodopsin serum treated disk membranes, this contribution 
occurs well within the particle diameter. Thus errors in the particle soattering factor 
will induce an oscillatory behavior in Brrrp,(r) of equation (1) in the section Fourier 
Analysis of the Dif!fracted Intensities, for small r in addition to those of transform 
truncation through the convolution of the two errors. In absence of particle scattering 
factor errors [I = 0 for all r* and hence E(r) = 0 for all r] reduces to W(+E(r) =0 
and then p&Jr) = p;(r). Hence, the best possible particle scattering factor obtained 
by parameter variation of a model particle scattering factor will be the one which 
best results in a behavior of 2mp6(r) for small r as that predicted by transform 
truncation alone, namely Zmp’,(r) of equation (25) Appendix 3. 
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Model particle scattering factors for a 40 to 50 d globular protein molecule were 
based on the following cross-sectional electron densities c(r) for the molecule: 

(i) hard sphere U,(T) = 
1 for r < R, (hard core molecular diameter) 
o for r , R 

m 

(ii) hard sphere + exponential decay 

%h9 = 
1 for r 5 R, 
eeacrwR”‘) for r > R, 

(iii) soft sphere U,(T) = {e”(‘- Rm) + l}-’ 
(for ii and iii, a is a constant of dimension A-l). 

Considering the 40 to 50 A particle as a spherical lipid micelle, a cross-sectional 
electron density u,(r) for the spherical micelle of a,(r) = ema* seemed appropriate. 

Spherically symmetric Fourier transforms of the various cross-sectional electron 
density models for the 40 to 50 A particles, i.e. the particle scattering factors, were 
calculated and were then normalized to the molecular (or “micellar”) number 2, 

1 I 1 I I 

o.too- 

I I I 1 I 

I I I 1 I 

60 70 80 90 lO( 
r (4) 

FIG. 6. Planar radial distribution function for the particles of the wet untreated disk membranes 
in the region where r is less than the particle diameter. Best model particle scattering factors 
based on hard-sphere and soft-sphere cross-sectional electron density models for the particle 
were used. These planar functions are compared with that predicted by transform truncation 
alone about the first nearest neighbor peak in the region where r is less than the particle diameter. 

- - - -, Hard sphere model R, = 22 A; - . -, hard sphere model R - 20 A; . . . . ., soft- 
sphere model R, = 21 A, u = 10 A; - , transform truncation alone.m - 
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at the origin, For the globular protein model scattering faators, the moleouler number 
was calcul&ed using a density of 1.3 to l-4 g/cc, a molecular volume of $?rRk, and 
2, was then approximately one-half the molecular weight correoted for ‘7% hydrogen. 
For the spherical lipid micelle of density O-9 g/cc, “mioellar numbers” were asloulated 
using s micellar volume of $rR& (where R, was de6ned in this ‘case as that r such 
that U(T) < O-1 for r > R,), and 2, was approximately one-half the “micellar 
weight” corrected for 10% hydrogen. With these model soattering fautors, the radial 
distribution functions were calculated from the normalized diffracted intensities at 
260°C with variation of R&i A 2 R, < 60 d) and a(O-1 A-1 5; a < 10-O A-1) and 
were subsequently examined in the region of r < 2R,. It was found that only the 
particle soatking factors based on a,(r) of the hard-sphere models (20 A I R, I 
22 A) and soft-sphere models with 20 A < R, < 21 A and a 2 6 8-1 gave radial 
distribution functions 27wp’&) whioh approached that predicted from transform 
truncation alone for small r. !l!hus, only ressonsbly hard soft-sphere models gave the 
best soattering factors of the soft-sphere models and the celoul&ed radial distribution 
function 2mp’,(r) for that u,(r) model with R, = 21 A and a = 10 A-2 is compared 
with that predicted by transform truncation alone in Figure 6. Slight differences 
between the two distribution functions are evident for r < 20 A. !l!his difference 
will be nearly removed using another method to be discussed later. At this point, 
it is apparent that a reasonably herd soft-sphere based model soattering factor for 
a globular protein molecule with a hard core of uniform electron density 38 to 40 A 

FIO. 7. Planar radial distribution fun&ions for the cylindrical sntirhodopain moleoulea adsorbed 
to the wet sntirhodolxin serum treated disk membranes using partiole eoattering factora based 
on herd oylinder oroas-eeational electron density mod& for the antirhcdopein moleoulee. The 
effeot of variation of the oylinder radius on the planar function ie shown in the region for r less 
than the moleeuler diameter. 

Hard-cylinder models : -, R,=MA;-.-,R,=HA;----,R,=KSA;.....R, 
= l&i;-----, R, = 21A. 
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-O.‘OO. 
0 IO 20 30 40 50 60 70 

FIQ. 8. Same as Fig. 7 except that the particle scattering factors were based on soft-cylinder 
cross-sectional electron density models for the antirhodopsin molecules. The effects of variation 
of the effective cylinder radius on the planar radial distribution function are shown for r less 
than the molecular diameter. Variation of the degree of “softness” demonstrated that only 
reasonably hard (n 2 5 A-l) soft-cylinder models approached the proper behavior for the small 
r-region. 

Soft-cylinder model R, = 
c( _';&I; ---, 

14 A, a = 10 A-l; -. -, soft-cylinder model R, = 16 ip, 

R, = 16A. 
soft-cylinder model R, = 18 A, CL = 10 A-i; -, hard-cylinder model 

in diameter with a total diameter of 44 to 46 A is quite good while others, particularly 
that for a spherical lipid micelle, result in severe oscillations in 2~~&(r) for r < 2R,. 
The transform truncation error was identical in all cases. 

For the antirhodopsin molecule adsorbed to the antirhodopsin serum treated disk 
membrane, it was found in an entirely analogous fashion that a molecular scattering 
factor obtained by a Fourier transform cylindrically symmetric about the axis of a 
hard cylinder electron density model with a radius R, = 16.0 f 1 A and a length 
1 = 240 f 10 A (molecular volume of ?rR2,1, density of 1.3 to l-4 g/cc, and 2, 
approximately one-half the molecular weight corrected for 7% hydrogen) gave a 
radial distribution function 2~wp&(r) which best approached that predicted from 
transform truncation alone see (Figs. 7 and 8). 

The molecular scattering factors as derived above were used in calculating the 
radial distribution functions shown in Figures 3 and 4. 

Another approach to the calculation of the true particle scattering factor is via 
a Fourier-Bessel inversion of equation (30). First, we observe that our best fm(r*) 
based on a soft-sphere u(r) model with R, = 21-O A and a = 10.0 d-l resulted in 
2~rp& (r)-such that 2mp#-) was still fairly small compared with 2mp& (T) in the 
small r region. Hence, using fm(r*) based on soft-sphere o,(r) models, we can assume 
the left side of equation (24) to be approximately pk (T). Then, a Fourier-Bessel 
inversion of equation (30) in the small r region gives: 

w(r*)c(r*) w 
f 

ytiph,(r)J,-,(2mr*)dr. (31) 
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For r* < r,*(w(r*) 3 1 for T* 5 r,*), then 

E(r*) % 
I 

2Rm2~&(r)J,(2rrm*)dr o (32) 

and for r; > r,*, I is undetermined. 
With the various approximations leading to equation (32), we do not calculate a 

precise I. Instead we obtain sn approximation to it, namely l ,i(r*). In this 
manner, cpi(r*) was obtained from several p;(r) based on the soft-sphere molecular 
scattering factor (a = 10 8-l) for the 40 to 50 A globular protein molecule varying 
R,(lO A I R, I 30 A), then &(T*) was calculated oka equation (26) and then 
2~rp’,~(r) was calculrtted via equation (27). It was found that the l ,i(r*) derived 
from p&(r) based on a soft-sphere model molecular scattering factor fJr*) with 
R, = 21.0 A (a = 10 A-l) induced the most rapid convergence to a f$(r*) such 
that Bn-rp’,,(r) became nearly identical to that predictted by transform truncation 
alone, 27rrp’,(r). fil(t+*) and fk(r*) are shown in Figure 8 and 2mp’,,(99 together with 

Fra. 9. The shape of the square of the “true” particle soattming factor (f$ (r*)} for the particles 
of the wet untreated disk membranes is compared here with that of the square of the beat model 
pnrtiole sosttering factor {& (r*)} baaed on a soft-sphere cross-sectional electron density for the 

per&lea. Both jE1 and ff, were determined by the m&ho& described in Appendix 4. 
-.-, Hard-sphere model fk (r*) R, = 22 A; . . . , ., soft-sphere model fk (9) R, = 21 A, 

Q = 10 A-1; ----,f”,i (r+). 

the 271-rp’~(r) predicted from transform truncation alone are shown in Figure 9. 
However, as p;(r) is limited in resolution by r,*, so is the true molecular suM&ng 
fector known a00urately only for r* < r, *. !Chus, inversion off&*) to obtain the 
true oross-seotional electron density for the globular protein molecule is not too 
meaningful. Therefore, the shape of the true a&king factor for r* < rO* for the 
globular protein which we have shown to be the photopigment molecule is shown 
in Figure 9 while the cross-se&ions1 electron density for the photopigment molecule 
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is well described by a soft-sphere model where the hard core of uniform electron 
density is about 38 to 40 A in diameter and the total diameter is 44 to 46 8. By 
comparison with our electron microscopy, it is apparent that the hard core of uniform 
electron density is the non-polar core of the photopigment molecule. 

0 IO 20 30 40 50 60 70 
r (A) 

FIQ. 10. The planer radial distribution functions for the particles of the wet untreated disk 
membranes using f$ (r*) and & (r*) in Fig. 9 compared with that predicted by transform trim- 
c&ion alone in the region for T less than the particle diameter. 

. . . . ., f; (r*); - - -, f$ (r*) ; -, transform truncation alone. 
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