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The polarized neutron method of determining the magnetic form 
factor of magnetic materials ~s examined in detad with specml 
attention given to the way in which statistical errors are propa- 
gated Because of the nonhnear relation between the polarizing 
effioency of a crystal and the magnetic scattering length, the 
usual methods of hnear error theory wdl not work. However, this 

difficulty can be circumvented by using the nonhnear formulas 
d~rectly. The statistical error analysis is apphed to the practical 
problem of how long one should count on a particular Bragg peak. 
Th~s t~me wall depend on the ratio of the magnetic to the nuclear 
scattering lengths, p/b, and on the accuracy with which the beam 
polarizations and flipping efficlencies have been determined 

1. Introduction 

The primary use of a polarized neutron spectrometer 
has been in the form factor determination of ferro- 
magnets and some ferrimagnets and antiferromag- 
nets ~ -6). The purpose of this paper is to examine this 
method of measuring magnetic scattering amplitudes, 
to discuss the importance of the various correction 
factors and to show how the statistical errors are 
propagated. 

In section 2 the famlhar formula for the flipping 
ratio or polarization ratio is introduced with emphasis 
on the assumptions required to derive it from the 
general expression for the cross section. The experi- 
mental arrangement of the polarized neutron spectro- 
meter is described in section 3. The Shim Ratio Method 
for the measurement of the polarization of the beam P 
and the thpping efficiency e of the rf coil is examined2). 
It is pointed out that a measurement, additional to 
those usually made, is the key to a reliable determina- 
tion of P and e. This extra measurement is of the 
intensity scattered from the analyzing crystal with both 
the flipper on and the depolarizing shim in the beam. 
This gives a sensitive measurement of the depolarizing 
efficiency of the shim and ensures a consistent set of 
readings. In section 4 the expression for the experi- 
mentally measured flipping ratio is derived and the 
assumptions required to arrive at the simple expression 
of section 2 are pointed out. In section 5 expressions 
for the statistical errors are developed and tabulated 

for values of P and e of 1.0 and 0.9. A typical experi- 
mental result is taken in order to illustrate how to 
assess the error in a practical case. In section 6 we dis- 
cuss four of the principal systematic errors which can 
occur, (a) extinction; (b) drift of the flipper efficiency; 
(c) spin-flip scattering cross sections, and (d) de- 
polarization in the specimen. Section 7 uses the statis- 
tical error analysis to calculate counting-time-ratios 
for the case when it is deslred to have equal error 
contributions from all the intensity measurements re- 
volved in determining the form factor. The principal 
results and conclusions are summarized in section 8. 

2. Polarized neutron scattering cross section 

In the Born approximation, an elastic scattering 
cross section involves the Fourier transform of the 
interaction potential. Classically the energy of rater- 
action of a point-dipole /t with a magnetic field B is 
p.B. In quantum mechanics/~ and B are operators. We 
take the operator corresponding to the dipole moment 
of the neutron as the Pauli spin matrices (a) with the 
corresponding neutron spin wave functions (~) and (0). 
The expectation value of  the operator B is the actual 
magnetic induction field appearing in Maxwell's 
equations. We use the same symbol B to represent th~s 
expectation value. When the wave vector of a Fourier 
component of the magnetic induction is the same as 
that of a Fourier component of the mass density, then 
there is interference between the nuclear and magnetic 
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Apphed Science, Gulf General Atomic, San D~ego, CahfornmfllFJcross s ec t i o n s  which a magnetic material presents to  
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an incident beam polarized to a degree P, along a 
direction 13 are given byT): 

dcrt,/dg2 ac l Va + ttngNBa" /312"½(1 + P,), (1)  

dirt t/dr2 oz I Vo --/~ngNB," P 12"½( 1 -- PI), (2) 

d~r t t/dO cc { I/2ngNB a 12 __ ] ~t, gNB./312}. ½(1 + P,), (3) 

d% Jdf2 oc {I/~, gNBg 12 --I/~,gNB~"/312}" ½(1 -- P,), (4) 

where 

- I = < P , < + I .  

Vg and B a are the Fourier components of the neutron- 
nuclear interaction potential V(R) and the magnetic 
induction B(R) corresponding to the reciprocal lattice 
vector g respectively. /~,gN is the magnetic moment 
of the neutron. The arrow subscripts on the cross sec- 
tions denote the initial and final spin directions of the 
neutron with respect to the dlrecSon P. It is evident 
that components of B a not parallel to P contribute to 
spin-flip processes. 

The Fourier components of the magnetm induction 
and the magnetlzatmn are related through Maxwell's 
equations by 

B a = 4rcMo-4rcg(g'Ma)/IO[ 2, (5) 

where Mg is the Fourier component of the magnetiza- 
tion M(R). 

In a polarized beam experiment in which the 
polarization of the inmdent beam P, is reversed, the 
only term which is affected is the interference term 
between the magnetic and nuclear scattering. Conse- 
quently, the change of intensity observed in such an 
experiment is caused only by that part of the Fourier 
component of the magnetizatmn which is both perpen- 
dicular to g and parallel to the polarization direction. 
In general, therefore, this experiment does not measure 
the true form factor (the normalized Fourier transform 
of the magnetic moment density) which is really a 
vector quantity. 

It is well known that, for polarized neutron work, 
ferromagnetic crystals must be saturated; that is, the 
net magnetization of all the domains must be aligned. 
The polarization of the incident beam is also aligned 
by the external field which is applied to the sample. 
We will call this the +z-direction. The magnetic part 
of the interference term, therefore, contains only Bg~, 
whereas the pine magnetic term is proportional to 
I Bgl z. The existence of the components Box and Boy 
has not been precluded by the assumption of a net (bulk) 
magnetization. If  the magnetization is periodic with the 

lattme, the Box and Bay cannot be determined simply by 
observation of the flipping ratio R: 

R = V2+IIt"gNB°Iz+2P'kt"gNV"Ba~. (6) 

V 2 + ] ,UngNB a ]2 __ 2P,itngNVaB,~ 

We again note that Bax and Bay contribute to spin-fhp 
processes only. In the special case that Box and Bar 
represent a normal helical wave propagating in the 
z-direction, then (B2x + B~v) could be observed directly 
from R by applying the external field along the scat- 
terlng vector K= O. In this case Ba= is zero [eq. (5)] 
and the polarization effect of normal helical waves was 
pointed out by Overhauser 8) although it has not yet 
been observed experimentally in elastic scattering. 
Otherwise the polarlzatmn of the scattered beam must 
be analyzed. 

If  we make the simplifying assumption that all the 
Fourier components of the magnetization are parallel 
or antlparallel to the single direction picked by an 
external field applied perpendicular to 0, then there is 
no spin-flip scattering. This assumption that the mag- 
netization direction does not vary across the atom is in 
accordance with the rigid spin model9). If we also 
assume that all atoms are equivalent, then the measured 
flipping ratio can be written 

R -- (bZ+pZ+2Pbp) / (bZ+p2-2ePbp) ,  (7) 

where P = P,. The nuclear scattering length b is given by 

b = {Mn/(2rchz)}V, Vce,, [10 - ' 2  cm], (8) 

where Mn is the neutron mass, and Vco,, is the volume 
of the unit cell. The magnetic scattering length p(g) 
is gwen by 

P(O) = 0.2695kt0f(0) [10 - l z  cm], (9) 

where #o is the magnetic moment per atom in Bohr 
magnetons and f (0 )  ~s the form factor of the atom. The 
quantity ~ is defined as the efficiency with which a 
flipper turns the incident beam polarization from P 
along the + z-axis to - P  along the + z-axis. Eq. (7) is 
the simple expression for the flipping ratio which is 
commonly used for ferromagnets 1°). 

3. Measurement of beam polarization and flipper 
efficiency 
A schematm diagram of the experimental arrange- 

men¢ '7) used to measure magnetm form factors is 
shown in fig. 1. Magnetic fields of about 3000 G are 
applied to the Co(8%Fe) monochromator and analyzer 
crystals and a guide field of about 150 G is maintained 
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Fig 1 SchemaUc drawing of a polarized neutron experiment. 

in the region between the monochromator  and the shim 
which is about 18" from the analyzer. All fields have the 
same sense. The flipper is a coil placed axially along or 
across the beam and supplied wzth rf  power to provide 
a small oscillating field which is perpendicular to the 
grade field. 

In the analysis that follows we make the simplifying 
assumption that the guide field causes no reorlentation 
of any neutron spin. In other words spin-flip occurs in 
region l I  in the monochromator  only, in region I I I  
only when the flipper is turned on, in region IV only 
when the shim is inserted, in region V in the analyzer 
only. This assumption can be checked experimentally 
by observing the intensity scattered from the analyzer 
as various guide field parameters are changed. These 
parameters may be, for example, the distances between 
the ends of  the guide field and the monochromator  and 
analyzer, or the relative positions of the permanent 
magnets used to produce the guide field. 

The +z-direction is defined by the applied magnetic 
field whether it is the monochromator  field, the guide 
field or the analyzer field. The +z-  and -z-direct ions  
are denoted by subscripts t and ~ respectively. Super- 
scripts denote either a region (I, II,  I II ,  IV, V) or a 
crystal, monochromator  (M), analyzer (A), sample (T). 
Thus, for example, N] II is the number of  neutrons m 

A is the cross section the +½ state in region I I I ;  and o-,t 
for a neutron incident in the - ½  state to leave the 
analyzer in the + ½ state. The probabili ty that a neutron 
spin is reoriented by 180 ° in the flipper is defined as 
f where we have assumed 

ft~ =f++ =L 0o) 
A similar quantity q is defined for the shim. The 
polarization of the neutron beam in, say, region I I I  is 
defined to 'be  

P " [ -  (N~[ i,, i, ,u = - N , ) / ( N t  + N , )  (11) 

We also define the polarizing efficiency of, say, the 
analyzing crystal to be the polarization of the beam 
scattered by the analyzer when the incident beam is 
unpolarized (N~ = N~). Thus 

P(A) = [((~¢T + a ~ T ) - ( a L  +a¢~) ] /6  A, (12) 
where 

~r~-  A'-- A ~ -  A ' .  A71 (13) 6rTl" -f" ffi" 1 -1- (~ T -i- ~rl ~" 

Note  that, by definition 

P"  : P(M); (14) 

We can now write down the number of  neutrons of 
each polarization state in each region with the help of 
these definitions, and these results are given in table 1. 

We now consider the intensity scattered from the 
analyzer under four conditions: (1) Flipper off, Shim 
out; (2) Flipper off, Shim in; (3) Flipper on, Shim out; 
(4) Flipper on, Shlm in. We denote these intensities by 
Ij(j = I, 2, 3, 4) and note that 

Ij = N~ + N~. (15) 

These four measured intensities are conveniently de- 
fined in terms of three ratios: 

Shim ratio (S) - Ia/12; 

Flipping ratio (R) = 11/13; 

Special flipping ratio (Rs) -= 12/14) (16) 

Expressions for these ratios are shown in the second 
column of table 2. We note the similarity between the 
expression in square brackets in each of these expres- 
sions and the term on the right hand side of  eq. (12). 
In fact 

(a~'t + a ~ l ) - ( a ~ +  +a~ t  ) = aAp(A), (17) 

if 
= A ( l S )  

( ~  G~ t. 

The implications of eq. 08 )  may be illustrated by the 
following considerations: There are several processes 
which may contribute to the spin-flip probabllmes of 
a~t and ate. These are: 

1. The existence of components of Bg perpendicular 
to the polarization direction as shown by the cross 
sections in eqs. (1)-(4); 

2. Local distortion of the magnetization (particularly 
at surface imperfections) causing local z-axes not 
aligned wlth the external field, thus the neutron spin 



Number of neutrons of each spin state m each region under various conditions. 

Region Number of up (T) 
neutrons, N¢ 

Number of down (,L) 
neutrons, N¢ 

Beam polarization Special conditions 
or remarks 

Optimum condinons 

II 

l lI  

IV 

V 

N~ = )N O N] : ½N O P ' =  0 

II 1 M M 
N, = ~No(atT + a , t  ) II 1 M N~ = ~-No(o'~ + a ~ )  p l l=  P(M) 

N~ I = ( N~I N~ II : t N~I 

[N~I + f (N~I-  N?) 

p i l l =  / P(M) 

t ( 1 - 2 f ) P ( M )  (NI , (,,i, 
N~ v = N]V = ply = 

[ ~, rill CxdII ~ r l l l \  w ~  - q t ~ ,  - ~ )  ~xI~lI+q(N~lI-N~") ( ( l - 2 q ) P  l" 

V A ~ , I V .  A *r lV 
N r = a t f fv ,  +a , t~v ,  V A * r l V - -  A I V  pV 

Incident unpolarized 
polyenergetlc beam 

Monochromated 
polarized beam 

Flipper off 

Flipper on 

Shim out 

Shim in 

Analyzed 

Beam 

Perfect polarizer: 
O'st =O" =O" = 0  
P(M) = 1 

pU= 1 

pUi= 1 

Perfect flipper: f = 1 
pm = _ l 

p i V  ~ _ 1 

Perfect shim: g = ½ 
pW = 0 

Perfect analyzer: 

= 4 ,  = = o  
P(A) = 1 

t~ 

o 

© 

N 
m 

Z 
C 
-]  

© 
Z 

Intensity ratm 

TABLE 2 
Expressions for intensity ratios. 

From table l and eqs. (10), (11) and (12) 
Assume. a~, L = a~, 

Define: e = 2f  1 
fl = 2 q - 1  

Assume monochromator 
and analyzer idenhcal 

P(M) = P(A) 

Shim ratio 
S = 11/12 

1 +  * 

1 + (1 -2q ){P(M) /a*}  A * * + + 

= {I +P(M)P(A)} 

{1 - fl P(M)P( A ) } 

(1 + p2) 

(1 _tip2) 

Flipping ratio 
R = 11/13 

1 + (P(M)/a*} [(aft + a ~ ) - ( a ~ t  + a~T)] 

1 + ( 1 - 2 f )  {P(M)/a*} [(aft + a ~ ) - ( a ~ l  + a~t)] 
_ {1 +P(M)P(A)} 

{1 - ~P(M)P(A)} 

(1 +p2) 

Special flipping ratio 
R, =- I2/14 

1 + (1 - 2q) {P(M)/a *} [(a~'l + a ~ )  - (a~t + a~l)] 

1 + (1 - -  2q)(1 - -  2f) {P(M) / aA} [(aft + aft  ) -- (a~t + a~l)] 
{1 -fiP(M)P(A)} 

{1 + eflP(M)P(A)} 

(1 _tip2) 

(1 + eflP 2) 
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may be flipped in a scattering process in this local 
region; or 

3. The neutron may precess about  the local z-ax~s 
before or after a scattering event. 

Our experience with the Co(8% Fe) monochromators  
and analyzers has been that the surface conditions are 
extremely important  m seeking to eliminate these de- 
polarizing spin-flip processes. Simple arguments then 
lead to the conclusion that a1. ~ = a~ 1 if both the entrant 
and exit surfaces are identical as far as the three 
processes listed above are concerned. We will assume, 
therefore, that eq. (18) is valid. The modifications to 
the intensity ratios [eq. (16)] are shown in the third 
column of table 2. We note, however, that the measure- 
ment of  the three ratios of  eq. (16) are not sufficient 
to determine the four unknown quantities P(A), P(M),  
e ( =  2 f - l )  and f l (=  2 q -  1). We could introduce a 
third crystal and measure the three ratios for every 
combination of the three crystals. This involves the 
inconvenience of changing the monochromator .  Alter- 
natively we can make an assumption about P(A) and 
P(M). Some groups have used very thin analyzers and 
assumed 2) that P ( A ) =  1. Since we have available 
crystals of the same size cut from the same boule and 
which show very similar double crystal rocking curves, 
we prefer to make the assumption that the polarizing 
efficiencies of  the analyzer and monochromatol  are 
identical. Thus we assume 

P(A) = P(M) = P (19) 

and note that because of eq. (14), P is the polarization 
of the beam scattered by the monochromator  and 
incident on a sample crystal if the flipper is off and the 
shim is out. The simple expressions for the intensity 
ratios that  result f rom this assumption are shown in the 
last column of table 2. These expressions may be 
inverted to give 

p2 = Rs (S_ I ) (R_I ) / (R_Rs ) ,  (20) 

= (R-R~S) / {RR , (S -  1)}, (21) 

fl = n(1 - R s ) / { R , S ( R -  1)}. (22) 

In summary, we can measure the polarization of the 
beam from the monochromator  and the flipping effi- 
ciency with the Shim Method if we make just two 
assumptions. These are that  the probabili ty for spin-flip 
in the analyzer is the same for up to down as it is from 
down to up, and that  the monochromator  and analyzer 
have identical polarizing efficiencies because their other 
characteristics are similar. By measuring the special 
flipping ratio Rs we avoid the difficulty of assuming that 

the shim depolarizes the beam completely by measuring 
its depolarizing efficiency. We thus have a consistent 
set of  measurements. 

4. Measurement of flipping ratio on sample crystals 

The measured flipping ratxo on a test crystal is 11) 

R m = {1 +PP(T)}/(1 -ePP(T)),  (23) 

in analogy with the previously defined R (column 3 in 
table 2). The polarizing efficiency of the test crystal 
P(T) is defined according to eq. (12). The quantity R m 
ts the ratio of two intensities, 15 being that from the 
test crystal with flipper off and 16 with flipper on. 
Eq. (23) is a fairly general expression for the measured 
flipping ratio in terms of the cross sections of  the 
sample crystal. In order to equate it with eq. (7) we 
must make assumptions about  the test crystal. 

1. There is no extinction; 
2. The sample is a simple ferromagnet so that there 

are no spin-flip processes due to Bg x and Byy [eq. (4)] 
and we can write in accordance with eqs. (1) and (2) 

T a~T ~: ( b + p )  2 and a ~  ~ ( b - p ) 2 ;  (24) 

3. The sample is saturated and the surfaces are highly 
polished to that there are no other spin-flip processes 
as discussed in section 3 and we can further assume 

a ~  = aTt = 0. (25) 

Solving eq. (23) for the polarizing efficiency of the 
test crystal P(T) gives 

P(T) = ( R m -  1) / {P(eR m + 1)}. (26) 

I000 

,oo E=bO~ \ 

Meosured 
Flipping 
Ro|IO 

RM I 0  

I0  

OI 
- : 3 0  - 2 0  - I 0  0 I 0  2 0  0 

X = p / b  

Fig 2. Plots of the measured flipping ratio Rin as a funchon of 
X=-p/b for two combinations of the instrumental parameters 

P, e and/3. 
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Since 

P(T)  = {(b +p)Z _ (b-p)2}/{(b +p)2 + (b-p)Z), (27) 

we have tha t  X is re la ted to  the  measured  po la r iz ing  
efficiency by 

X - plb = {1/P(T)} -4- [{ l IP(T)}  2 - 1] ~. (28) 

Eqs. (26) and  (28) show how the quan t i ty  of  in teres t  in 
the test crystalp/b, is related to the measured  quanti t ies.  
P lo ts  o f  R,, aga ins t  X are shown in fig. 2 for  two values 
of  the incident  beam po la r i za t ion  (P).  The p lo ts  are 
on a semi-log scale because o f  the r ap id  change of  R m 
as I XI approaches  unity.  I t  may  be no ted  tha t  if  e = 1 
then 

R(X) = l/R(- x).  (29) 

5. Propagation of  statistical errors 

The s ta t is t ical  errors  in the exper imenta l  de te rmina-  
t ion o f  X arise f rom the measurement  of  the  SlX inten-  
sities Ia,I2...I 6. We wish, therefore,  to calculate  the 
error  in X caused by  the s ta t is t ical  errors  in the six 
measured  intensit ies.  

The usual app roach  to  e r ror  ca lcula t ions  is to use 
the first te rm in a Tay lo r  expansion,  

AX = [OX/dP(T)]xoAP(T ). (30) 

The val id i ty  of  this me thod  depends  (at  least)  on the  
existence of  the der ivat ive at  Xo. F r o m  eq. (28) we see 
tha t  none  of  the der ivat ives  of  X with  respect  to  P (T)  
exists at  P (T)  = _+ 1 so tha t  a Taylor  expans ion  in the 

f3 
plb 2 

I 

-.I- I 
- I  P (T) "-"- 

2 

Fig 3 A plot of the polarizing efficiency P(T) of a test crystal as 
a function of the ratio of the magnetic scattering length p to the 
nuclear scattering length b The (+)  and ( - )  signs on the curve 

indicate the two branches of eq (28) 
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_ , o _  

- 1 5  - 

- 2 0  - i i ~ , , ~ - 
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Fig 4. Because of  the nonlinear relation between X and P(T),  thts 
figure must be used in the calculation of AX/X for a given 
measured statistical error AP(T) m P(T) The shaded regions are 
physically inaccessible since the polarizing efficiency of the sample 

can never be greater than 1 

ne ighborhood  of  -I- 1 is invalid.  We  take  the pos i t ion ,  
therefore,  tha t  AX can be calcula ted f rom AP(T)  
according  to 

X + AX = {P(T) + AP(T)} -1  ~ {[P(T) + A P(T)]  -2 _ 1 }÷. 

(31) 

X is given in terms of  P(T)  by eq. (28). The re la t ion  
betweenp/b and P(T)  is shown in fig. 3, which i l lus t ra tes  
the obvious ,  bu t  very impor t an t ,  physical  l imi ta t ion  
tha t  - 1 < P(T)  < + 1. The signs on var ious  par t s  of  
the curve refer to  the  sign in f ron t  of  the radical  in 
eq. (28). W i t h  the help of  eqs. (28) and  (31) curves of  
AX/X agains t  X were ca lcula ted  for  var ious  values of  
AP(T)/P(T) and are shown in fig. 4. The a r rowheads  
indicate  the d i rec t ion  of  increasing X for a pa r t i cu la r  
value of  AP(T)/P(T). The two shaded po r t ions  are a 
consequence of  the physical  l imi ta t ion  we have a l ready  
noted  when it is app l ied  to eq. (31). In  this case the 
l imi ta t ion  is expressed by the curve AX/X = ( l / X ) -  I. 
In  general ,  for  a f ixed va lue  o f  AP(T)/P(T), we see 

tha t  AX/X rises sharp ly  as X approaches  1. We also 
note  tha t  the curves are asymmet r i c  in AX/Xfor a given 
value of  X and magni tude  of  A P ( T ) / P ( T ) ;  for  example  
if X = 0 . 8  andAP(T)/ P(T) = +_O.02thenAX/X= +0.13  
or - 0 . 0 7 5  F o r  posi t ive values of  AP(T)/P(T) then 
AX/X is sharp ly  peaked  as X increases f rom 0 to 1 so 
tha t ,  for  example ,  AX/X at X = 0.95 is less than  AX/X 
at  X =  0.90 for AP(T)/P(T) > +0.005.  We emphas ize  
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TABLE 3 
Expressions for calculation o f  AP(T). 

AP(T) = ± [(A2/I,) + (A22/I2) + (A2/Is) + (A2/I4) + (A2/I5) + (A2/I6)] ~ 

A1 

A2 

A3 

A4 

A5 

[A6 

= [(1 + p2)/{2p2(1 + ~)(1 +/3)}] [P(T) {(I - e) + fl(1 - ep2)} _ 2~P {P(T)) 2] 

= [e(l _/3p2)/{2p2(1 +e)(1  + fl)}] In(T)  {1 -P2}+2P{P(T)}2] 

= [(1 - eP2)/{2p2(1 + e) (1 + fl)}] [P(T)  {2 +/3(1 + pZ)} + 2n{P(T)}2] 

= [(1 + e / 3 P 2 ) / { 2 p 2 ( 1  + e)(l + fl)}] [-P(T) {l - p2} + 2P{P(T)}2] 

= [P(T)]  2 [(1 + X 2 + 2PX) (1 + X 2 - 2enx) / {4PX2(1 + e)}] 

= I A s I  

again that  this behavior is caused by the fact that  it 1s 
physically impossible for a crystal to have a polarizing 
efficiency P(T) greater than 1. The mirror  images of  
these plots occur for the negative values of  X. 

In  order to calculate now the error in P(T) due to 
errors in I 1 through 16 we regard P(T) to be a function 
of  P, e and Rm as expressed by eq. (26). We further 
regard P and e as functions of  the experimental in- 
tensity ratios R, R s and S (defined in terms of  11 
th rough  I 4 in column 1 of  table 2) as expressed by 
eqs. (20), (21) and (22). Since there are no further 
difficulties with the existence o f  derivatives we calculate 
AP(T) due to, say, I i according to the first term in a 
Taylor  expansion [eq. (30)]. Since the quantities 11 
t h r o u g h / 6  are statistically independent we write the 
expression for  the total AP (T) as 

AP(T) = ± [ {(SP(T) / 811)811 }2 + 

+ ((SP(T)/8Iz)Mz} 2 + . . . ] a .  (32) 

The partial derwatives are found by the "chain"  rule 
f rom the relations between P(T) and P, e, R m a s  noted 
above. We also assume that  

8I, = 1~. (33) 

The expressions that  result f rom this procedure are 
shown in table 3 where we have written for simplicity 

A P(T) = ± [(A~/I1) + (A~/I2) + (A2/I3) + 

2 2 2 ½ +(A4/I,) +(Af/Is)+(A6/I6) ] . (34) 

We note  in passing that  the I~ are corrected for back- 
ground and that  we include this in the computa t ion  of  

61,/1, as well as statistical errors in the moni tor  system. 
We can usually ensure tha t  the moni tor  error is small 
so tha t  we have written eq. (34) as a convenient  approxi- 
mation,  bearing in mind, however, that  6I,/I, includes 
moni tor  and background errors in an actual calcula- 
tion. The behavior o f  these coefficients IA,] with 
changing X are plot ted in fig. 5 for the two sets 
P = e = l ,  / 3 = 0  and P = 0 . 9 ,  e = l ,  / 3 = 0 .  For  the 
perfect condit ions we note the symmetry  o f  the A, 
about  X = 0  and that  A 3 = 0 .  I f  both  P and e are 
different f rom 1 then there is no symmetry  about  
X = 0. In our  second c a s e  A 2 = A4 only because both  
/3 = 0 and e = 1 as is evident f rom table 3. Note  that  
AP(T) may be large near X =  1 because of  A~, but also 
it may  be large neal X =  0 because of  A 5 and A 6.  For 
example if we make the somewhat  unreahst~c assump-  
tion (for convenience) that  we have counted all in- 
tensities to an accuracy of  about  4% then use o f  fig. 5 
to find the A, (and table 3) shows that  AP(T)-~ 0.05 
if either X =  0.1 or 0.7 for P = 0 . 9 ,  e = 1 and /3 = 0. 
In this case the percentage error AX/X is much larger 
for the case when X =  0.I than for X =  0.7 as may be 
seen from fig. 4. 

I f  an extensive experimental effort is directed toward 
form factor measurements  it is worthwhile to prepare 
a series of  figures of  the type shown. The procedure is 
then as follows. Measurement  of  the intensities 11 
through I 4 yields values of  P, e and /3 according to 
eqs. (20), (21), ( 2 2 ) . . .  Measurement  of  15 and 16 yields 
a value of  R m and fig. 2 is used to find the value of  X 
for the particular P, e and/3. The polarizing efficiency 
is then easily calculated from eq. (27) or read off fig. 3. 
The A, are then read f rom fig. 5 and used to compute  
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+ A P ( T ) .  The percentage  er ror  AX/X  is then found  
f rom fig. 4. We will discuss fur ther  the  exper imenta l  
impl ica t ions  of  ca lcula t ions  like those  given in the 
example  above  in a la ter  section.  

6. S y s t e m a t i c  errors  

The systematxc errors  which arise in an exper imenta l  
measuremen t  may  be due to changing  cond i t ions  in the 
exper imenta l  appa ra tu s  or  to the lack of  va l id i ty  of  
some assumpt ions  made  a b o u t  the  measurement .  In  
po la r ized  neu t ron  d i f f rac tomet ry  an example  o f  the 
fol mer  may  be an increase in e lect ronic  noise when the 
rf  f l ipper is on and  an example  of  the  l a t t e r  may  be 
tha t  the sample  is no t  a s imple  f e r romagne t  so tha t  
there  is a spin-flip cross section.  Such errors  are of ten 
difficult to  es t imate  and careful  exper iments  mus t  be 
devised to e l imina te  or  a t t e m p t  to measure  them. We 
shall  c o m m e n t  here on jus t  four  o f  the more  obvious  
sys temat ic  errors.  

6.1. EXTINCTION 

In sect ion 4 it was po in ted  out  tha t  in o rder  to 
ident i fy the measured  f l ipping ra t io  wi th  the  s imple 
cross section fo rmula  [eq. (7)] of  section 2 it is necessary 
to assume tha t  there  is no ex t inc t ion  in the  sample.  
There  are a number  o f  ways tha t  this  can be checked 
exper imenta l ly  2) and  it is our  approach ,  in general ,  to 
reduce the  sample  d imens ions  unt i l  our  checks indicate  
tha t  there  is no ext inct ion.  This m a y  no t  always be 

prac t icab le  so we show how our  previous  express ions  
mus t  be mo&fied  to include ext inc t ion  effects. 

F o r  each mater ia l  cross sect ion the ext inc t ion  coeffi- 
cient is defined as the ra t io  of  the observed intensi ty  to 
tha t  which should  have been observed.  Thus,  for 
example ,  

o.Tt -T (35) = Etlo' t  t, 

where  o- t t  is the  c ross  sec t ion  fo r  u p - u p  sca t t e r ing  in 
the  test  sample material and tr~ft is the  ac tua l  cross 
sect ion for up-up  sca t ter ing  in the  sample crystal. The 
ext inc t ion  coefficient E is ini t ia l ly  hnear  with the cross 
sect ion,  i.e. 

E = 1 - ~ a ,  (36) 

where c~ is a coefficient de te rmined  by the sample  
geomet ry  and mosaic  spread,  so tha t  if the cross sect ion 
is very small  E ~  1. I f  we assume,  again,  tha t  there  are  
no spin-flip processes  then the expressions for  R m and 
P(T)  are modif ied as follows.  

R m = I5/I 6 = {F(I + P ) ( 1  + X ) 2 + ( I - P ) ( I - - X ) 2 } /  

/ { F ( 1 - e P ) ( I + X ) 2 + ( I + e P ) ( I - - X ) 2 } ,  (37) 

P(T) = {2X(1 + F ) - ( 1  - F ) ( I  + X 2 ) } /  

/ { ( I + F ) ( I + X 2 ) - 2 X ( 1 - - F ) } ,  (38) 
where 

T T F =-- EtT/E~ = {1--~(I+X)Z}/{ I - -o~(1--X)  2} (39) 

and,  of  course,  F =  1 if there  is no ext inct ion.  

IO 

9 

I 8 

Ai .7 

6 

5 

4 

.3 

2 

.I 

0 
- 3 0  

P=I'i P=.9-] / \\ 
- E=I~'--  E= I ~ - - G  t l /~  ', 
_,.oJ ,.oJ/ \ ,'I\',, 

/ \ / /  /', 
- /A, / ! /  /' 
- 5 =', / \ / /  /', _ , ,  / /// /', 

?\I// A2=A 4 it / \\\\//11 

I \ / ~\ //// 
A 3 ~," 

-2,0 -I 0 0 

~ ,  / /I 
Iii "\ // t I I I I~" \ " " \  / / / / %  

/7-C- 

x , d . /  I I I 

I 0  2.0 

X= plb - ~  

I 
3O 

Ftg 5 This figure shows the functional dependence of the error parameters A] of eq (34) on p/b The plots are made for two choices 
of the instrumental parameters P, e and ft. 



58 H. K E N D R I C K  et  al. 

There is no reliable way of calculating F and every 
effort must be made to avoid extincUon in the sample. 
However, there are various methods of estimating it 
which with the formulas (37) and (38) can give an 
lndicaUon of the importance of extraction for various 
values of  X. 

6.2. DRIFT OF FLIPPER EFFICIENCY WITH TIME 

Polarized neutron d~ffractometry frequently involves 
long counting times both because of the inherently low 
intensity available f rom the commonly used Co(8% Fe) 
polarizer and because the magnetic scattering amph- 
tudes are often small compared to the nuclear scattering 
amplitudes. During long counting periods the flipping 
efficiency may change because of drift in the rf  power 
supply. This necessitates periodic checks of the effi- 
ciency. The effect of this systematic error ~s most  
important  if the magnetic and nuclear scattering 
amphtudes are nearly equal. I f  it is found that the 
efficiency changes substantially with time we suggest 
eliminating the flipper from the measurements on the 
test crystal. In its place we propose to use the shim, of 
which the depolarizing efficiency fl is already known. 
The propagation of the statistical errors follows the 
development of section 5 with the replacement of fl 
for ~ in the expression for R m. The coefficients A, of 
table 3 are replaced by new coefficients B, found by 
writing fl wherever there is an ~ and at the same time e 
wherever there is a ft. 

Thus 

B2 --- Aa(fl++~); B5 = As(fie+e); 

B3 = Az(fl+-+e); B6 = A6(fl+-+e). (40) 

The B's are always numerically larger than the A's, 
as ~s to be expected, so that this method IS only 
preferable if the systematic error m e is large. 

6.3. SPIN-FLIP SCATTERING 

It is important  to check the assumption that  the 
sample is a simple ferromagnet. The method for doing 
this by polarization analysis of the scattered beam was 
indicated in section 2. 

6.4. DEPOLARIZATION IN THE SAMPLE 

This may arise if the sample 1s not saturated or if the 
surface conditions are not good, as already discussed 
in section 3. Depolarization can be checked for by 
interposing the magnetized sample between the mono- 
chromator  and analyzer2). A procedure for deahng 
with this systematic error has been given by several 

authors ~2) and it involves the assumption that the 
depolarization in the specimen is uniform and is a 
function of the distance traversed by the beam through 
the test crystal. It  has been our experience with 
Co(8% Fe) that the effect is a surface one and conse- 
quently we feel that the problem can be safely handled 
only by ensuring that the sample is highly polished and 
magnetlcally saturated. 

7. Implications with regard to counting times 
In section 5 we have described the procedure for a 

rigorous calculation of the statistical error involved m 
the measurement of the ratio p/b. The calculation is 
rather complex and it is not easy to see through it in 
order to draw conclusions about how a given experi- 
ment should be performed. A practical question which 
often arises ~s how long to spend on each intensity 
measurement and a solution is frequently given after 
assuming that a fixed time is available for a given 
experiment. We take the position here rather that 
sufficient time is available to find p/b to the desired 
accuracy. As an example we propose that each of the 
six terms m eq. (34) should contribute equally to the 
error AP(T). I f  we denote a counting rate by C,, then 
the total accumulated count in a time t, is 

I, = C,t,. (41) 

For comparable contributions to the error AP(T) from 
each term in eq. (34), we must have 

t,/t 1 = (C1/C,)(A,/A1) 2, (42) 

where the A, are given in table 3 and the ratios C~/C, 
are given in table 4. Note that the expressions for 
C~/C5 and C~/C6 contain the ratio of the cross sections 
of the sample and analyzer. We emphasize again that 
these are Bragg scattering cross sections and so contain 
crystal parameters hke the volume and mosaic spread. 

TABLE 4 
Expressions for calculation of  counting times for equal 

contnbuUons to the error AP(T). 

t , /q = (Cx/C~)(A,/A1) 2 

c , / c 2  = (1 +P2)/ (1  _tip2) 

C,lC~ = (t + e 2 ) / ( t - ~ P  ~) 

Cl/C 4 = (1 +P2) / ( I  +eflP 2) 

Cl/C 5 _~_ {o.A(I ..~_p2)}/{o.T[1 +PP(T)]}  

C,lC6 = {~A(1 + P~)}/{oT[I - ~PP(T)] } 
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The count ing  t ime ra t ios  t,/t 1 are p lo t t ed  agains t  p/b 
in fig. 6a for  P = 1.0 and  in fig. 6b for  P = 0.9 wi th  
e = 1 and fl = 0 in bo th  cases. F o r  these values of  
and  fl, t2/t 1 = t4/t 1 as is ev ident  f rom tables  3 and 4. 
The main  features  of  all  these curves are tha t  for 
p/b = +_ 1, t,/t 1 ,~ 1 ; and  tha t  t,/tl--*oo as p/b--*O. These 
character is t ics  are not  unexpected  in view of  the  be- 
havior  o f  the A, shown in fig. 5. A s imilar  ca lcu la t ion  
can be made  if the shim ra t io  me thod  ment ioned  in 
§ 6.2 is used. The raUos of  the count ing  t imes  are, of  
course ,  a lways larger  than  when the f l ipper is used. 

We conclude th=s sect ion w~th a c o m m e n t  on the 
po la r i za t ion  of  the beam incident  on the test  crystal .  
I t  is r a the r  obvious  tha t  the  fur ther  P is f rom one, the 
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Fig. 6. Plots of the relative counting time ratios h/t1 as a function 
of p/b necessary to obtain equal contributions (from each of the 
stx radices) to the statistical error AP(T) m the polarizing ef- 
ficiency of the sample crystal, for (a) P = 1 0, e = 1.0, {4 = 0; 

(b)P=O9, e= l.O, fl=O. 

larger  the cor rec t ion  which mus t  be app l ied  to  the 
measured  f l ipping ra t io  Rm in order  to ob ta in  p/b, 
par t icu la r ly  when p/b--* 1. A coro l la ry  is tha t  any  
uncer ta in ty  in P becomes more  serious zn de te rmin ing  
p/b the more  P differs f rom 1. This is qui te  evident  f rom 
the p lo t  of  Rm againstp/b in fig. 2, where it is seen tha t  
when p/b = 1, Rm changes f rom oo when P = 1 to 19 
when P = 0.9. There is no doub t ,  therefore,  tha t  for  
accurate  fo rm factor  de t e rmina t ions  in the  vicini ty o f  
p/b = 1 every effort should  be di rec ted  t oward  o b t a m i n g  
a beam which is as close to  100% po la r i zed  as possible.  

8. Summary and conclusions 
In this pape r  we have shown how to calculate  the 

s ta t i s t ica l  errors  involved in measur ing  magnet ic  fo rm 
factors  using po la r ized  neutrons .  The discuss ion began 
by reviewing the interference cross sect ion for  Bragg 
scat ter ing of  po la r ized  neut rons  in o rder  tha t  the usual  
a s sumpt ions  impl ied  by the m e t h o d  would  be clear.  
Emphas i s  was p laced  on the a s sumpt ions  requi red  to  
arrive at  the  f a md ia r  expression for  the f l ipping ra t io  
in simple fer romagnets  [eq. (7)]. I t  was po in ted  out  tha t  
the a s sumpt ion  of  a s imple f e r romagne t  (no spin-flip 
scat ter ing)  can be checked by po la r i za t ion  analysis  of  
the sca t tered  beam.  

In  sect ion 3 we deve loped  expressions  for  the var ious  
in tensi ty  ra t ios  measured  when using the shim ra t io  
m e t h o d  for  de te rmin ing  the po la r i za t ion  of  the beam 
and  the fl ipper efficiency. Emphas i s  was again  p laced  
on the assumpt ions  reqmred  to arr ive at  the c o m m o n l y  
used expressions.  I t  was po in ted  out  tha t  an additzonal  
measuremen t  (fl ipper on ,  shim in) leads to  the deter-  
m ina t ion  of  the depolar iz ing  efficiency o f  the sh~m and  
consequent ly  provides  a conslste n,t set o f  measurements .  
This work  was extended in sect ion 4 to the measu remen t  
of  the  f l ipping ra t io  f rom a test  crystal .  The add i t i ona l  
a s sumpt ions  required to  in te rpre t  the  resul ts  in t e rms  
o f  the  mater ia l  cross sections or  scat ter ing lengths (p,b) 
were noted .  

In  sect ion 5 we der ived expressmns  for the p ropaga -  
t ion  o f  the s ta t is t ica l  errors  involved in measur ing  the 
six intensi t ies  necessary for  a de t e rmina t i on  of  p/b. 
A procedure  for  f inding the er ror  in p/b f rom a series 
of  p lo ts  was ou t l ined  and a numer ica l  example  was 
given. 

In  sect ion 6 we discussed some of  the sys temat ic  
errors  which can arise in po la r i zed  neu t ron  diffracto- 
metry.  There  appears  to be no safe way o f  correc t ing  
for  ex t inc t ion  in a test  crystal ,  and  we concluded  tha t  
for  an  accurate  de te rmina t ion  of  p/b the  ext inc t ion  
mus t  be neghglble.  

We suggested tha t  if  the rf  power  supply  causes drif t  
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lrl the fl ipper efficiency over  long count ing  t imes  then 
it may  be preferable  to  avoid  this sys temat ic  er ror  by 
using a shim instead,  par t icu la r ly  when p/b is close to t.  

A l though  procedures  for  cor rec t ing  for  depo la r iza -  
t ion in the specimen have been suggested by others  we 
feel tha t  accurate  measurements  o f  p/b can be made  
only if  this source o f  e r ror  is e l iminated .  This can be 
done  by ensuring tha t  the  sample  is highly pol ished and 
magnet ica l ly  sa tura ted .  

There  are, of  course,  several  o ther  difficulties which 
can arise in po lar ized  neu t ron  measurements ,  no t ab ly  
mul t ip le  Bragg scattering.  The t r ea tmen t  of  this diffi- 
cul ty  ( ro ta t ion  abou t  the scat ter ing vector)  and  others  
have been descr ibed elsewhere.  

In  sect ion 7 we discussed some of  the exper imenta l  
imphca t ions  of  the er ror  analysis .  We showed how to 
calculate  the coun tmg  t imes required if  i t  is desired to 
have equal  er ror  cont r ibu t ions  f rom the six Intensi ty 
measurements .  The pr incipal  results  were tha t  large 
count ing t~me rat ios  are necessary when p/b~O and 
that  small  t ime ra t ios  are involved if  p/b-~ + 1. We 
draw a t ten t ion  here,  however ,  to the fact  tha t  the  
calculat ions  were o f  count ing  t ime ratios and tha t  the 

effects o f  fig. 4 [AX/X vs X for values o f  AP(T)/P(T)] 
were not included.  
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