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In cross-context matching, an observer reports that some stimulus elements, seen 

in one context, match other stimulus elements, see in a different context. The effect of 
changing from context S to context T defines a function gs,r , where gs,r(d) = B 
if stimulus A in T matches B in S. 

The description of context changes by functions is particularly powerful when there 
exist a semigroup of transformations of the stimulus elements that exhibits a special 
property called context-inoariance. In this case, the functions gS,r are affine trans- 

formations of commutative groups. This means that knowledge of some effects of 
a context change can be used, via the group structure, to predict other effects. Predictive 

power is increased further when the contexts themselves are related by transformations 
that leave cross-context matching invariant; and the greatest power is obtained when 

stimuli and contexts have vector structure, as with color stimuli. Some previous 
theories of context effects in color are discussed from the standpoint of different 
semigroups of context-invariant transformations. 

1. INTRODUCTION 

The perceived qualities of an object depend not only on those features of the 
proximal stimulus that are directly influenced by the physical features of the object, 
but also on the immediate spatial and temporal context in which the object is 
embedded. In some instances, it is possible to study the effects of context by a method 
of cross-context matching. This means that an observer is able to report that some 

stimulus elements, in one context, match other stimulus elements, in another context, 
with respect to certain subjective dimensions. From such reports of identical pheno- 

menal qualities, we can construct, for any pair of contexts, a pairing of stimulus 
elements. If  A, B, denote stimulus elements, and S, T, denote contexts, the notation 
AT = BS will mean “A, in context T, matches B, in context S (with respect to the 
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specified subjective dimensions).” Corresponding to contexts S, T, one has the set 
of all pairs A, B, such that AT s BS. 

The most clear-cut example of cross-context matching, which is also the example 
that has guided the formal theory to be presented in this paper, comes from the field 
of color vision. Here, a stimulus element consists of a portion of the visual field which 
is homogeneous with respect to color; the context can be varied by keeping all viewing 
conditions constant except for the makeup of a preadapting or a surrounding field. 
Cross-context matching can be carried out by a simultaneous or successive viewing 
of two stimulus elements in different contexts (some considerations regarding the 

technique used will be mentioned below). The stimulus elements can be matched with 
respect to color (hue, saturation, and brightness) or with respect to only some 
dimensions of color (only the brightness dimension has been studied systematically 
in isolation from the others). Quite a different example involves the matching of two 
similar objects, seen in different contexts, with respect to subjective size or distance or 
or both, 

Of course, not all context effects can be studied by cross-context matching. Some- 
times contexts cannot be manipulated back and forth-for example, it might be 
difficult to erase memory in order to study memory color by this technique. In other 

instances, it may not be possible to isolate a stimulus element whose appearance 
changes with changing context-one might hesitate, for example, to match the 
attractiveness of female noses where the variations in context involve different curva- 
tures of lips and eyebrows. 

Nevertheless, in some instances, cross-context matching may provide a valuable 
description of the changes of appearance due to changes of context. The description 
takes the form of a relation, or pairing, on the stimulus elements, as specified above. 
This sort of description immediately suggests a mathematical question: What theorems 
can be derived from the formal properties of the pairing? For example, one formal 
property that may hold approximately for such pairings is transitivity: I f  AU := Br 
and BT = Cs, then Au E Cs. (This property really involves three pairings, for the 
contexts T, U, and S, T, and S, U.) Other formal properties may be specific to the 
domain of stimulus elements and the dimensions on which matching takes place. One of 

the tasks of experimental analysis is to establish interesting properties of these pairings. 
In subsequent sections of this paper, a mathematical theory based on formal 

properties of cross-context pairings is presented. The fundamental assumptions of the 
theory involve the concept of a family of transformations of the stimulus elements. 
A transformation of the stimulus elements is a function that assigns to each stimulus 
element under consideration another stimulus element, in a well-defined manner. 
Transformations will be denoted by lowercase letters a, b, etc. The notation A” will 
be used to denote the stimulus element which corresponds to A under the trans- 
formation a. For examples of transformations, we turn to color stimuli. I f  the stimulus 
elements are single portions of the visual field that are homogeneous with respect 
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to color, one simple type of transformation involves additive mixture of wavelength 
distributions. Specifically, let each stimulus element A correspond to a certain 
spectral energy distribution function (specifying the energy density at each wavelength 
of the visible spectrum), the size, shape, position, etc. of the homogeneous element 
of the visual field being held constant. Then a particular transformation of this set 
of stimulus elements might involve addition of a constant spectral energy distribution 
to each stimulus element. One way to realize the transformation physically would 
be to use two projectors to provide homogeneous illumination of the same spot on 
a diffusing screen. One projector would provide the various untransformed stimulus 
elements, while the other projector, when turned on, would transform each stimulus 

element by addition of a fixed spectral distribution. The transformation could be 
changed by changing the spectral energy distribution added by the second projector. 
A different sort of transformation of the stimuli would involve increasing the energy 
of each stimulus just enough to provide a fixed increment in subjective brightness. 
In this case, for any stimulus elements A and B, the perceived brightness differences 
between Aa and A, and Ba and B, would be identical. This sort of transformation 
could never be achieved by adding a fixed spectral distribution from a second projector. 

(Even if all the stimulus elements had the same shape wavelength distribution, fixed 
increments in energy would not lead to fixed increments in brightness, according to 
Stevens’ [1957] psychophysical law.) A third example of a transformation of stimulus 
elements involves stimulus elements consisting of two adjacent homogeneous portions 
of the visual field. Either of the above two transformations could be applied to just 
one portion, leaving the spectral distribution of the other portion as it was; this would 
still constitute a transformation of the stimulus elements, considered as pairs of 
subelements. 

The above examples are intended to make clear the generality of the notion of 
transformation of stimulus elements, as well as to give examples of transformations 
that might actually be of interest in color vision. The essential feature is that for each 
element A under consideration, the transformation yields a definite element Aa. 

The first type of transformation mentioned above involves a notion of additive 
combination of stimulus elements. Thus, it requires the existence of some prior 
structure (in this case, additive structure) on the stimulus elements. The same type of 
transformation may be useful in any situation where a useful additive structure exists. 

One advantage of considering transformations is that, even if the set of stimulus 
elements possesses no structure, a family of transformations might be constructed so 
as to possess some structure. Given two transformations a and b, one can take any 
stimulus element A and apply a, obtaining a new element A”. In turn, b can be applied 
to A”, yielding a third element (A”)b, or A ab. This shows that from any two trans- 
formations, one can form a product ab, which assigns to any element A the new element 
AQb = (Aa)b. I f  a and b are of any of the types of transformations mentioned above 
as examples, then ab is another transformation of that same type. A family of trans- 
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formations such that the product of any two transformations in the family is again 
in the family is called a semigroup of transformations (the associative law, (ab)c = a(&), 
is automatically true). A semigroup of transformations possesses a multiplicative 

structure and is thus a useful starting point for a “rich” theory of formal properties. 
In the case of transformations of color stimuli by means of addition of a fixed spectral 

distribution, performing two such transformations in sequence involves adding the 
sum of the two fixed distributions to the original distribution. Thus, the product 
structure on the transformations is just the additive structure of the stimulus elements; 
nothing really new is introduced by considering transformations. As will be shown, 
this feature can be generalized: from the product structure on transformations, 
one can, under suitable conditions, define an additive structure on stimulus elements, 

such that each transformation corresponds simply to addition of a fixed element. 
Aside from formal considerations of structure, which make it reasonable to use a 

semigroup of transformations of the stimulus elements as a starting point for theory, 
there are some empirical considerations as well. A transformation a produces a certain 
kind of change in appearance under a context T, namely, the change from the 
appearance of AT to the appearance of AaT = (Aa)‘. On matching AT and AnT in 
context S, we find the same change in appearance in going from BS to Cs, that is, we 
have the relations 

AT 3 BS, Aa’ G ,‘JS 

Thus the transformation a induces a certain pairing of stimulus elements, namely 
the pairing between an element B that matches the appearance of an untransformed 
element, and an element C that matches the appearance of its transform. It seems 
reasonable, in studying context effects, to try to discover a semigroup of transformations 

such that the above pairing, induced by a transformation a in the semigroup, 
corresponds to another transformation b of the same family. That is, whenever 
AT E BS and AaT = Cs, then for some b in the same family, Bb = C. The transfor- 
mation b must depend on a, and, of course, on S and T, but should be independent 
of the choice of A. That is, we should try to find a semigroup of transformations such 
that all the changes in appearance produced under context T by any one transformation 
correspond to changes in appearance produced under S by another transformation 
of the same semigroup. That is, such a semigroup of transformations represents a 
context-invariant type of change in appearance, at least for contexts S, T. Below, we 
will call such a semigroup a context-invariant (with respect to S, T) semigroup of 
transformations, except that we will not necessarily require that there always be a 
transformation such as b above, taking B into C, rather, only that B and C can be taken 
into the same element by a pair of suitably chosen transformations in the semigroup, 
i e . .> Bb = Cc for some b c 

Methods for discovering’context-invariant semigroups of transformations will not 
be discussed here. Clearly the semigroup, if it can be discovered at all, will vary with 
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the type of context-shift being considered. Discovery of such transformations appears 
to be a reasonable subgoal of empirical research on context effects, and in any case, 
the mathematical theory to be presented starts with the assumption that an appropriate 
context-invariant semigroup of transformations has been found. Thus, the general 
theory is to some extent programmatic, although for color vision, specific semigroups 
will be considered. 

In color vision consideration of transformations opens up extra possibilities for 
cross-context matching. For instance, suppose that one set of viewing conditions 
involves a homogeneous field of light viewed through an aperture in a light-tight 
booth. No spectral energy distribution for the homogeneous field will yield a dark 

brown or pitch black appearance. These colors may be obtained, however, by 
introducing a bright surround about the aperture, Thus, an energy distribution 
which yields a brown or black appearance with a bright surround (context 2’) cannot 

be paired with any stimulus element yielding the same appearance in context S, the 
dark surround. However, one may hope to transform such a stimulus element into 
one which can be matched in context S. If  the transformation used is a member of an 
S, T-context-invariant semigroup, one can find the corresponding transformation 
which produces, in context S, the same changes in appearance as are produced by 
the first transformation in context T. One can then apply the “inverse” of the context 
S transformation to obtain at least a formal “matching clement” for the original 
stimulus element. By this extension of cross-context matching, adaptation and 
contrast effects can be represented by transformations of “color space.” Of course, 
the form of these transformations will depend on the form of the transformations in 
the S, T-invariant semigroup. If  the semigroup of additive transformations (the first 
example cited above) is S, T-invariant, then, as will be shown in Sec. 8, the formal 
elements are vectors in “color space.” These ideas generalize to domains other than 
color: under the assumptions below, context changes can be represented as trans- 

formations of an “appearance space.” 
Sections 2-7 present the general theory of context effects based on context-invariant 

semigroups. This theory is developed with few special assumptions about the nature 
of the stimulus domain. Special applications to color are considered in Sec. 8. For 
this purpose some preliminary material on color mixing and color matching is first 
presented. This material includes a canonical definition of “color space” based on the 
formal properties of color matching, which has not previously appeared in the color 
literature. Sections 9 and 10 review some previous work on color adaptation and 
contrast in relation to the present theory. 

2. PRELIMINARY MATERIAL ON SEMIGROUPS 

This section presents some preliminary, purely mathematical material concerning 
semigroups and semigroups of transformations. Although elementary, this material 
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is essential for subsequent sections, and it seems better to present it here, with only 
a brief indication of how it is to be used, than to disrupt later sections with expositions 
of elementary abstract algebra. 

Let X be a set, with elements x, y, etc. The set X is a semigroup if there is a binary 
operation that assigns to every ordered pair (x, y) of elements of X a third element, 
denoted xy, in such a way that the associative law holds: for all x, y, z, 

(XYb = X(Y4. 

Sometimes the binary operation is denoted by + and the third element assigned to 
(x, y) is correspondingly denoted x + y. 

I f  the elements of X are transformations of a set K into itself (so that to each element 
k of K and to each x in X there corresponds a transformed element, denoted k”, in K), 

then the usual binary operation assigns to the pair (x, y) the transformation of K, xy, 
that transforms k into k”r = (k”)g; that is, first transform k by x, then transform the 
result by y. For this binary operation, the associative law is automatically satisfied, 
so that the only constraint in asserting that a set of transformations is a semigroup 
comes from the necessity that for any x, y  in the set, the transformation xy is again a 
member of the same set. 

A semigroup X is commutative if for all x, y  in X, xy = yx. 
A semigroup S is a cancellation semigroup if for all x, y, z in X, if either xx = yz 

or zs = ay, then x = y. 
For a semigroup of transformations, commutativity simply means that the order 

in which the transformations are applied is irrelevant. I f  X is a commutative semigroup 
of transformations of K, such that all the transformations are one-to-one (k” # b if 
k f  d), then X is a cancellation semigroup: for if xz = yz, then for any k in K, 
kxz = kyz, and since z is one-to-one, k” = klJ. Thus, x and y  have identical effects 
on every element of K, so x = y  (transformations are equal when they have identical 
effects). Similarly, if zx = zy, then by commutativity, xz = yz, so x = y. 

An identity in a semigroup X is an element z such that for every x, xz = x = zx. 
If  z is an identity in X, then an element y  is called an inverse of x with respect to z if 
xy = z = yx. A semigroup which has an identity, with respect to which every 
element has an inverse, is called a group. A group always satisfies cancellation, as can 
easily be shown. 

If  X is a commutative cancellation semigroup, it can always be identified as a part 
of a larger group. To construct such a group, form pairs (x, y) of elements of X, where 
the pair is to be interpreted as a difference or a ratio of x to y. For example, the 
positive integers form a commutative cancellation semigroup, with ordinary multi- 
plication as the binary operation. They are not a group, since inverses of form l/2, 
l/3, etc. are fractions, not integers; but the integers are part of the multiplicative 
group of positive rational numbers. Each rational number is identified with a CZUSS 

of pairs m/n; for example, l/2 and 2/4 define the same number, and in general, ml/n1 
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and ma/n2 define the same number when m,n, = mZnl . Similarly, for the general 
case, pairs (xi , yr) and (~a , ys) are equivalent [notation: (x1 , yr) e (x2 , ya)] if 

XlY2 = X2Yl . The commutativity and cancellation properties are used to show that 

the relation RY is an equivalence relation (reflexive, symmetric, and transitive). The 
elements of the group are classes of equivalent pairs; the class of pairs equivalent to 
(x, y) is denoted (x, y). The binary operation on such classes is defined componentwise: -__ 
6% > YJX2 9 Y2) = (33x2 Y YIY2). The componentwise operation can be shown easily 

(using commutativity and cancellation) to yield a result that depends only on the two 
classes being combined, not on the particular representatives of those classes 
chosen to compute the combination. Obviously the operation is associative and 
commutative. The class of “O-differences” (or “unit-ratios”) (x, x) is an identity, 
since (xy, xz) = (y, z); and (y, x) is the inverse of (,x, y). The original semigroup 

X can be identified as part of this group by identifying x with (X-V, x). Obviously, __ __ 
(xx, x) = (yy, y) if and only if x = y, and also, (-(a = (xyxy, xy), so the 

binary operation in X goes over into the binary operation in the “group of differences.” 
The term “group of differences” will be used below to describe this construction, 

and the group constructed from X will be denoted 8. 
The importance of the group of differences lies in the following considerations. 

If  A, B, C are stimulus elements, and a is a transformation in a semigroup of trans- 
formations, 9, with 

A= zz BS, AaT G CS , 

then it may not be reasonable to assume that there will always be b in $9 such that 
Bb = C. However, it may be quite reasonable to assume that there will exist b, c in 
93 such that Bb = Cc. (See the following paragraph.) Thus, to a change in appearance 
a, under context T, there corresponds a difference in appearance changes, (b, c), 
under context S. Context changes (from S to T) can thus be represented by a trans- 

formation in the group of differences g (a transformation of transformation-differences, 
as it were). 

Let X be a semigroup of transformations acting in a set K. X is said to be complete 
with respect to K if for every k, /in K, there exist x, y  in X such that kx = 0. 

If  X is a commutative semigroup of one-to-one transformations, complete with 
respect to K, then it is possible to define an induced group structure over K. More 
precisely, it is possible to define an equivalence relation w on pairs of elements of K, 
and a binary composition + on the set R of equivalence classes, such that x is a 
commutative group which is isomorphic to 2?. 

The construction is particularly simple in the case where there is a single element 
k, in K such that for any k in K, there exists some x in X such that k,” = k. (In the 
example considered in Sec. 1, where K is the set of spectral energy distributions, 
and the transformations are additions of any fixed distributions, take k, as the distri- 
bution with 0 energy density at every wavelength, i.e., the “blank” stimulus element; 
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then k = k, + k for any k.) Define a function y  by y(x) = kO”. It is easy to show 
that v  is a one-to-one mapping of X onto K. Thus, one obtains a commutative 
cancellation semigroup structure on K, via the binary operation kOz + k,v = kgy. In 
this case, the group structure R is exactly the group of differences of the semigroup K. 

When no element k, exists such that every k can be written in the form k,,=, one 

can use completeness of X with respect to K to associate pairs (k, C) with the elements 
of X : if KS = @, associate (k, 8) with (y, x). By completeness, such x and y  can always 
be found, and they determine an unique equivalence class, i.e., an unique element 
of X, as the following argument shows. Suppose that ka = ~9. Then for any x’, y’, 

k”’ = PI’ if and only if kx’” = fi’x, 

if and only if &+~ = &’ 

(the second step follows from the first by several uses of commutativity and by 
substitution of Cy for k” on the left). It turns out that if P’Y = PY’, for 
just one /, then a!y = xy’; so it follows that if kz = /Y, then k”’ = /Y’ if and 
only if (x, y) m (‘r’, y’); so that any pair (k, P) is associated with all the members and 
on& the members of one equivalence class (y, x). The proof that x’y = xy’ is based 
on the properties of completeness, commutativity, and one-to-oneness of X; this 
fact is worth stating separately as a lemma: 

hMMA. Let X be a commutative semigroup of one-to-one transformations, complete 
with respect to K. If  for some k in K, kx = ky, then x = y. 

Proof. For every tin K, there exists z, w such that kz = 8~. Then txw = PWa = 
kzx = k”” = kg2 = kzy = C!U’Y = r!gw. Since w is one-to-one, r”3e = 0. Thus, zc = y. 

Q.E.D. 

Using the above, one can define (k, l) = (k’, 8’) if they are associated with the same 
element of rf; this is obviously an equivalence relation. Let (k, d) be the equivalence 

class containing (k, 8) and let x be the set of equivalence classes. For any k in K the 
pair (k”, kv) is associated with (x, y); thus, one can write all elements of R in the form 
(k”, kg) for some fixed k, and the componentwise binary operation in X can be trans- 
ferred to R: 

___ ___ 
(k”, ky) + (k”‘, kg’) = (k%z’, kvy’). 

The mapping associating elements of k with elements of x is a group isomorphism 
(one-to-one, onto, preserving binary operations). 

In the case where k, exists such that every k can be written as k05 for some x, every 
element k in K can be represented in the group of differences by (k,““, kO”), or more 
simply, by (kDG, k,). In the general case, one simply chooses an arbitrary reference 
point, labelling it k, , and associates the element k with (k, k,), its “difference” from 
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k, , The following formula, which can easily be proved, will be useful later: for any 

kc, , k 4 __ __ __ 
(6 k) + (k, 4) = (4 kc,). 

The above construction of induced group structure shows that the presence of 
structure in a semigroup of transformations can be used to define structure in a set 
of stimulus elements. In Sec. 5 it is used to represent context change by a trans- 
formation in spaces of stimulus elements. 

3. DEFINITIONS AND BASIC ASSUMPTIONS 

Four types of objects must be considered in cross-context matching: 

a set Q? of stimulus elements, A, B, etc. 
a set Y of contexts, S, T, etc. 
a set 9 of transformations of QI, a, b, etc. 
a set X of transformations of Y, s, t, etc. 

The basic structure on M and 3’ is a cross-context matching relation =, on the 
product set G! x Y. Elements of &Y x Y are written AS etc.; the expression AS E BT 
means “stimulus element A, in context S, matches stimulus element B, in context T 
(with respect to the specified subjective dimensions).” The results of transforming A by 
a, or S by s, will be written Aa and S” respectively. Parentheses will be omitted where 
possible; for instance, the notation A aS will be used instead of the more explicit (A”)s. 

The relation = induces relations on Q!, one for each context S: the relation =s 
will be defined by A =s B if AS = BS. In the case of color stimuli, two stimuli that 

match in the same context are called metamers, and, over an important range of 
conditions, metameric matches are independent of context, i.e., the relations cs 
are the same for all S. (See Brindley, 1960, for discussion of this point.) 

The first assumption concerns the relation =. 

ASSUMPTION 1. The relation = on ~2’ x Y is an equivalence relation (reflexive, 
symmetric, and transitive). 

This implies, of course, that all the relations =s are also equivalence relations. 
Empirical matching data, of course, cannot be expected to satisfy transitivity, unless 
extreme precautions are taken to ensure that obtained matches are exact, rather than 
due to failures of discrimination. This can be partially achieved by rejecting a match 
for a given pair of stimuli whenever a third stimulus can be found that “matches” 
one of the pair but not the other. By this sort of refinement one can get as good an 
approximation to transitivity as needed. Perfect transitivity is an idealization, which 
could be realized only if a given match were tested as indicated against all possible 
third stimuli, before acceptance (see Lute, 1956; Zeeman, 1962). 
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Reflexivity and symmetry of a matching relation can also fail empirically, because 
of time-order or space-order errors, or the like, but they can usually be restored by 

appropriate operational definitions of “matching.” For example, if successive 
comparisons are used, define two stimuli as “matching” if, when both are presented 
following some third stimulus (i.e., on separate trials), they both match that third 
stimulus on the relevant dimensions. If  stimuli are compared simultaneously, in 
different eyes or in different parts of the visual field, define two stimuli as “matching” 
if they both match the same third stimulus in the other eye or other region of the 
visual field. 

ASSUMPTION 2. (i) Y is a commutative sem@oup qf one-to-one transformations of 0, 
which is complete with respect to 02 (see Sec. 2 for definition). 

(ii)ForanybinP’,andanyA,Bin GZ,SinY, A=sBayandonlyifAb=SBb. 
The meaning of part (i) is clear from Sec. 2. Part (ii) says that to any transformation 

b in 9, there corresponds a one-to-one transformation, denoted bs , of the set of 
equivalence classes in Q? with respect to the equivalence relation zs . The class of 
all stimulus elements that are =s to A will be denoted il, , and the set of all such 
equivalence classes is denoted O?, . The transformation bS is defined by 

A? = (Abj, . 

Part (ii) of Assumption 2 simply means that the transformation bs is well defined 
[since if A, = B, , then A =s B, so Ab =s Bb, or (Ab), = (Bb),], and one-to-one 
(since the steps in the brackets can all be reversed). Thus, for each context S, one has 
a commutative semigroup %s of one-to-one transformations of as, complete with 

respect to as. The only point to note is that for any a,, b, , the transformation asbS 
is in gs , since it is exactly equal to (ab), . Commutativity and completeness of gs 
are obvious. 

It is hard to discuss the general plausibility of Assumption 2 without specifying 
the nature of the stimulus domain and the type of transformations in 3. In one case, 
however, Assumption 2 is satisfied. If  02 consists of the spectral energy distribution 
functions, and the transformations in 3 each involve addition of some fixed 
distribution, then part (i) of Assumption 2 follows on the basis of consideration of 
physics alone. Part (ii) is a special case of Grassman’s Third Law of color mixture 
(see Judd, 1951). 

DEFINITION 1. 3 is said to be context-invariant with respect to S, T provided that 
for any a, 4 , B, , C, , b, , cl , A, , B, , C, , b, , and c2 , if 

AlT = BIS, AzT = BzS, 

AyT s Cl’, AgT r= c,S, 

Bb,l = CI’, Biz = C;, 
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then (hcJ.~ = (k)~ . F? is said to be context-invariant with respect to Y if it is 
context-invariant with respect to S, T for each S and T in Y. 

Context invariance with respect to S, T means that if transformation a, under 
context T, produces an appearance change that is matched by the difference between 
stimulus elements C and B in context S, this change can be represented in context S 
by a transformation difference (6,) cs), whose equivalence class in the group of 
differences 9s depends only on a, not on the choice of A, or A, . This concept was 

discussed in detail in Sec. 1. 

ASSUMPTION. 3. 99 is context-invariant with respect to 9’. 

Assumption 3 is the major substantive assumption of the theory. It has not often 
been tested, even for addition-transformations of spectral energy distributions, 
although for this special case, the data of Burnham, Evans, and Newhall (1957), 
described in Sec. 10, provide support. As mentioned in the first section, one conceiv- 
able strategy in studying context effects is to look for a semigroup of context-invariant 
transformations. 

Clearly, context-invariance suggests representation of the change from context 
S to context T by a mapping which takes the transformation aT , occurring in Def. 1, 

into the difference (b, , cs) in gs. To do this, it must be possible to find some A such 
that the appearances of both A* and AaT can be matched by some stimulus elements 
under context S. This requires some existence assumption; the exact assumption 
needed is formulated in the next definition. 

DEFINITION 2. Let S, ,..., S, be contexts in Y. They are said to overlap if for 
any 6, c in %’ and for any index j,i = l,..., n, there exist elements A, A, ,..., A, , 
B i ,..., B, , C, ,..., C,, in GY such that 

/ f ’s, s BSi -= .  .  .  G  BSs 

1 12 

(Obviously one can take Aj = A, Bj = Ab, cj = A”.) 

In other words, S, ,..., S,, overlap if they contain sufficiently many subjective 
appearances in common, so that for any two transformations b, c, one can find A such 
that it, and its two transforms Ab and AC, appearing in context Sj , can be matched in 
appearance m the other n - 1 contexts. The definition of course is symmetric, since 
the property must hold for every j. 
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It is not reasonable to assume in general that sets of 1z contexts, or even sets of 2 
contexts overlap. What will be assumed is that contexts that are sufficiently similar 
do overlap. This assumption will be tacit in Sets. 4-6; the hypothesis that S, T overlap, 
or that S, T, U overlap, will occur in the statement of definitions and theorems, 

and the tacit assumption is that this hypothesis will sometimes be satisfied, so that the 
definitions and theorems are not vacuous. In Sec. 7, rigorous definitions of “sufficiently 

similar” will be available (in terms of an assumed topology on contexts) and a formal 
assumption about overlap (Assumption 6) will be introduced; at the same time, the 
theory will be extended to deal with the case of nonoverlapping contexts. 

ASSUMPTION 4. If AIT = BIS and A,= = BzS, then there exist a, , a2 in 3 and B 
in O? such that 

According to this assumption, if A, and A, yield appearances in context T which 
can be matched in context S, then the transformations a, and a2 can be chosen so as 
to move A, and A, to an appearance “between” that of A, and A, , which can also be 
matched in context S. 

The above definitions and assumptions concern only 02, 9, and 9; the set 2 of 
transformations of Y was not mentioned. Its structure will be considered in Sec. 6, 
where Assumption 5, a second major substantive assumption, will be introduced. 

4. THE REPRESENTATION OF CONTEXT CHANGES BY ISOMORPHISMS OF 
TRANSFORMATION GROUPS 

DEFINITION 3. Suppose that contexts S, T overlap (Def. 2). For any a in 9, find 
A, B, C in Q? such that 

A= s BS, 

By completeness [Assumption 2, (i)], find b, c in 9 such that Bb = Cc. By context- 
invariance (Assumption 3), the equivalence class (bs , cs) in gs determined by b, c is 
independent of the choice of A, B, and C; clearly it is also dependent only on the 
transformation aT in ??= determined by a, i.e., if alT = aar, then even if a, # a2, 
the same B, C can be used, so the same (bS , cs) will necessarily result. Thus, the 

above construction defines a function, denoted fS,=, mapping %r into gs, with 

fS.T(aT) = Ps > cS)- 

The function fS,T , mapping the semigroup gr into the group 8,) describes the 
effect of changing from context S to context T, for two overlapping contexts S, T. 
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The surprising fact is that the functionf,,r defined in this way is necessarily multipli- 

cative, as shown in Theorem 1. 

LEMMA. Let A, ,..., A, be arbitrary elements of Q?. There exist transformations 

a, ,..., a, in 9 such that 

A;’ = . . . = AZ. 

Proof. For each i, i = 2 ,..., n, one can find bi , ci such that 

A;$ = Aft 

[completeness, Assumption 2, (i)]. Now define a, to be the product of b, through b, , 

while for i = 2,..., n, define ai to be the product of ci and all the b’s except bi . 

Obviously for i = 2,..., n 

A;’ = A;“. Q.E.D. 

THEOREM 1. Suppose S, T overlap. Then for any a, , a2 , 

fS,T(alTa2T) =~s,T(~~T)~s,T(~~T). 

Proof. By the definition of overlap (Def. 2) one can choose A, B, Cl , and C, such 
that 

AT s=e BS, 

A”lT EE C,‘, 

By the previous lemma, there exist b, cr , ca such that 

By Def. 3, 

fS,T(alT) = (b, > Cd 

fS,T(a2T) = (%S ) d, 
__- 

fS,T(alTa2T) = (b,, %d 

(Note that use has been made of the freedom provided by context-invariance: 
fS,T(aZT) is computed using A al as the starting point while the other two values of 
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fS,T are computed starting with A.) By the definition of multiplication in the group 
of differences 5?-s , 

= (b, , C$S). Q.E.D. 

The multiplicative property exhibited in Theorem 1 allows the extension of the 
definition of fS,= to a mapping of all of g:T into g-s. This is done in Def. 4. 

DEFINITION 4. Let S, T overlap. For (aIT, azT) in 9,) define fS,T(alT, Q) = 
fS,T(alT)[fS,T(aeT)]~l [where (g)-’ denotes the inverse of an element g of ??,I. 

THEOREM 2. If  S, T overlap, then fS,T is a well defined, one-to-one mapping of 
gT onto 97, , satisfying 

fs,&&) =fs,Tkl)fS,T(g*) 
(where g, , g, denote two arbitrary elements of g,). Thus fS,T is an isomovphism of 
@T onto 27s. 

Proof. First, one can show that fS,T is well dejked, by means of the following 
series of implications: If  

Showing that fS,T is one-to-one requires that this chain of implications be reversed. 
This is trivial, except for the second implication, whose converse asserts that fS,T is 
one-to-one as a mapping of YT. The latter fact can be established as follows: Suppose 
that fSsT(aIT) = fs,=(azT). It must be shown that ulT = aaT. From the definition of 
overlap, there exist A, B, C, , and C, such that 

AT ES BS, 

AalT s Cl’, 

Aa,T GE C,‘. 
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By the lemma of this section, b, cr , ca can be chosen such that 

Bb z CE’ = C;‘. 

___ ___ 
Sincefs,T(alT) = fs,T(a2T), one has @S , GS) = @S , CS), or (WS = (WS . Now we 
know that 

cb”l = cbc, 
1 2 

so that 

cbc,S = cbc,S ~ cbc,S 
1-zp2' 

By part (ii) of Assumption 2, it follows that C, s = Czs. But, by the transitivity of -, 

it follows that 
Aa,T = Aa,T 

In other words, the transformations arr and aar have the same effect on the element 

AT of ar. Since the semigroup %r is a commutative semigroup of one-to-one trans- 
formations of &, complete with respect to 6& , the lemma of Sec. 2 applies, yielding 
the result arr = aar ) as was to be proved. Thus, fS,T is one-to-one. 

The proof that fS,T is multiplicative on 8, is straightforward from Def. 4 and 

Theorem 1. Finally, to show that fS,T is onto, one must produce, for any element of gs , 

something in gr which maps onto it. The correct choice in gr turns out to be fT,s 
of the given element in 9? s ; fS,T and fT,T,s turn out to be inverse mappings of one 
another. This last fact is a corollary of Theorem 3 below. Q.E.D. 

It should be noted that, up to this point, no use has been made of Assumption 4. 
It is used, however, in the next theorem, which shows that if one combines the iso- 
morphisms that go from context S to context T and from context T to context U, one 
gets the isomorphism from context S to context U. 

THEOREM 3. Suppose that S, T, U overlap. Then for any (ulU , uZU) in g,, 

fSJ’fT.d”~U 3 a2U) =fS,&,o 7 azu). 

Proof. It is simplest to begin by showing that the theorem holds for any element 

au in gU. Let au be arbitrary. Since S, T, U overlap, there exist A, B, C, Bl , and C, 
such that 

AUs BT=CS, 

Ad-J G B,T E C S 
1' 
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By Assumption 4, there exist b, b, , and D such that 

Bb = BF and BbT _ Bb,T _ Ds. 
1 

By the lemma of this section, there exist c, cr , and d such that 

By Def. 3, 

.fT,,h) = @T, h,), 

fs,d%) = (cs > ClS), 

~s.T(~T) = (CS 3 d.s), 

~s,T(~T) = (~1s 3 4). 

By Def. 4, 

fS,TfT,Uh’) = fS,T(6T)[fS,T(blT)1-’ 

= (cs 9 ds) (4, ~1s) 

= es 9 4 

= fS,&rJ)~ 

From this result, plus breakdown of fT,,,(arU , au a ) by Def. 4 and the multiplicative 

property of .~s.T from Theorem 3, it is easy to verify the formula stated in the 
theorem. Q.E.D. 

COROLLARY. fs,s is the identity mapping of g, (it maps each element into itself). 
If S, T overlap, then fS,= and fTss are inverse to one another. 

Proof. It is fairly obvious that fses(g) = g for any element g in g, . This fact can 
be proved from the theorems above: since S, S, S overlap, 

Since fs,s is one-to-one, the arguments on the left and right sides are equal, and 
cancelling g-l from both of them leaves fs,s(g) = g. 



THEORY OF CONTEXT EFFECTS 17 

If S, T overlap, then trivially, S, T, S overlap and T, S, T overlap, so for any g in 

gs 1 
fS,TfT,Sk) = fs.sk) = 6, 

and similarly, for g in @r , 

fT,SfS,TW = fT,Tk) = g. Q.E.D. 

The above corollary shows that f  S,T is necessarily a mapping onto all of 8, , thereby 

completing the proof of Theorem 2. 
It should be remarked that the notation and the results are considerably simpler 

if it is the case that for all A, B, S, and T, 

AS = BS if and only if AT G BT. 

As was noted above, this is possible, over a wide range of conditions, for color 

matching. When this property holds, the relations =s and the sets OZs of =s-equiv- 
alence classes are the same for every S, and the semigroups Ye, and the groups gs 
are all identical. Let all these identical groups be denoted by <g. The mappingsf,,, 
are automorphisms of 9 onto itself, and one has a function 

(s, T) +fS,T 

sending pairs of overlapping contexts into elements of the group of automorphisms 
of 9, with 

fSS,TfT,LI =fS,lJ- 

Thus, in the search for consequences of structure, one ascends three levels of functional 
relations, considering transformations of stimulus elements, isomorphisms of trans- 
formation groups, and functions from pairs of contexts into the group of 
automorphisms of a transformation group. When group structure can be introduced 
into the set of pairs of contexts, this third step yields interesting results. This idea 
is carried out in Sets. 6-8 below. 

The functions fS,T provide a reasonably good description of the effects on appearance 
of changing from context S to context T. For example, if one knows fS,T, one can 
predict (in terms of appearances under context S) some of the appearances under 
context T from knowledge of other appearances under context T. For example, one 
can certainly predict the appearance (in terms of some standard context S) of AaT, 
if one knows the appearance of AT and the transformation fS,T. This predictive power 
from knowledge of fS,T will become even clearer in the next section. Granted the 
importance of fS,T as a description of appearances in context Tin terms of appearances 
in context S, it is significant that fS,T is not just any function, whose description 
requires a “graph” giving values for every possible element of gT, but is an iso- 
morphism of one commutative group onto another commutative group. Commutative 
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groups are among the best-understood objects in mathematics. The exact advantage 
that can be taken of the fact that fS,r is a group isomorphism will depend somewhat 
on the particular structure of the group. For groups that are jbzitely generated, the 
situation is especially favorable, for all elements are products of elements in a certain 
finite set, and since isomorphisms preserve products, knowledge of fS,r for a finite 
number of elements of its domain allows prediction of its values for all elements- 

instead of a graph, one has a finite number of “parameters.” In the case of trans- 
formations of color stimuli, by adding a fixed spectral energy distribution, the group 
9 is a three-dimensional vector space, so knowledge of fs,r for just three elements 
in C!? is sufficient to predict its values for all others; as will be pointed out in Sets. 5 
and 8, in this case, a complete description of appearances in context T, in terms of 

those in context S, requires estimation only of the 12 entries in a 3 x 4 matrix. (Of 
course, this depends on verifying that the addition-transformations yield a context- 
invariant semigroup.) 

5. THE REPRESENTATION OF CONTEXT CHANGES BY 

AFFINE TRANSFORMATIONS OF APPEARANCE SPACE 

Much more natural than describing context changes in terms of isomorphisms of 
transformation groups is a description in terms of the appearances themselves: if 
A= zzz BS, why not say that this pairing defines a function, ES,=, such that 
gs,7(AT) = B, ? That is, gS,r maps the “appearance space” aT of =,-equivalence 
classes into the space CZs of =,-equivalence classes. There are two reasons for using 
the transformation semigroups instead. For one thing, they provide additional 
structure, giving the hope of predicting many appearances from matching only a few, 
as described at the end of the last section. For another, the function gS,r described 
above cannot be defined for all elements AT, unless there is complete overlap between 
the appearances possible under context T and those possible under context S. In the 
case of color stimuli, complete overlap is quite unlikely in general; an example was 

cited in Sec. 1. 
Under the present assumptions (Sec. 3), and using the results of Sec. 4, both of the 

above objections can be circumvented, and functions gS,T can be defined which 
directly map appearances under one context at least into appearance differences under 

another context. 
For any S, the construction of Sec. 2 can be applied to the complete commutative 

semigroup of one-to-one transformations 9Ys acting in GYs, to obtain a group @s 

whose elements are equivalence classes of appearance differences. This group is 
isomorphic to the group 9, . Th e pair (As , B,) is associated with the element (b, , as) 
of g-s if AaS = BbS, and the equivalence class of all such pairs, (As, B,), can be 
denoted hs(bs , as), where hs is the isomorphism mapping g, onto 0,. The inverse 
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isomorphism is denoted h;‘. The element hs(bs , as) can be written (C”, , Cbs) for 
any C, and the binary operation in d, can thus be computed from the rule 

(C% 7 Ch,) + (PZS ) Pas) = (CWZS , Cblb2S). 

The isomorphism rule, 

hs[(b,, , %s) (42s , %)I = ~s(hs 9 %s) + w,s > 4s) 
is obvious. (Note the use of juxtaposition for the binary operation in $s and of + for 

that in d, .) 
Let 0 be some arbitrary element of OZ, chosen to act as a zero from which differences 

are measured. (It plays the role of 12, in Sec. 2; if it can be chosen so that every A in Q 
can be written in the form 0” for some a in 9, this should be done.) Identify 
the element As in as with the element (As, 0,) in d, . Note that the sum, 

(A, 10,) + CBS 7 8s) cannot necessarily be written in the form (C, , 0,) for some C; 

in fact, this can be done if and only if As = Ps and Bs = Ohs for some a, 6. 
Suppose that whenever AT E BS, one defines g,,,(A.) = (Bs , 0,). This is well 

defined for those AT that can be matched, for if AT = B15 = BzS, then clearly 

(B,s ,es) = (& > 0,). I f  AT = AlS and BT = BIS, then one has the formula 

,&-(BT) = &,T(AT) + (%s > 4s) 

(see Sec. 2 or the remarks in the preceding paragraphs). Now the important point is 
that in this case, (Bls , AIs) can be computed in terms of (BT , AT) and the function 
fs,T from Sec. 4. This is shown in the next theorem. 

THEOREM 4. Let AT E AlS and BT = BIS, where S, T overlap. 
Then 

!B,, 7 A,,) = h,fs,Th,l(B,. , AT). 

Proof. By Assumption 4, it is possible to choose a, b, and C such that 

AaT = BbT z CS 

By the lemma of Sec. 4, it is possible to choose a, , b, , and c such that 

A;1 = B;l = Cc. 

Now 

h?(BT > AT) = (aT,bT), 

fS,TbT > bT) = fS,T@T)[fS,T(bT)l-l (Def. 4) 

Z (UlS Y 4 k-s, b,s) (Def. 3) 

zzz (~1s > b,,), 
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and 

~s(%s > 4s) = (fh 9 4s). Q.E.D 

In consequence of Theorem 4 and of the formula preceding it, the following equation 
holds: 

Rs,#b) = &.,(A,) + hSfdG1(&- > AT). (1) 

Equation 1 holds whenever AT and BT can both be matched within as. However, 
the second term on the right hand side is defined for any AT and BT , provided S, T 
overlap, and in that case, gs,r is also defined for at least some AT ; therefore, Eq. 1 can 

be used to define g,,r(Br) for elements BT in OZT whose appearance cannot be matched 
in 0~‘~. In these cases, of course, the value of gs,T(BT) is an element of d, , i.e., an 
appearance difference. Formally, one can state the following definition: 

DEFINITION 5. Suppose S, T overlap. Choose C and C, arbitrarily such that 
CT = Crs. For all B, let gS,T(BT) be defined by 

gs,#T) = (Cl, > 0s) + hsfs,~hY~l(&, CT). 

THEOREM 5. Suppose S, T overlap. Let g,,, be dejined by Def. 5. Then 

(i) Equation 1 is valid for all A, B; 

(ii) the values of gS,= do not depend on the choice of C in Def, 5; 

(iii) if BT = BIS, thengs,,(BT) = (Bls , 0,). 

Proof. To prove (i), note that for any A, B, 

gs~(A.) + hs.fs.&(B~ 9 AT) 

= (C,s ,W + hsfs,Th?(Ar , G) + h,fs,,h,‘(BT, AT) 

= (C,s ,es) + hsfs,ThTl[(AT > G) + (BT > AT)] 

= (Cl,, 0s) + hsfs,ThTl(Br > C,) 

= gs, dBT), 

The second step in the above sequence required the use of the facts that hG1, fs,T, and 
h, are all group isomorphisms, so that the + sign can be transferred from outside the 
functions to inside the brackets. Statement (iii) follows immediately from Theorem 4, 

since (C,S ,OS) + (KS , Cis) = (Bls, 0,). Finally, statement (ii) follows from (i) 
and (iii) since if gS,T(BT) were defined using A instead of C, where AT = AiS, then 
the defining expression would be exactly the right side of Eq. 1, which is the value of 
g,,,(BT) defined in terms of C, according to (i). Q.E.D. 
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Definition 5 and Theorem 5 show that the second difficulty mentioned at the 
beginning of this section can be overcome: gS,r can be defined, at least as an appearance 
difference, for all elements in the appearance space &- . To deal with the first difficulty, 
lack of structure on a;l, , one must seek to define g,,, in a reasonable way on the group 

dr . One may start such a definition by identifying gS,r(AT , I!?,) with gS,r(AT). The 
question is, can one write a general definition of gS,r(AT , Br) in terms of g,,r(Ar) 

and gd&) ? 
Note that for any a, b, 

The second step of the sequence is justified by the isomorphism properties of 
hsfs,=hT1 and by the fact that 

pbT,eT) = pbT7 b) - p,, w. 

The above calculation of g,,,(eQ$- , Pr) suggests the following general definition: 

DEFINITION 6. Let S, T overlap and let g,,, be defined on 02, as in Def. 5. For 
all A, B, define 

ES,T(AT, BY-) = g&AT) - gs,z-(BT) + g,,,(fb). 

THEOREM 6. Let S, T overlap and let gsLT be dejined as in Def. 6. Then gS,T is a 
well defined, one-to-one mapping of d, onto GYs , satisfying the relations 

___- -~ 
gs,dA, > BT) = gs.d’&) + hsfs.&%%-, BT), 

-- 

(4 

JW~-(~T 7 BIT) + (4~ > %-)I = g.s,d&-, B,,) + g.S,&h > 4~) ~ g,,,(&). (3) 

Proof. Formula 2 follows immediately from (i) of Theorem 5, and shows that gS,T 
is well defined by Def. 6 and is one-to-one and onto, since it can be decomposed into 
a succession of mappings each of which is one-to-one and onto (see Theorem 2, Sec. 4). 
Formula 3 follows easily from (2) and the isomorphism properties of hsfs,Th$. 
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THEOREM I. Suppose S, T, U overlap. Then 

0) gs, TkT, .(b)l = g.s, U(b) ; 
---_ -__- 

(4 for aa A RKY,&T,u(Au, BUN = gs,d&, Bu). 
Proof. Choose A, B, C, such that CU = BT G AS. By (ii) of Theorem 5, 

&,u(eu) = (BT, 0,) + hTfT,uh?@u T cu). 
By Eq. 3 (Theorem 6), one has 

&kTkT,"(eU)l = gs,T(BT > eT) + iAs,T[hTfT,uh;l(b Y cu)l - R.s,&). 
-__ 

By (iii) of Theorem 5, gS,=(BT, 8,) = (As, 8,), while by Eq. 2 of Theorem 6, 
~~ 

KdhTfT,&i%, &)I = &,T(oT) + hsfs.Th,‘hTf,,Uh;‘(e” , cd 

= &kTceT) + hsfs, Uh;l(eu , &). 

(The last step utilizes Theorem 3 and the fact that h;lh, drops out of the equation.) 
Combining these calculations yields 

gs,TkT,dedi = (4s , es) + hsfs,.h;lW, , Cu) 

[again, using (ii) of Theorem 5 to get a convenient definition of gs,U(O,)]. This 

establishes statement (i) of the theorem. 
Statement (ii) can now be proved in a straightforward manner, expanding 

gT,u(Au, Bu) by (2) of Theorem 6 and applying (3) of Theorem 6 to the expansion, 
using statement (i) of the present theorem and Theorem 3 to calculate the components. 

Q.E.D. 

The preceding theorems show that, in fact, context changes can be described by 
means of transformations of groups of appearance differences, which preserve group 
structure: g,,T can be decomposed into an additive component, gS,r(OT), and a trans- 
formation which preserves the additive binary operation, hsfs,ThF1. The remarks 
concerning significance and data reduction made at the end of Sec. 4 apply here as 
well. The transformations gS.T will be called afine, since they exhibit properties 
analogous to those of affine geometry. 

6. STRUCTURE IN THE SET OF CONTEXTS 

In a sense, the pair of contexts (S, U) . is composed of the pairs (S, T) and (T, U); 
heuristically, one adds the latter two pairs componentwise and cancels T from both 
sides, analogous to addition in the groups d, , etc. According to Theorems 3 and 7, 
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this “addition” of context pairs corresponds to composition of the corresponding 

functions f  or g; thus, the values offs,” are predictable by composing fS,T and fT,U. 

This suggests that much greater predictive power would result if more general ways 
of adding contexts or pairs of contexts were available, just as, for any one fSsT or gS,r , 

predictions of some values result from knowledge of others via utilization of the group 
structure on 9r or OX,. 

The most obvious way to obtain group structure for pairs of contexts is to apply 
the construction of Sec. 2, to a commutative complete semi-group of one-to-one 
transformations of contexts. This is particularly applicable if the set of contexts 

under consideration corresponds in some natural way to the set of stimulus elements. 
For example, in the color domain, it is plausible to study a set of contexts in which 
all factors are held constant except for the color of a single homogeneous field, used 
for a preadapting stimulus or as part or all of a surrounding field. The sets a and 9 
then both correspond to the set of spectral energy distribution functions, and the 

same transformations may be appropriate for both stimulus elements and contexts. 
In Assumption 5 below, it will be postulated that there is a semigroup X of 

transformations of Y, s, t, etc. To apply the construction of Sec. 2, the pairs (S, 7’) 
and (S”, T”) must be equivalent, so one will want to be able to conclude that 
g,,, = g,,,,, . Thus, in particular, if AT = BS, then one must also have AT’ = BSs. 

Applying this to the case S = T, it follows that the relations =s and =ss are identical, 
for all S and s. By completeness of 3 with respect to Y, it follows that =s and =T 
are identical for all S, T. Thus, the situation discussed in Sec. 4 following Theorem 3 
and its corollary obtains: there is one group @ of transformation differences, and one 
group @ of appearance differences; the functions fS,T are automorphisms of 9, while 
the gS,r are affine transformations of @ onto itself. 

ASSUMPTION 5. (i) Z is a commutative semigroup of one-to-one transformations of 

Y, which is complete with respect to Y. 

(ii) For any A, B, S, T, and s, AT = BS if and only if AT8 = BS”. 

Part (ii) means, in part, that the effect of transforming a context, on the appearance 
of the stimulus element, depends only on the original appearance of the stimulus 
element, not on the combination of stimulus and context that produces the original 
appearance. As mentioned above, this assumption has the particular consequence 
that stimuli which match in context S also match in context T, a consequence which 
is true for color matching for a wide range of conditions, as mentioned in Sec. 4. 

Since the concepts of overlapping contexts, and the values of fS,T and g,,, depend 
ultimately on the cross-context matching relation =, the following theorem is obvious. 

THEOREM 8. For all S, ,..., S, and s, contexts S, ,..., S, overlap ;f and on/y if 
s,s,..., s,s over&L If S, T Overlap, then fS,T = fss,TS and gSsT = gss,Ts . 
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Theorem 8 has important corollaries. To state the corollaries it is convenient to 
use the group structure .p constructed as in Sec. 2, with elements (S, 7’), etc. 

COROLLARY 1. If S, T overlap and 11, V overlap, and (S, 1’) = (U, V), then 

fS,T =fU," andRs,T =RrJ,v. 

Proof. (S, I’) = (U, V) means that there exist s, t, such that S” = Tt and Us = V. 
By completeness, there exist U, v  in X such that SU = U’. 

Then 

fS,TfV.U =fSut,TU'fYt',U"' 

=fSUt,SU8fU"S,S"t 

= fP, Pf"'S,P~ 

=fsfSut,sut 

= identity transformation. 

The first step follows from Theorem 8, the next two from commutativity of X and the 
properties of s, t, U, v; the fourth step follows from Theorem 3, since SUt and U”” 

overlap by Theorem 8; and the last step follows from the corollary to Theorem 3. Since 

f S,T is thus the inverse to,f,,,, b y  the corollary to Theorem 3 it follows that fS,T = fu, V. 

The argument for g is analogous. Q.E.D. 

From Corollary 1, each element (S, T) in 9 determines a single transformation 

fm orGT,. 

COROLLARY 2. Suppose that (S, T) and (U, V) have the property that for any S, , 

S, , S, such that (S, , S,) = (S, T) and (S, , S,) = ( U, V), S, , S, , S, overlap. 
(This property will be assumed below, whenever S is sufficiently similar to T and U is 
sufficiently similar to V.) Then 

fm+im =.hfimi 

and similarly for g. 

-__ 
Proof. Let (S, T) = (IV”, W) and (U, V) = (W”, IV”). 

Then (S, T) + (U, V) = (Wsu, W”“). 

By Theorem 8 and by Corollary 1 above, 
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(The last step uses the fact that, by hypothesis, Theorem 3 is applicable, since W”“, 
Wtu, and Wtv overlap.) The argument for g is exactly the same, using Theorem 7 
instead of 3. Q.E.D. 

Corollary 2 shows that, if Assumption 5 is valid, predictions of appearance changes 
for some pairs of contexts can be made on the basis of changes for other pairs, using 

the group structure 9 obtained from transformations of contexts. Of course, these 
predictions are limited to the case where the pairs into which a given pair is decomposed 
involve sufficiently small context-differences so that the needed triple-overlap property 
is valid. The next section deals with the extension of the results of Sec. 4-6 to the 

case of dissimilar contexts. 

7. NONOVERLAPPING CONTEXTS 

In this and the next section, the notation A, B, etc. will be used for elements of a, 
and 3, T, etc. will be used for elements of 9. The zero elements of the groups d and 
- 

Y will both be denoted 0. 
Under the conditions specified in Corollary 2 to Theorem 8 (Sec. 6) involving triple 

overlap, one has the equation 

&+T = &wT 9 

and the question arises, whether this equation can be used to dejbze the transformation 
gS+T in the case where gs and gT are defined but gS+T is not defined (pairs of contexts 
in 3 + F do not overlap) or 8, F fail to satisfy the proper triple overlap condition. 

For such a definition to be possible, two requirements must be met: first, any 3 in 9 
must be decomposable into a sum, 3 = 3, + 3, + *** + $, , where 3, ,..., 3, 
all represent overlapping pairs of contexts; and second, it must be true that whenever 
s1 + ... + 8, = Tl $- ... + Tn , where all the si and Lnj represent overlapping 
context-pairs, then 

At least, this last equation must hold for si , Ti selected from some set sufficiently 
rich to define all the transformations gs in the above way. 

The first requirement will be met by assuming that 9 is a connected topological 
group (Assumption 6 below) such that for some neighborhood of 0, any s and I? in 
the neighborhood satisfy the hypotheses of Corollary 2 to Theorem 8, so that gs , gT 
and gS+T are defined and gsgT = gS+T . According to a theorem on topological groups 
(Pontrjagin, 1939, p. 76) every s in 9 can be written in the form 3, + -1. + .YYW 
for some S, ,..., ,!?, in such a neighborhood. (The theorem depends only on 
connectedness of the group.) 
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The second requirement cited above can be proved to be satisfied, provided that 
,‘? satisfies certain other connectedness properties. Before stating the assumptions 
and theorems rigorously, I shall sketch a proof that the second requirement is satisfied, 

for one particular case; the method of proof carries over to the general theorems. 
For purposes of the proof, it is useful to think of the elements s as vectors, and of 
the addition as vector addition. Thus, a sum, s, $- .‘. + 3, can be thought of as 
a polygonal line in space, with successive vertices at the origin (i.e., O), at 

s,, 3, + P!$ ,..., and at s, + ... + 3, . Two such polygonal lines are represented in 

Fig. 1. I shall consider the case where s, + s, + .!?a + s, = Tr + T2 + Lns + T4 , 
depicted in the figure, with the polygonal lines meeting at the same endpoint. The 
figure also shows by dotted lines two “difference vectors” oz = s, + 3, - F1 , and 
o3 = s, + s, + s, - Tr ~ Fz . It will be assumed first that the two polygonal 
lines are so close together, and the si and Fj involve such small steps, that the vectors 

oz and Da are also in the same neighborhood of 0 ( i.e., are sufficiently small) in which 

the hypotheses of Corollary 2 to Theorem 8 are satisfied. Now obviously, oz + s, = 
ina + F4, and thus, by the “smallness” of these components, 

Similarly, oz + sa = Da + T, and Dz f  T1 = s, + s, , so that 

FIG. 1. Representation of two equal sums as polygonal lines. 
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Multiplying together these equations, with all the gs terms on the left, yields, 

Since the g’s commute in pairs (again, because Corollary 2 of Theorem 8 holds for each 
pair) and are one-to-one (Theorem 6), the terms involving 0, and Da can be cancelled 
from both sides, leaving the desired equality. 

Clearly, the same process will work for any two sums of “small” terms whose 

polygonal lines lie close together. But sums of “large” terms can always be broken 
down into sums of small terms, and if two polygonal lines lie far apart, intermediate 
ones having the same endpoints may be inserted, according to the connectedness 
property that will be assumed. In fact, the above intuitive argument skirts one of the 

more profound ideas in mathematics. The essential property that between any two 
polygonal lines with the same endpoints one can insert many more polygonal lines 
with the same endpoints, as closely spaced as necessary, is called simple connectedness. 
The following basic theorem is proved in Pontrjagin (1939, p. 228 ff.): 

Let G, and G, be topological groups, such that G, is locally connected and simply 

connected. Let g be a local homomorphism of G, into G, . Then there is a unique extension 

g’ of g into a homomorphism of the entire group GI into G, . 
Pontrjagin’s theorem can be applied to the present case as follows: G, will be the 

group 9, while G, will be the group A(@) f  11 ff i  0 a a ne transformations of d onto 
itself. That is, A(@) consists of all one-to-one transformations of d onto itself that 
satisfy Eq. 3 of Theorem 6 (Sec. 5), with the usual group operation for transformations. 

It is easy to show that the composition of two affine transformations is again affine, 
etc. The mapping g of 9 into A(a) simply sends 3 into gs . This will be a homo- 
morphism in a neighborhood of 8, i.e., where gs +T = gsgT. The unique extension g’, 
defined for all 3 in 9, and coinciding with g in a neighborhood of 0, gives us the 
desired general definition of a transformation describing context changes, for all 
pairs of contexts. The precise assumptions needed can be stated as follows (see 
Pontrjagin, 1939, for all definitions). 

ASSUMPTION 6. Topologies exist on 9 and on A(@) such that 

(i) 9 and A(&) are topological groups, and the mapping g, sending S into gs , is 
defined and continuous in a neighborhood of the identity 9 of 9; 

(ii) 9 is locally connected and simply connected; 

(iii) for some neighborhood V qf 0 in 9, any S, T’, in V satisfy the hypotheses of 
Corollary 2 to Theorem 8, i.e., if (S, , S,) = S and (S, , S,) = T’, then S, , S, , S, 
overlap. 

Part (iii) of Assumption 6 guarantees (by Corollary 2, Theorem 8) that the mapping 
g is a local homomorphism of 9 into A(@. Th us, Pontrjagin’s theorem applies, 
yielding the following theorem: 
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THEOREM 9. There is one and only one way to assign, to each s in -p’, a trans- 

formation gs of d, so that gs depends continuously on s, gs coincides with the trans- 
formation dejked by Defs. 5 and 6 (Sec. 5) . zn a neighborhood of 0, and gg satisfies the 
equations 

EdA + B) = &(& f&m - &cd4 
gS+T(4 = &gTm. 

Theorem 9 was essentially proved in the preceding discussion. It should be remarked 
that the topological assumptions of Assumption 6 are not very restrictive. For example, 

if 9 and d are both finite-dimensional vector spaces, then there are unique natural 
topologies on 9 and on A(@), the former is simply connected and locally connected, 
and continuity of the mappingg is very natural; the only real content in the assumption 
is that for context-differences sufficiently close to zero, the triple overlap property is 
satisfied. The strength of the triple overlap property comes from the provision, in 

the definition of overlap, that for any two transformations a, b, a stimulus A can be 
found such that not only AT, but also .4 aT and AbT can be matched under the other 

two contexts, etc. That is, not only must AT be matchable, but A must be “large” 
in comparison with the effects of a and b, so that it remains in the portion of appearance 
space that can be matched, after transformation. 

Note that the transformationsgs of Theorem 9 do not necessarily coincide with those 
defined earlier for all s, but only for context-differences that are sufficiently small. 
It is conceivable that some 3, i;, and 3 + F might each represent overlapping pairs 
of contexts, but that triple overlap might fail. In such a case, there is no way to prove 
from the definitions that gS+T = gsg?; and if, in fact, this is false, then at least one of 
the g’s in Theorem 9 must differ from the one defined directly. 

Equations 4 and 5 make full use of both group structures, on d and on Cy, to 
predict some appearance changes from others. The exact degree of data reduction 
and prediction depends on what further assumptions can be made regarding the 
generation of some elements of d and .F as sums of others. In the next section, one 
such possibility is explored, namely, that @ and 9 are three-dimensional vector 
spaces. This may be applicable in the case of color vision; in any case, it is the example 
from which the theory in the preceding sections was obtained by generalization. 

8. THE FUNCTIONAL EQUATIONS FOR ADAPTATION AND 

CONTRAST EFFECTS IN COLOR SPACE 

In this section, stimulus elements, A, B, etc., and contexts, S, T, etc. are identified 
with particular spectral energy distribution functions. A stimulus element is assumed 
to consist of a small homogeneous patch of light, viewed foveally with one eye, with 
all viewing conditions fixed except for the wavelength composition of a homogeneous 
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preadapting or surround field; variations in the latter constitute variations in context. 
The relations =s are assumed to be identical equivalence relations, namely, the 
relation of metameric pairs. The experimental arrangements mentioned in Sec. 3, 
in connection with Assumption 1, will be assumed to hold, so that = is an equivalence 
relation. The transformations in 9 and Z@ consist of addition of fixed distributions, 
either to stimulus elements, in the case of 3, or to contexts, in the case of Z. The 

transformation semigroup C?? is, of course, assumed to be context-invariant with 

respect to Y. 
If  8 denotes the spectral energy distribution with zero energy density everywhere, 

then the transformation that involves adding A can be identified with the element 
BA = 0 + A = A, and similarly for S. Thus, the group d consists of classes (A, B), 

with (A, , B,) = (il, , B,) if and only if il, + B, is metameric to A, + B, , and 
addition of such classes corresponds to componentwise additive color mixture. This 
addition is well defined because of part (ii) of Assumption 2, which, as pointed out 
in Sec. 3, is a special case of Grassman’s Third Law. 

The special feature of color stimuli is that the group d can be made into a vector 

space in a natural way, by introducing scalar multiplication. For any nonnegative 
real number p, one may define pA to be the stimulus whose spectral energy distribution 
is equal to that of A, multiplied by a factorp; i.e., the energy density at each wavelength 
is multiplied by p. Thus, OA = B and 1A = A. Moreover, 

p(A +B) =PA +P& 

(P + dA = PA + gA, 

(PM = P&9 

These properties involve only physics. Finally, there is one psychological property of 
scalar multiplication, which is closely related to Grassman’s Laws: for any p, A, B, S, 

AS = BS if and only if (PA)~ E (pB)S. 

This is valid for a wide range of positive values of p (see Judd, 1951). Similar con- 
siderations hold, in this case, for the contexts S. 

One can define scalar multiplication in d as follows: p(A, B) = (PA, pB) if p is ~. 
nonnegative; p(A, B) = (-p)(B, A) if p is negative. The properties stated above are 
sufficient to imply that scalar multiplication in d is well defined and that d is a vector 
space. Similarly, 9 can be made into a vector space. 

In the color literature, the vectorial representation of metamer-classes of stimuli 
has long been understood. It has been achieved in terms of coordinate systems derived 
from three-primary matching. Actually, the vectorial representation depends 
essentially on Grassman’s Third Law and not at all upon primaries; only the dimen- 
sionality of the vector space is determined by three-primary matching. 
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The facts of trichromacy of color vision can be easily stated in these terms: jar a 
normal human observer, the vector space d is three-dimensional. (Similarly, 9 is three- 
dimensional.) 

The tri-dimensionality of these spaces is a consequence of the following empirical 
facts: (i) if any 4 spectral energy distribution functions are chosen, they may be divided 
into 2 non-empty sets, and suitable nonnegative scalar multiples of them chosen, not 
all = 6, so that the sum of the scalar multiples of the distribution functions in one set, 

and the same sum for the other set, are metamers; (ii) the analogous statement for 3 
spectral energy distribution functions is false, for someone with normal color vision. 
(An observer with a two-dimensional space is called a dichromat; one with a one- 
dimensional space is a monochromat (totally color-blind)). 

I f  three suitable primaries A, , A, , A, are chosen in d, then every element A can be 
expressed in the form 

where the p’s are any real numbers. The condition for suitability is merely that none 

of the Ai can be so expressed in terms of the other two. Similarly, 3, , s, , & can be 
chosen in 9 such that every s can be written as such a linear combination of the si . 
Assuming that the functions gs are continuous, Eq. 4 implies that 

&dP4 = P&O) + (1 - P) &T&9. 

(See, for example, Hille and Phillips, 1957, p. 144.) Thus, one has 

so that from knowledge of 12 numbers, namely, the coordinates (in terms of A, , 

A2 y  &A ofg,d&), g&&z), g&%h andm(Q one can predict the values of gf(A) for all 
A. Similarly, it turns out that one can predict all the functions gs from knowledge of 

a, y  a, , and a, , and relations of form 

s = Pl4 + PA + PA . 

The manner of making such predictions will be explained below; it requires taking a 
“logarithm” of the transformation gs . At any rate, this means that all predictions of 
changes in appearance with changes in context can be made, on the basis of the above 
theory, from knowledge of at most 36 parameters; and it will be seen that this number 
can be reduced still further. 

The remainder of this section is devoted to the problem of specifying all continuous 
solutions to Eqs. 4 and 5, which are assumed valid for all A, B, 3, T in the finite- 
dimensional vector spaces d and 9. The method of solution does not depend on the 
number of dimensions, but details will be specified only for the case when both spaces 
are three-dimensional. 
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The solution has two stages. In the first stage, Eqs. 4 and 5 are rewritten in terms 
of the transformations fs : 

fs(4 = &(4 - &(Q 

These transformations fs are practically the same as those denoted “f” in Sets. 4-6 
(compare Eq. 2, Sec. 5) except that they operate in d rather than in g-, including the 
effects of hs, hi’ from Eq. 2. In the second stage of the solution, the possible values of 

gs(B) are determined. 
In terms of thef’s defined above, Eqs. 4 and 5 become 

fs(A + 4 = fs(4 + fs(B) (4’) 

fS-tT(4 = f3f&9 (5’) 

Equation 4’ simply asserts that the fs are linear transformations in the vector space d. 
[As remarked above in connection with the g’s, continuity guarantees that 

fS(pA) = pfs(d), the other requirement for linearity besides Eq. 4’. See Jacobson, 
1953, for definitions of terms in connection with vector spaces and linear trans- 
formations.] 

Let f be any linear transformation of a finite dimensional vector space into itself. 

Denote by f n the composition of f with itself n times, i.e., f 2(d) = f( f(A)), etc. Let 
exp( f) be defined by 

exp(f)(A) = A + (Ijl!)f(A) + (1/2!)f2(A) + ... 

the sum being convergent in the vector space of linear transformations of the original 

space. It is readily shown that exp(f) is a linear transformation, and that if fi and f2 

commute, then exp( fi $ f2) = exp( fi) exp( f2). 

Let fl, , 3,) 3, be linearly independent vectors in 9, and let fi , f2 , and f3 be 
arbitrary, pairwise-commutative linear transformations of d into itself. I f  
s = p,s, + p,s, + p$, , define a linear transformation fi by 

f iv) = PlfM) + PzfX4 + P,f@). 

Now define fs = exp(f i). Since fz+T = fi + f g, it follows that fs satisfies Eq. 5’, 
hence, gives a solution for Eqs. 4’ and 5’. 

According to a theorem of Hille and Phillips (1957, p. 290) all continuous solutions 
of Eqs. 4’ and 5’ are obtained in this way. This completes stage 1 of the solution of 
(4) and (5). From knowledge offs, , fs, , fs, ( w ic h h can be more or less arbitrary-they 
must be one-to-one), it is possible to infer the values of the “logarithms” fi , f2 , and 

f 3, and thus, by taking linear combinations and exponentiating, one obtains any 

fs 1 
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Now the possible values of gs(B) will be investigated. For each s, gs(0) is a vector 
in d, so that a function g: g(s) = gs(B) is determined, mapping .p into @. Define 
linear transformations hs by hg(A) = fs(A) - A. Then g and hs satisfy the following 
functional equations: 

hS+T = Ash, + h, + hT (5”) 

g(S + F’) -g(S) -g(T) = h&Q’)) = h&(S)>. (6) 

These equations can easily be derived by replacing the left and right hand sides by 

their definitions in terms offs , f7, andfs+,- , and using (4’) and (5’) to simplify the 
resulting expressions. From (5”) and (6) and the linearity of the hs , two facts are 
apparent: first, for any fixed vector A in d, the function g(s) = As(A) yields a 
possible solution to Eq. 6, and second, the difference between any two solutions to 
Eq. 6 is again a solution. These facts lead to the reduction of the problem of finding 

solutions of Eq. 6 to finding solutions such that the values of g(s) are contained in 
a special subspace, Jlr, , of d. 

For each s in 9, let fls be the set of all vectors A in d such that h;(A) = B for 
some positive integer m. (Ju;, is called the m&component of hs .) Let NK be the 
intersection of all the Ns . Each 4~ is a vector subspace of d, so JIT, is also. 

THEOREM 10. If g is a solution of Eq. 6, then there exists a vector A, in d and a 
function g, from 9 to A& , such that g, is also a solution to (6) and such that 

g(s) = gds) + hs(&). (7) 

Theorem 10 shows that every solution of (6) can be obtained as a sum of a solution of 

form hS(A,) and a solution with values in Jlr, . In particular, if JIT, reduces to 0, 
then the only solutions to (6) have form &(A,). 

Proof. The null-component &s of hs was defined above. The rank-component 99~ 
is defined to be the set of A such that for every positive integer m, there exists some 
B with h:(B) = A. A ccording to Fitting’s Lemma (Jacobson, 1951, p. 155; and 
1953, p. 47), the linear transformation hs maps A$ and SI?s into themselves, and every 
vector A can be written in a unique way as a sum of an element in Ms and an element 
in Bs. Moreover, it is easy to prove that, when two transformations commute, 
either maps the null- and the rank-components of the other into themselves. 

For any fixed 3, , one can split all the vectors g(s) into the sum of an element g,,(s) 
in X3, and an element g,,(s) in %?s, . By definition of the rank-component, there 
exists some A, in 9~ 1 such that g,,(&) = hs,(A,). Since by commutativity, any hs 
maps gs, into itself, it follows that &(A,) IS in WS1 for every s. Now it will be shown 
that g(s) - hs(A,) is in MS, for every s. This will show that for every 3, 

g,,(S) = hs@d 
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because the decomposition of g(s) into null-component and rank-component elements 
is unique. To prove that g(s) - h&i) is in the null-component of As,, note first 
that there exists some integer n (in the present case, n can be taken = 3) such that 
for every A in .A& , hE1(A) = 8. Th is is true from dimensionality arguments. In 

particular 

(since gii(&) is in Nsl) 

= qyA,) (by substitution). 

Using this result, and Eq. 6, plus the commutativity of hs , it can be shown that 

In fact, 

h~~[g(S) - h&41)] = 0. 

It follows that g(s) - hs(Ai) is in ,N^s, , and thus that for every 3, g,,(s) = /zs(/i,), or 

A@) = g11V) + w%). s ince g,, is the difference of two solutions to Eq. 6, it is 
again a solution, and since, for any 3, hs can be regarded as a linear transformation 

of A$ into itself, with g,, a solution of (6) taking values in M& , the same process can 
be repeated, within .A$‘&, , that was just carried out within GY, resulting in a decom- 
position of g,, as g,,(s) = g,,(s) + hs(&,) where g,, is another solution of (6), taking 
values in the intersection of A$, and A’& , where 3, is another vector in 9. By the 
finite dimensionality, this process must eventually yield a solution g,, of (6) whose 
values are in Jr/-, ; in this case, if si is chosen at the ith step so as to decrease the dimen- 
sionality of the intersection of null-components, the process must stop after 4 steps, 
at most. I f  one denotes the final g,, by g, , and defines A, to be the sum of the /& , 
one obtains Eq. 7, as required by the theorem. Q.E.D. 

To complete the determination of all possible solutions to Eq. 6, it is necessary to 
determine the solutions that take values in Nm . If  the linear transformations hs are 
regarded as transformations of N, into itself, they form a commutative set of nilpotent 
transformations, and according to standard theorems (see Jacobson, 1953, p. 133-134) 
one can choose a basis for Na such that the matrices of the transformations hs with 
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respect to that basis have zeros on and above the main diagonal. In the present case, 
if the dimension of Mm is = 3, one can choose linearly independent vectors B, , B, , 
B, in Jy;, such that for all s 

h@,) = 0, 

k@,) = h2,(8 8 , 

k5@3) = MS) 4 + h,,(S) 6 I (8) 

where the functions ha, , ha, , ha, are real-valued functions defined on .T?. If  the 
dimension of Ju^, is 2 or 1, only the first two or one of these equations is relevant, 
while if the dimension is 0, there are no nontrivial solutions to (6) with values in A& . 
Furthermore, the functions hij must satisfy, by commutativity, the relation 

MS) MQ = w’) h,,(S) (9) 

for all s, T. Equation 9 implies that the functions ha, and h,, are proportional (unless 
one of them is identically zero). (In the general solution, for dimensions greater than 3, 
commutativity similarly imposes a series of relations on the hij , which permits 

specification of all of them except for arbitrary constants, in terms of one (which is 
nonidentically zero) from each diagonal parallel to the main diagonal.) In terms of 
the & , any solution g to Eq. 6 with values in &/u, can be written in the form 

A?(S) = g,(S) 4 + g,(S) & + h(S) 4 , (10) 

where the gi are real-valued functions defined on .y. (In cases of dimension less than 3, 
the latter terms of Eq. 10 are omitted.) Equation (6) now gives three equal expressions 

in N= , which can each be written in terms of the Bi, and the coefficients of the Bi 
must then be equal. From equating coefficients of Bs one obtains 

g3(S + F’) - g&9 - g,m = 0. (11) 

From equating coefficients of B, one has 

g,(S + i’) - g,(S) - km = MS) &( T’) 

= Mu’) &91 (12) 
while from the coefficients of B, one has 

g,(S + T’) -g,(S) - km = M9 km + b,(S) Am 

= ~,d~‘)&(~) + hlm&(~). (13) 

Note that for dimension of J1/, = 2, Eq. 11 drops out while (12) reduces to (11) since 
the right-hand side is 0, and (13) re d uces to (12). For dimension of Ma = 1, only (13) 
is relevant and it reduces to (11). 
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Under the assumption of continuity, these three functional equations may easily 
be solved. For simplicity, it will be assumed that the dimension is 3 and that none 
of the hij is identically zero. The solutions for dimensions 2 or 1 follow immediately, 
while the cases where some of the hij are identically zero can be treated separately by 
the same methods. 

First, Eq. 11 implies that g, is a linear function from 9 to the real numbers. 
Equation 12 implies that ha, (and hence, ha, , from the previous discussion) is 
proportional to g, . Thus, ha, and h,, must be linear in order for (6) to have any 
solutions in this case. Let h,, = prg, , where q1 is the proportionality constant. Then 
from (12) one has 

g2(S + F’) = g,(S) + g2m + Plg3(%T3m. 

By inspection, this equation has the general solution 

W’) 

g,(S) = W) c71k3m2 + e,(S), (14) 

where 8r is an arbitrary linear real-valued function on 9. It is easy to prove that this 

solution is unique: if one dejines a function C, by Eq. 14, then (12’) implies that /, 
satisfies Eq. I I, hence, is linear. 

Let q2 be a proportionality constant such that h,, = q2g3 . Then substituting for 
h,, and for g, (using Eq. 14) in the right-hand parts of Eq. 13 yields the equation 

h3d4 g3m + UP) wh?&%m12 + q2g3(8 4m 

= h3,V’) g3(S) + U/2) Qlc72g3mk2m2 + %&m469. (15) 

The variables 3 and T can be separated in (15) by combining all terms containing 
g,(s) to the first power on one side, all terms containing g,(T) to the first power on 
the other, and dividing through both sides of the equation by g&s) g,(F). This leads 
to the conclusion that h,,(S) - (l/2) q1q2[g3(s)12 - q2tl(s) is proportional to ga(s). 

Call the proportionality constant q3 ; then one can solve for h,, , obtaining 

h,,(J) = VP) !?1Qzkd~)12 + u5(S) + !724(8. (16) 

When this solution is substituted into the right side of Eq. 13, along with the previous 
substitutions that lead to (15), one obtains the functional equation 

g,(S + 0 = ‘cd8 + g,(F) + s2K(~)g3(~‘) + 4m~3(~)1 + w&h(~) 

+ (1 /%!72h?2(J912 .km + r&ml2 A9). (13’) 

By inspection, (13’) has the general solution 

ids) = (l/6) cdg,(813 + (1 PI &#)I2 + cm@) C;(s) + /2(3> (17) 
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where tz is a second arbitrary linear real-valued function on .p;. Uniqueness is proved 
in the same way: if (17) is used to define a function Pa , then (13’) can be used to prove 
that it is linear. 

Equations 14 and 17, together with (lo), g ive a complete specification of possible 

solutions g to Eq. 6, taking values in a three-dimensional JK~ , in terms of 3 arbitrary 
linear functions, t1 ,8, , and g, , and three constants, q1 , qz , and q3 . For a two- 
dimensional JK= , g, is linear, and g, is given in terms of g, by (14), with the numbers 2 

and 1 substituted for 3 and 2. For a one-dimensional JK~ , g, must be linear. 
I shall now summarize the above results by presenting the possible functions g&q 

that satisfy the functional equations (4) and (5). Th ere are 4 cases to be distinguished, 
according to whether the dimension of Mk is 0, 1,2, or 3. 

CASE 1. Dimension of .A’> = 0. 
Let 3, , 3, , 3, be any three linearly independent vectors in 9. Choose three 

pairwise commutative linear transformations fr , fi , f3 of d, whose null-components 
in d contain only 0 in their common intersection. If  &‘? = p,s, + p,& + p,s, , 
define 

f i = PlfI + P2.h + P3f3 

fs = exp(f.3 
h&q = fg(A) - A. 

Let A, be an arbitrary vector in d and define g(s) = hS(A,). Now define 

Ed4 = fs(4 + g(S). 
The transformations gs defined in this way satisfy (4) and (5), with the dimension 
of A& = 0, and every such set of solutions is obtained by the above construction, 
by varying the choice of fi , fi , f3 , and 2, . These statements all follow from the 

previous results, provided one can show that NW has dimension 0 if and only if the 
null components of fi , fi and fa intersect in 8. This latter fact follows from the fact 
that the null-components of hs and fg coincide, which can be proved fairly readily 
from considerations of the formulae for logarithms and exponentials of linear trans- 
formations. Thus, A& has dimension 0 if and only if the null-components of the fi 
have only 0 in common. But if there is a vector # 19 in the null-components offi , fi , 
andfa , then by commutativity, it is in the null-component of everyf: and conversely, 
any vector in the null-component of every f: is, in particular, in the null-components 
of the fi , since fi = fs*, . 

Note that all the gs are defined by choice of 30 parameters: the three 3 x 3 matrices 
of the fi , and the three coordinates of A, . This represents a reduction over the 

figure of 36 mentioned at the beginning of this section; the reduction is effected by 
Theorem 10, which expresses all the g&8) in terms of A, . 
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Note that in the present case, gs(--A,) = -A, . Thus, there is a vector,--6, , 
that is invariant under every transformation gs . That is, there are some appearance- 
differences that remain invariant under every context change under consideration. 
This seems somewhat surprising, and possibly casts doubt on the plausibility of the 

assumptions, at least for Case 1. 

CASE 2. Dimension of Jm = 1. 
Proceed as in Case 1, except that fi ,f. ,fa must be chosen so as to have only 

multiples of a single vector B, in the intersection of their null-components. Obviously, 

fi(B,) = 19 for i = 1, 2, 3 [since the fi map J, into itself, fi(B,) must be a multiple 
of 8, , hence must be 01, so there are only 6 degrees of freedom in the choice of each 
fi , plus 3 for the choice of B, , instead of the 27 in Case 1 for the choice of the fi . 
In this case, the general form of g(s) is given by 

where A, is an arbitrary vector in d and g, is a linear function from 9 to the real 

numbers. The choice of A, involves only two new parameters, since any component 
along B, cannot affect the values of g(s), and the choice of g, involves only two 
additional parameters, since a constant multiple can be absorbed into the specification 

of B, . Thus, all the gg are determined by the choice of 25 parameters. 
Note that in this case, fs(B,) = B, ; but there is no vector invariant under every 

gs . In particular, 

gs(--Am) = fs(-A') + &L) + g,(S) B, 

= -A, + g,(S) B, . 

CASE 3. Dimension of Jy^, = 2. 
In this case, rather than start with fi , fi , and f3 , it is simpler to start by specifying 

the vectors .8’?, and B, in d such that for all S 

k@,) = 0, 

w4) = g,(S) B, 
where g, is a linear real-valued function. Now not every MS can have dimension 3, 
for if they all did, one would have Mm = d. Thus, for some ~?i , one can choose a 
nonzero vector & such that 93, consists of exactly the multiples of 8, . Since by 
commutativity, every hs maps .%?s, onto itself, it follows that there is a real-valued 
function k defined on 9 such that for all 3, 

k&) = k(S) B, . 

From Eq. 5”, one sees that 

k(L? + F) = k(S) k(T) + k(s) + k(F). 
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This functional equation has the general solution 

k(S) = e{(S) - 1 

where t(s) is an arbitrary linear function from 9 to the reals, 
The general solution for g(s) is of the form 

g(S) = k&L) + g,(S) 4 + g,(S) B,. 

Here, the proportionality constant between h,, [the coefficient of i?, in hS(B4)] and 

g, (the coefficient of B, above) can be set = 1, by proper choice of B, (otherwise, B, 
would be determined only up to a multiple). 

The function g, is given by (14), with q1 = 1 for reasons just mentioned: 

g,(S) = u/~k2b912 + 4(Q 
The vector A, may as well be taken = & , since any component along B, does not 
affect values of g(s), while any component along i?, is mapped by hs into a multiple 
of g,(s) B, , and can thus be amalgamated with g,(s) B, , since the latter involves an 
arbitrary linear function tI . Thus, determination of all the functions gs involves 9 
parameters for the choice of Pjr , B,, and & , 2 for the choice of g, (since a constant 

multiple can be amalgamated with the choice of 8,), and 3 each for the choice of 
linear functions /r and /, a total of 17. The transformationsfg and gs are summarized 
by the following equations: 

The B, , & , and i?a form an interesting coordinate basis for the vector space d. 
The choice of a coordinate system corresponding to a special set of primaries is the 
basic step in any color theory. However, the above basis is not uniquely determined, 
in the sense that the form of the equations remains unchanged if one adds to B, an 
arbitrary component along B, (of course, /I would change). 

CASE 4. Dimension of JIT, = 3. 
Choose linearly independent vectors B, , B, , B, in d and linear functions from 

9 to the reals, g, , !r , and /a . Define 

g3(9 = (1/n&m2 + a% 

g,(s) = WMg,(~)13 + g&s) 4;(s) + @s). 
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Now define fs and g(s) by 

fsP1) = 4 1 
fsv-4) = g369 4 + & 9 

and define gs(A) = fs(A) +g(s). Th is clearly gives all possible solutions to Eqs. 4 

and 5 with dimension of XT, = 3, since the coefficients q1 ,q2 , q3 , in Eqs. 14, 16, and 

17 can be taken = 1 by choosing suitable multiples of i?, , B,, and &. Thus, the 
solution depends on 18 parameters. Again, the set of Bi is not completely determined 
by the form of these equations, so there is some freedom in choosing such a basis 
to compare to color-theory primaries. 

9. RELATIONS WITH OTHER THEORIES OF 
COLOR ADAPTATION AND CONTRAST 

Comparison of the present theory with previous treatments of context effects in 
perception is most straightforward in the area of color vision. Cross-context matching 
has been employed frequently in evaluation of adaptation and/or contrast effects 
on perceived brightness and color. Furthermore, it has long been understood that 

perceived color depends on the response-levels of 3 physiological response systems, 
and theories of context effects have been formulated in terms of effects on these 
systems. 

The problems of color adaptation and color contrast cannot be isolated from the 
more general problems of the temporal and spatial dynamics of the visual system. 
Ultimately, brightness and color contrast must be incorporated into a theory that 
encompasses all the interrelated problems of nonhomogeneous stimulation: 
summation and averaging, inhibition and Mach bands or edge effects, spatial and 

temporal acuity, contour formation, etc. Similarly, brightness and color adaptation 
do not merely involve the desensitization of photochemical response systems, but 

rather, changes in the organization and the noise-level of complex neural systems. 
Nevertheless, the present analysis is limited to the case where the appearance of a 

stimulus element is affected uniformly with respect to space and time by preadapting 
or surrounding stimuli. The usefulness of such an abstraction lies in the possibility 
of isolating some information about the 3 fundamental response systems responsible 
for fovea1 color vision, and about their interaction and desensitization characteristics. 
The same abstraction has been made by previous color theorists, with much the same 
end in view. 

The two main theories that I shall discuss are those of von Kries (1905) and of 
Jameson and Hurvich (1964). In a sense, these theories emphasize opposite aspects 
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of the problem: von Kries’ theory is best understood as involving de- or resensitization 
of fundamental response systems, a multiplicative process, while that of Jameson 
and Hurvich involves opponent-colors induction, an additive process. Furthermore, 
the two theories differ in their use of linear versus nonlinear physiological responses. 

In terms of the vector space d introduced in Sec. 8, the von Kries “coefficient law” 
may be formulated as follows: There exist 3 linearly independent vectors /i, , A, , Aa 
in d such that if S, T overlap, then there exist “coefficients” 

such that 

Since every L? in d can be written in the form p,A, + pa& + paA, , Eq. 18 specifies 
the function g,, r completely. Note also that gS,T(B) = 8; that is, the von Kries theory 
is a special case of the present theory, in which the affine transformations gS,T are 
linear transformations, possessing a special basis A, , A, , Aa with respect to which 
their matrices are simultaneously diagonal. 

Even though the von Kries law falls under Sec. 8, in that the natural addition- 
transformations are assumed context-invariant, the full theory of Sec. 8 may not be 
applicable, since there is nothing in the theory that guarantees that Assumption 5 is 

valid. I f  Assumptions 5 and 6 hold, then the von Kries theory probably falls under 
Case 1 of Sec. 8, since Na has dimension 0 unless for some i(i = 1, 2, 3) g,(S, T) = 1 
for all S, T, which seems unlikely (see interpretation below). 

The physiological interpretation of the von Kries theory is that, for any stimulus 
element A in 02, the coefficient of Ai in the representation of (il, 0) is the response-level 
of the ith (linear) fundamental response system, and that this ith system is de- or 
resensitized by a factor g,(S, T) in passing from context S to context T, changing the 
response-level from pi to pigi(S, T). 

I f  response-functions of the 3 fundamental response systems are unknown, one can 
try to deduce them by assuming the von Kries law and then trying to find a coordinate 

system in which the matrices of linear transformations gS,r are simultaneously 
diagonal. 

Modern tests of the von Kries coefficient law have failed to establish any conditions 
under which it is valid (see Sec. lo), in part perhaps because of the importance of 
contrast effects in some or all of the conditions under which the theory has been tested. 

In particular, any theory in which gS,r is a linear transformation predicts that if 
AT L BS, then for any nonnegative p, (PA)~ = (pQs. This prediction was proved 
false, under conditions involving contrast, by Hurvich and Jameson (1957). These 
authors suggested adding a translation (i.e. making gS,r(e) f  0) to account for 
opponent-induction effects, thus leading to affine transformations. Affine trans- 
formations of 0 are precisely the type that occur in Sec. 8, although the use of them 
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there stems from entirely different considerations, namely, the possible context- 

invariance of addition-transformations. 
The theory of brightness and color contrast proposed by Jameson and Hurvich 

(1964) considers only additive (induction) effects on response-levels of the physio- 
logical systems. In addition, it assumes that these effects are additive on a neural level 

where the relation of response-level to stimulus energy is better described by a 
nonlinear function than by a linear function. This nonlinearity implies that, in fact, 
the semigroup of addition-transformations of spectral energy distribution functions 
is not context-invariant. Thus, their theory makes predictions different from those 

in Sec. 8. Nevertheless, the Jameson-Hurvich equations can be derived from the 
treatment in Sets. 3-5, and even generalized, by considering a different semigroup 
of transformations to be context-invariant. The transformations that must be 
considered are essentially vector increases in the response-levels of the three nonlinear 
response systems. In the following paragraphs, I shall sketch this application of the 
theory of sets. 3-5, in an informal and nonrigorous manner, deriving the Jameson- 

Hurvich equations as an important special case. However, this derivation of equations 
does not quite imply that their theory is a special case of the present theory. In fact, 
the Jameson-Hurvich theory is closely related to the physiological findings of Hartline 
and Ratliff (1958) regarding steady-state interactions in the compound eye of Limulus, 

and the theory has been applied successfully to steady-state brightness contrast 
experiments, in which the eye is at least partially adapted to the brightness of each 
new stimulus element. This sort of partial confounding of stimulus-element and 
context must be treated with great care. 

For convenience, the set 6? of stimulus elements is taken to consist of metamer- 
classes of spectral energy distribution functions. Let the response-levels of the 3 
physiological systems, for stimulus-element A, seen in context S, be denoted 

They have the following properties: 

AT = BS if and only if r&A) = r&B), i =z 1,2,3, 

A = B if and only if ris(A) = r&B), i =: 1,2,3. (20) 

Equation 20 follows from (19) and the fact that A, B denote metamer classes. 
Choose some fixed standard context S. Let a = (a, , a2 , us) be any vector of 3 

real numbers. Define Aa to be the stimulus element (if one exists) such that, for 
i = 1,2,3, 

r&A”) = vi,(A) + ai . 

Denote by 3 the set of a such that A” is defined for every A. 9 is a commutative 
semigroup of one-to-one transformations of G!! (it is a semigroup because if a, b are 
in 9, then (Aa)b is defined for every A). In practice, one can only require that Aa be 



42 KRANTZ 

defined for elements A within some “usual range” since at very high levels, the 
physiological responses will saturate, or injury to the eye is risked. (This aspect is 

ignored here; a rigorous treatment would involve complex topological reformulation 
of the theory in Sets. 3-5.) Note that ??’ at least contains the identity transformation 
0 = (0, 0, 0), but that, even ignoring the saturation problem mentioned above, not 

every vector a is in 3‘; for example, it may be impossible to increase the response-level 
in one system by a large factor without at the same time changing the response level 
in some other system by some minimum amount. In general, the set of vectors a for 
which A” is defined for every A (in some “usual range”) will depend on the context S 
chosen as standard for defining the transformations a. An important, but plausible 

assumption is that the semigroup 9 is complete with respect to GY. 
Suppose now that Assumptions 1-4 of Sec. 3 are satisfied, so that, in particular, 3 

is context-invariant with respect to the contexts under consideration. The theory in 
Sets. 4 and 5 is thus applicable, yielding affine transformations g,,, that describe the 

effects of shifting from the standard context S to any other context T. In this case, 
however, these transformations can be obtained specifically in terms of the functions 
ris. First, note that the semigroup operation in 3 is just vector addition, since 

yis(Aab) = r&P) + bi 

= y&q + ai + 6, 

= r&A”+*). 

Thus, the elements of L!? are also vectors, and the group operation is vector addition. 
Examination of the definition of the induced group operation on the stimulus 
elements shows that it corresponds to vector addition of physiological responses: 
y&A, B) = yis(A) - r&B) is well defined and 

where A, , 2, , (A, B), are elements of d. From the above, and from Eq. 19, it 
follows (assuming continuity of gs, r in an appropriate topology) that for i = 1, 2, 3, 

&m@)I = g,,(& T) r,,(A) + g,(J% T) &A) + g&C T) Y&) + g&K T) 
(21) 

wheregij(S, T) are the elements of a 3 x 4 matrix, depending on S, T but independent 
of A. 

Note that these results are formally identical with those of Sec. 5 and the beginning 
of Sec. 8, since gs, r is represented as an affine transformation in a vector space, but the 
vector addition is different from that in Sec. 8, taking place on the level of physiological 
responses rather than stimuli. This comes from the fact that the transformations 
assumed context-invariant were defined as additions of physiological responses (under 
context S), rather than as additions of stimuli. 
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Further refinement of Eq. 21 is possible if it is assumed that the stimulus elements 
can be matched across contexts on each of 3 subjective dimensions, each of which 
corresponds to equivalence with respect to the response-level of a single physiological 

process, e.g., AT E< BS if and only if r,,(A) = r&B). Suppose that the relations 
=i are equivalence relations, that 9 is context-invariant with respect to these cross- 

context matching relations, and that z is just the conjunction of them. Then the same 
analysis leads for each i, i = 1,2, 3, to the equation 

(22) 

These equations are similar to the von Kries coefficient law, in that the ith coordinate 
of the transformed vector depends on a multiple g,,(S, T) of the ith coordinate of 
the original one (representing de- or resensitization ?), but here there is an additive 
constant (representing induction ?). Also, here, the equations cannot be used to deduce 

the coordinate system representing physiological responses, without specifying some 
particular relation between the nonlinear yIs and a linear stage of (photochemical) 
response. If  the responses yis are assumed to be power functions of some linear stage, 
then again, one may hope to infer them from cross-context matching experiments. 

Finally, in the Jameson-Hurvich theory, the coefficients gii are assumed to be = 1, 

and gi4(S, T) is assumed to be proportional to the differences in the ith response-level 
for the context-stimuli S and T. This last feature, incidentally, implies that part (ii) 
of Assumption 5 is satisfied, if the same transformations are applied to context-stimuli 
as to focal stimulus elements. 

10. TESTS OF CONTEXT-INVARIANCE FOR ADDITION-TRANSFORMATIONS 
IN COLOR SPACE 

Formally, direct tests of context-invariance for any set of transformations of 

stimulus elements are quite straightforward: a test is obtained by obtaining matches, 
under context S, of the stimulus complexes A, , * AFT, AzT, Ai*, for different A, , A,, 
with the same a and T. Indirect tests are also possible, by testing whether the trans- 
formations gS,T are in fact affine. There is an extensive literature on brightness and 
color contrast, which might lead one to suppose that previous data could be used for 
such tests. Most of the data, however, suffer in one way or another from confounding 
of stimulus element changes with context changes. This does not necessarily invalidate 
such data for the types of analysis envisaged by previous authors, but it does make 
application of the present theory uncertain. For example, the classic study of Hess and 
Pretori (1894) confounded stimulus elements with contexts in two ways: first, the 
matching field was presented simultaneously with the test field, in the same eye, thus 
constituting an additional, variable context element; and second, the design was a 
constant-brightness design, in which test-field luminance was changed and then 
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context-field luminance was varied until the test-field matched a fixed match-field 
brightness. The first source of confounding is alleviated in the study by Jameson and 
Hurvich (1961), by use of successive viewing of the two contexts, but they, too, use a 
constancy design of a sort, in which they change test-field luminance and surround 

luminance in a constant ratio (demonstrating that test-field brightness is not necessarily 
thereby held constant). A similar constancy design was used by Fry and Alpern (1953). 

A third type of confounding was mentioned in the previous section; if the eye is 
allowed to reach a steady state for each new stimulus element, then one aspect of 

context, adaptive state, changes with changing stimulus elements. This may have 
been true in the Hess and Pretori study, and is certainly true in the work of Diamond 
(1953) and Heinemann (1955). 

One study of brightness contrast that is apparently free of the above types of 

confounding is that of Alpern (1953). He studied th e context effect called metacontrast, 
reduction in brightness of a flash of light by a subsequent flash in an adjacent region 

FIG. 2. Functions gS,r for metacontrast, with luminance coordinates. Abscissa is test-field 

luminance (ft.-lamberts) for test-fields seen in context S (luminance of contrast-field is 1 ft.- 
lambert). Ordinate is test-field luminance (ft.-lamberts) for matching test-fields in context T 
(luminance of contrast-field is L ft.-lamberts). Curves for four different T-contexts (L=-1,0,2, 3) 
are shown. (Replotted from Alpern, 1953.) 
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of the visual field. The matching field, presented in a standard context with no 

afterflash, was seen by the other eye, in haploscopic viewing, greatly reducing the 
possibilities of confounding of match-field with context. Direct tests of context- 
invariance are not possible, based on his data, but one can attempt to fit an affine 
equation to his obtained relations between test-field luminances that, in different 
contexts (different afterflash intensities) match the same match-field. This tests 
context-invariance of luminance-addition transformations. One can also test context- 
invariance of brightness-addition transformations, by taking the cube roots of all 

luminance values. Affine equations, in one dimension, are simply straight lines. 
Figures 2 and 3 show some of the data reported by Alpern, replotted in luminance 

0 I I I I 
1.32 234 446 602 

FIG. 3. Functions gs,r for metacontrast, with cube root luminance coordinates. Data are 
the same as in Fig. 2, but abscissa and ordinate show cube rmts of test-field luminances. 
(Replotted from Alpern, 1953.) 

and in cube-root luminance coordinates. The plots are obviously nonlinear but the 
deviations are not systematic. I f  one tentatively concludes that neither of the above 

types of transformation is context-invariant, for metacontrast effects on brightness, 
this raises the problem of finding what type of transformation, if any, is context- 
invariant, for such metacontrast effects. 

The most relevant studies of color adaptation and contrast are those of MacAdam 
(1956) and of Burnham et al. (1957). MacAdam specifically tested the von Kries 
theory, using haploscopic viewing and a beautifully controlled preadapting field for 
varying context. He found substantial and systematic deviations in attempting to fit 
the data by 3 x 3 matrices (linear transformations). Perhaps a better fit could be 
obtained using affine transformations. Burnham et al. varied the illumination of a 
surround-field, obtaining better fits to the color matching data by affine transformations 
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than could be obtained with linear ones. These results, together with those of Hurvich 
and Jameson cited in the previous section, seem to rule out the von Kries theory 

as having very wide applicability. It may still be appropriate for special types of 
context effects. The results of Burnham et al. afford positive support for the idea 

that addition-transformations of energy distributions are context-invariant for certain 
types of context changes. Their goodness-of-fit is illustrated in Figs. 4 and 5, which 
show, in the CIE chromaticity diagram, the obtained changes in test-field chromaticity 

to produce a given match-field color, when the surround is changed from illuminant 
C to illuminant A, and the deviations of obtained from predicted changes, when 
predictions were made by a least-squares fit of an affine transformation. 

.90 -~ 

- 520 

FIG. 4. The CIE chromaticities of the mean matches with illuminant C or A adaptation 
and surround. Vectors extend from the test-field chromaticity for illuminant C to the test-field 

chromaticity for illuminant A that produced the same haploscopic match. The axes are CIE 
chromaticity coordinates x, y. The chromaticities of the two illuminants are shown as large 
filled circles. (Adapted from Burnham et al. 1957.) 
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FIG. 5. The CIE chromaticity difference-vectors of obtained versus predicted match-points 

for illuminant A. Obtained match-points are the arrow-points from Fig. 4, while predicted 
match-points are based on a best-fitting affine transformation (minimized squared error in 

CIE tristimulus coordinates). Comparisons with color-discrimination data indicate that the 

deviations are perceptually very small. (Adapted from Burnham et al. 1957.) 
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