
JOURNAL OF MATHEMATICAL PSYCHOLOGY: 5, 182-195 (1968) 

All-or-None Subprocesses in the Learning 
of Complex Sequence+ 

ROBERT A. BJORK 

University of Michigan, Ann Arbor, Michigan 48104 

This paper reports a study designed to investigate whether the all-or-none con- 
ception of the learning process can be extended to a learning task more complex than 

conditioning or simple verbal association. The experimental task is to learn numerical 
sequences by anticipating each new member of the sequences. Although the obtained 

sequence learning appears very complex, it proves to be analyzable into constituent all- 
or-none subprocesses. 

The success of specific models for conditioning and verbal association that embody 
the all-or-none conception of the learning process has led to speculation (Estes, 1964; 
Restle, 1964) that it might be profitable to extend the all-or-none conception to more 
complex learning. Although the simplest all-or-none model, the one-element model, 
which assumes a single all-or-none learning step is obviously inadequate for situations 
more complex than conditioning or simple association, it may be the case that complex 
learning consists of a number of successive and/or simultaneous all-or-none processes. 
There is some evidence for such a position. Bower and Theios (1964) describe 

avoidance behavior well with a model based on the assumption that learning the 
avoidance response involves two successive all-or-none subprocesses. Also, Restle( 1964) 
interprets difficult paired-associate learning in terms of a multistage model in which 
the stages are all-or-none processes corresponding to association, stimulus 
discrimination, and response discrimination. 

This paper reports a study designed to investigate whether the all-or-none con- 
ception can be extended to sequence learning, a learning task considerably more 
complicated than simple association. The general format of sequence learning is as 
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follows: the subject is presented the first member of a sequence, attempts to predict 
the second member, is presented the second member of the sequence, attempts to 
predict the third member, is presented the third member of the sequence, and so on 
until he achieves an arbitrary learning criterion of N successive correct anticipations. 
There are two main reasons why the learning of numerical sequences is an appropriate 

task for this study: 

1. As a learning task it is considerably more complex than those tasks which 

typically exhibit all-or-none learning. In simple associative tasks the stimulus and 
associated “correct” response are constant. In sequence learning the subject must 
abstract from the progressing sequence constant relationships upon which to base 
his prediction of the next sequence member. For example, if the sequence is 0, 2, 1, 

3, 2,..., he must learn that whenever the sequence is incremented by 2 it will then be 

decremented by 1. In addition, most sequences involve more than one abstract 
association; in order to completely learn the sequence the subject must abstract 
several relationships concurrently. 

2. Although the task is considerably more complex, the response protocols generated 
are formally similar to those resulting from simple association experiments. The 
subject’s responses for a particular sequence can be represented as a trial-by-trial 
string of errors and successes yielding protocols essentially equivalent to paired- 
associate or conditioning protocols. This protocol equivalence means that differences 
and similarities between sequence learning and simple association are maximally 

apparent, since the sequence data can be analyzed in a fashion parallel to the standard 
analyses performed on simple association data. 

METHOD 

Fifty-nine introductory psychology students at Stanford University participated in this 

experiment in fulfillment of a course requirement. They were each required to learn 12 numerical 
sequences which varied considerably in their complexity. All subjects were given the 12 sequences 

in the same order. 

Apparatus. A black 3 ft. square of plywood was supported vertically on a table, separating 

the subject and experimenter. In front of the subject, mounted on the plywood, was a white 
circle of 12 in. diameter. The 10 digits, 0, l,..., 9, were printed in black at equal intervals inside 

the circumference of the circle. Mounted just outside the circle next to each digit was a small 
light. Any particular digit could be designated by turning on its adjacent light. 

The experimenter could control the digit presented on a particular trial by means of a ten- 

contact rotary switch wired to correspond to the ten-digit display. As the switch was turned 
from one number to another, all numbers in between flashed momentarily as their contacts were 
touched. The direction of this series of brief flashes enabled the subject to tell whether addition 

or subtraction was being performed. The nature of the apparatus meant that any sequence 
member, N, appeared as N (modulo 10) to the subjects. Thus, if two successive members of 
a sequence were 8 and 12, the subjects saw 8 and 2. 
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Instructions. Subjects were told that their task would be to discover the scheme or system 

underlying each numerical sequence. They were also told that the sequences were arithmetic 
in that each new member of a sequence would be obtained by adding or subtracting some 

integer to or from the last member of the sequence; it was emphasized that multiplication or 
division were never involved. Two illustrative sequences were presented and explained to 

familiarize the subject with the procedure. 

Procedure. Subjects were presented the members of a given sequence one by one. After 
each member was presented the subjects were required to attempt to predict the next member 

of the sequence. At any one time only the current member of a sequence was displayed to the 
subject; that is, with the presentation of each new member of the sequence the preceding 

member was removed. 
Subjects responded vocally; the experimenter recorded each response and presented the next 

member of the sequence. When a subject anticipated five consecutive sequence members 
correctly, he was told that he had solved the sequence; there was a short interval; and then the 
experimenter presented the first member of the next sequence. If a subject had not started 

a criterion run of five correct by the twenty-fifth trial, he was told that that was the end of the 

sequence, and after a short interval, the next sequence was started. 

Nature of the sequences. The experimental sequences, shown in Fig. 1, are generated by 

operations of two basic kinds. The simpler of the two operations is adding (subtracting) a constant 
integer. For example, sequence 4: 1, 4, 7, lo,..., is constructed by adding 3 on every trial. By 
combining several such operations more complex sequences can be generated; sequence 3: 

1, 5, 7, 11, 13,..., is constructed by alternately adding 4 and adding 2. 

The second, and more complicated of the two operations, is an advancing, rather than constant, 
increment or decrement to the sequence. For example, sequence 1: 1, 2, 4, 7, ll,..., is formed 

by adding 1, adding 2, adding 3, etc. Again, more complex sequences can be generated by 
operations of this kind by using more than one such operation in a single sequence (e.g., 

sequences 2 and I I). 

Finally, the two operations can be mixed to construct sequences as in sequence 7. 

RESULTS 

The learning curves obtained for the 12 sequences are shown in Fig. 1. These 
learning curves, to say nothing about more sensitive characteristics of the data, 
appear very complex. They show numerous irregularities which seem unlikely to be 
predicted by any simple model. 

In spite of the general complexity of the sequence data, the possibility is not 
excluded that subprocesses, i.e., components of the learning defined in some manner, 
might exhibit all-or-none learning. A process generated by several simple, but 
interlaced, stochastic subprocesses could appear complex. Even if the component 
subprocesses are the same, their probabilistic nature and joint generation of the learning 
process could yield very complex performance. 

A subprocess analysis requires a partition of the data made according to some 
rational breakdown of the learning into components. One reasonable partition is in 
terms of the constituent subrules shown in Fig. 1. In order to learn any of these 
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sequences a subject must learn the component subrule(s). The learning data from 
this experiment are recorded in such a form that the learning of these subrules can be 

SEOUENCE 2 SEOUENCE 3 

SEOUENCE 5 SEOUENCE 6 

SEOUENCE 7 SEOUENCE 8 SEQUENCE 9 

SEQUENCE IO SEOUENCE 12 

SEQUENCE I I 

TRIAL NUMBER 

FIG. 1. Learning curves for sequences l-12. Above each learning curve are the actual 
sequence members together with the subrules used to generate the sequence. 
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studied directly. I f  the trials on which a particular subrule (e.g., the subrule “add 4” 
in sequence 6) is applied (trials 1, 4, 7, etc.) are extracted from total protocol for 
the sequence, all standard learning analyses may be applied to this subset of the data. 

The learning curves for any particular subrule can be obtained directly from Fig. 1 
by plotting the proportion correct as a function of only those trials to which the 
subrule applies. When the learning curves in Fig. 1 are broken, in this manner, into 
subrule learning curves, striking order emerges. One such transformation is shown 
in Fig. 2; when the single complex learning curve for sequence 6 is broken down, 

three very orderly subrule learning curves emerge. 

CORRECT 

RESPONSES 0 4 5 6 7 8 2 3 4 5 6 I 2 3 4 5 

“ADD 4 ” SUB. RULE “SUBTRACT 2” SUB-RULE “SUBTRACT I ” SUB-RULE 

FIG. 2. Learning curves for the three component subrules of sequence 6. 

Their orderliness is encouraging, but it is not clear what kind of orderliness is 
involved; it is well known that such classic negatively accelerated learning curves can 
come from an intrinsically all-or-none process, an intrinsically incremental process, 
or from combinations of these. 

In order to subject this issue to a detailed analysis the twelve sequences were 
partitioned into subsequences corresponding to the component subrules. The response 
protocols for these subsequences were printed on IBM cards so that the learning of 
each subrule could be investigated separately. For any given sequence the data from 
subjects who did not learn were discarded. All subjects reached criterion on sequences 
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1, 3, 4, 5, 6, 9, 10, 12. One, eight, seven, and four subjects failed to solve sequences 

2, 7, 8, and 11, respectively. 

Organization of the Subsequence Data 

The number of subrules in any particular sequence varies from one to four and 

there are 28 total subrules in Fig. 1. A specific subrule and its corresponding sub- 
sequence of trials will henceforth be designated by the number of the sequence to 
which the subrule belongs followed by a number indicating its order of occurrence 
in the sequence. For example, subrule 5-2 is the second subrule (“subtract 1”) of 

sequence 5. 
Any particular subsequence can also be categorized in terms of the kind of operation 

required, either a constant increment (decrement) or an advancing increment 
(decrement), and the period of application of the subrule, either every trial or every 
second trial . . . or every nth trial. Table 1 shows that when the 28 subrules are categor- 
ized in this manner they fall into six groups: constant subrules with periods 1, 2, 3, 

4, and advancing subrules with periods 1, 2. Any such group will be referred to by 
a letter indicating the kind of operation involved followed by a number indicating 

TABLE 1 

SUBRULE CATEGORIZATION" 

Type of operation 

involved in the subrule 

Period Constant Advancing 

of increment increment 
Application (decrement) (decrement) 

1 Group C-l: 

4-l. 

Group A-l: 

l-l. 

2 Group C-2: Group A-2: 

3-1, 2; 7-l; 9-1, 2. 2-1, 2; 7-2; 8-1, 2; 11-1, 2. 

Group C-3: Group A-3: 

5-1, 2, 3; 6-1, 2, 3. 

Group C-4: Group A-4: 

10-1, 2, 3, 4; 12-1, 2, 3, 4. - 

n The subrules are grouped according to their type of operation and their period of application 

in the sequence. 
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the period of application. Thus, groups C-3 and A-2 designate the constant subrules 
with period 3 and the advancing subrules with period 2, respectively. 

An All-or-None Model for Subrule Learning 

The all-or-none model applied to the subsequence represents a slight modification 

of the simple one-element model. Its principal substantive assumptions are as follows: 

1. On trial 1 the subject is in an unlearned state and has probability g, of being 
correct. On the first trial of any given subsequence the subject has no information 
about the subrule at all; he has never seen an occurrence of the subrule in the current 

sequence. It would be a mistake, however, to think that the subject is guessing in 
the normal sense. Instead, he is usually operating on hypotheses resulting from his 
having observed the first occurrence of other subrules. His probability of being 
correct depends entirely on the fortuitous interaction of prior occurrences of other 
subrules and the nature of the present subrule; it may vary from zero to virtually 
unity, but it indicates nothing about the subject’s degree of learning on the subrule. 
Hence, g, for any subrule is just taken to be the observed proportion of correct 

responses on the first subsequence trial. 

2. Upon the occurrence of a reinforcement of any subrule the subject has probability 
c of learning, in which case he will make no more errors on the subsequence, and has 

probability l-c of not learning. 

The all-or-none conception can only be tested after the first reinforcement of a 
particular subrule. In the case of advancing subrules this means that the subsequence 
protocols must start with the second subsequence trial, ignoring the first completely, 

because two operations must occur before the subject can detect an advancing subrule. 
Consider sequence 1. After the first trial the subject has only seen “add 1.” The 
first reinforcement of the subrule, “add 1 more each trial,” comes only after the 
second trial when the subject also has seen “add 2.” 

3. I f  the subject does not learn, he has some probability g of guessing correctly on 
the next trial. In general, g will not equal g, . It is this inequality which differentiates 

this model from the one-element model in which g = g, . 

Fit of the All-or-None Model to the Subsequence Data 

It is not manageable to exhibit the fit of the model to the obtained learning on each 
of the 28 subrules. Instead the model will be tested against the subrule data grouped 
as in Table 1. This is possible because the learning on subrules of the same type, i.e., 
subrules with the same kind of operation and the same period, is similar. Also, the fit to 
the grouped data is typical, other than being more stable, of the fit to the individual 
subrule data. 

There is one distinct exception to the rule that the obtained learning on subrules 
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of the same type is similar. The subrules in group A-2 of Table 1 fall into two difficulty 
classes, A-2E (easy) and A-2H (hard) containing subrules 2-1, 2-2, 7-2, and 8-1, 8-2, 

11-1, 11-2, respectively. Thus, the model will be tested against the subsequence data 
pooled into seven groups: C-l, C-2, C-3, C-4, A-l, A-2E, and A-2H. 

Many features of the subrule learning can be utilized to test the model (Bower, 1961). 
Three features which embody most of the distinguishing characteristics of the all-or- 

none model are (a) the form of the learning curve, (b) the distribution of total errors, 
and (c) the distribution of the trial of last error. 

In order to derive predictions from the model for these features of the learning, 
It is necessary to estimate c and g. The guessing probability, g, can be estimated from 
the mean proportion correct after the first trial and before the trial of last error. 

Instead of estimating g separately for each group of subrules, a value of .25, which 
represents the approximate mean for all the subsequences will be used. The probability 
of learning on a given trial. c, can be estimated from the mean total errors, 

MT = 1 -3 -,9u -c>. 

C 

When this equation is solved for c, an estimate of E for each subrule group is obtained. 
That is, 

1 -g 

where MT and g, are observed values and g = .25. 
The predicted vs observed learning curves and the predicted vs observed distri- 

butions of total errors are presented, for the constant subrules, in Fig. 3 and, for the 
advancing subrules, in Fig. 4. With the exception of groups C-l and C-2, the fit of 
the model would be difficult to improve upon. The predicted vs observed distribu- 
tions of the trial of last error are very similar to the fit of the total error distributions 
and are omitted. 

In groups C-l and C-2, where the fit is not good, there are fairly obvious experi- 
mental reasons why the data are not typical. Group C-l contains only subrule 4-1, 
the only instance of a constant subrule with period 1. Subrule 4-1 is the subrule 

“add 3” in sequence 4: 1,4, 7, 10 ,..., which is so simple subjects expressed “it couldn’t 
be that easy,” and predicted in accordance with some more complex hypothesis. To 
accurately predict such behavior a model would have to be somewhat more idiopathic 
in nature than those considered in this paper. Group C-2 is atypical because the 
nature of sequences 3 and 9 led the subjects, during the early trials, to suppose that a 
subrule of the advancing sort was generating the sequence. 

The close correspondence between the predictions derived from an all-or-none 
model of the subrule learning and the obtained subrule data virtually rules out the 
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FIG. 3. Subsequence analysis: constant subrules: The predicted vs observed learning 
curves and distributions of total errors are shown for the subrule groups, (A), C-l, (B) C-2, 
(C) C-3, and (D) C-4. (See Table 1). 
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possibility that any simple incremental model will also account for the subrule 
learning. However, the possibility that the subrule learning is not perfectly all-or-none, 
that some learning takes place before perfect (criterion) learning, is not ruled out. 

” 
I 3 5 7 9 II 

1.0 

.8 

.6 

4 

.2 

0 
I 3 5 7 9 II 

TRIAL NUMBER TOTAL ERRORS 

I 1 1 I I I 1 1 1 I 

---c OBSERVED 
- -0. - PREDICTED 

0 I 23456769 

0 I 23456789 

FIG. 4. Subsequence analysis: advancing subrules. The predicted vs observed learning 

curves and distributions of total errors are shown for the subrule groups, (A) A-l, (B) A-2 (easy), 
and (C) A-2 (hard). (See Table 1). 

Minimum Chi-Square Analysis: The Insight Model 

This section investigates the extent to which there is some learning on the subrules 
before criterion performance is reached. The development of a model, called the 
“insight” model (Rumelhart, 1964) provides the framework for this analysis. In its 
assumptions the insight model lies between the simplest all-or-none model and the 
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simplest incremental model, and, for certain values of its parameters, reduces to one 
or the other. 

The insight model assumes that upon reinforcement, with probability c the subject 
learns in an all-or-none fashion, and with probability l-c he learns incrementally. 

Mathematically, if P(C,) is the probability of being correct on the nth trial, then 
with probability c, 

P(C,+,) = P(C,+,) = .‘. = P(C,) =-- 1, 

and with probability 1 -~ c, 

P(C,+,) = P(G) + a[1 -. qG)I. 

The process starts with P(C,) = g. 
When 01 = 0, the insight model reduces to the one-element model, and when 

c = 0, it reduces to the simplest incremental model, the simple linear operator model 

(Bush and Sternberg, 1959). 
The fit of the insight model to the subrule data, grouped according to Table 1, is 

tested using a minimum chi-square procedure (Atkinson and Crothers, 1964) on trials 
2 through 5 of the subsequence protocols. It is reasonable in testing the model to 
consider only trials 2-5 because (a) the first trial is before the first reinforcement and 
can be excluded since it reveals nothing of the subrule learning process, and (b) the 
learning is fast enough on the subrules so that not too much is cut off by stopping 

with subsequence trial 5. On trials 2-5 any given subject will have one of the 16 
possible four-tuples of correct responses and errors: CCCC, CCCE, CCEC, CCEE, 
CECC, CECE, CEEC, CEEE, ECCC, ECCE, ECEC, ECEE, EECC, EECE, EEEC, 
EEEE. For any set of values for its parameters, the insight model predicts the 

probability of each of the 16 error-success four-tuples. If  we choose a particular set 
of values for CL, c, and g, the probability distribution across the 16 events can 
be computed and compared with the observed distribution of the 16 events. 

Some information can be gained as to the goodness-of-fit by computing the chi-square 
value: 

X2 = c to - Ej2 ) 
E 

where 0 is the observed proportion of an error-success four-tuple, E is the proportion 
predicted by the model, and the sum is over the 16 possible four-tuples. The minimum 
chi-square procedure finds the particular set of parameter values for which this 
quantity is minimized. In the case of the insight model the procedure does more than 
just provide the best fit of the insight model to the data. It also indicates through the 
parameter values yielding the minimum chi-square the degree to which the learning 
conforms to an all-or-none process. To the extent that IX is near zero the learning is 
all-or-none and to the extent that c is near zero the learning is incremental. 
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Table 2 presents the results of the minimum chi-square analysis. The table contains, 
for the insight model, the one-element model, and the simple linear operator model, 
the minimum chi-square values and minimizing parameter values for each ‘of the 
seven subrule groups. 

TABLE 2 

MINIMUIVI CHI-SQUARE GOODNESS-OF-FIT ANALYSIS 

Insight model All-or-none model Incremental model 

Subrule __- 

group XYWf) a c g x2(13@) c g x2(13&) fx g 
~. ___ 

C-l 16.5 .50 .18 .Ol 24.3b .52 .lO 17.1 .23 .49 

c-2 37.5b .16 .43 .OI 50.6" .45 .23 199.7b .37 .23 

c-3 10.4 .03 .67 .32 10.5 .68 .34 52.9* .60 .45 

c-4 3.4 .OS .77 .48 3.4 .78 .49 25.9b .75 .48 

A-l 10.6 .05 .38 .26 10.8 .38 .33 48.7" .23 .49 

A-2E 20.7 .oo .50 .20 20.7 .50 .20 200.1* .20 .56 

A-2H 12.3 .OO .50 .20 12.4 .32 .21 209.Sb .20 .38 

a The chi-square values reflect the deviation between predicted and observed frequencies of 
the 16 possible error-success four-tuples on trials 2-5. 

b Significant. 

For five of the seven subrule groups in Table 2 the minimizing value of 01 in the 
insight model is near zero; there appears to be negligible learning of these subrules 

before perfect learning is attained. This lack of partial learning is emphasized in that, 
when 01 is set to zero, the resulting two-parameter one-element model fits the four- 
tuple data as well as the three-parameter insight model. The data for groups C-l and 
C-2, which are not fit well by the all-or-none model, are atypical for the experimental 
reasons given earlier. It would be very difficult statistically to assert that the subrule 
learning is anything more complicated than all-or-none. 

DISCUSSION 

The results of the preceding analysis of sequence learning are summarized by three 
findings. (a) Overall, the learning of the experimental sequences appears very complex. 
(b) However, when the learning protocols are decomposed according to the subrules 
underlying the sequences, the resultant subrule learning curves are very orderly. 
(c) And finally, an all-or-none model of the subrule learning accounts very well for 
the obtained subrule data. 

4W5/1-13 
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The conceptual framework implicit to the model analysis of the results views 
sequence learning as an association task. In order to learn the constituent subrules of 
a sequence, and hence the sequence, subjects must associate arithmetic operations 
with cues for when to apply the operations. The stimulus and response units of the 
association, however, are more complex than those which characterize conditioning 
or simple paired-associate learning; both the arithmetic operations and the cues for 

applying the operations must be abstracted from the progressing sequence. 
In terms of this associative conception of sequence learning the results of the data 

analysis have two main implications which merit explicit comment. 

1. The breakdown of the sequence learning into component orderly subprocesses 
illustrates that apparently complex performance can result from combinations of 
simple learning processes. In particular, if learning a subrule requires a relatively 
straightforward association, complex performance can reflect the learning of several 
concurrent associations. 

2. The all-or-none nature of the subrule learning implies that, in spite of the more 
complex nature of the stimulus and response involved in learning a subrule, the 
association is formed in a fashion which is formally similar to conditioning or simple 
verbal association. 

It would be an unwarranted extrapolation from this study to assume that any 
sequence learning task with a subrule structure should exhibit all-or-none learning 
of the subrules. When paired-associate experiments are complicated along one or more 

of several dimensions, e.g., amount of immediate memory or response integration 
required, the learning becomes progressively less likely to conform to an all-or-none 
model. Thus, sequences which demand more of the subject’s memory for past members 
or more response integration might be expected to result in a departure from all-or- 
none learning. 
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