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Rational Distance Functions for Multidimensional Scaling1 

DAVID H. KRANTZ 

The University of Michigan, Ann Arbor, Michigan 48104 

A rational distance function is a numerical measure of psychological distance whose 
geometric properties are deducible from psychological truths about some particular 
judgmental task. In this paper, we review two theoretical analyses that have led to 
proposed rational distance functions. These analyses are based on two different tasks: 
paired-associate learning and similarity judgments. A generalization of the theory on 
similarity judgments is presented. 

Empirical results concerning similarity judgments seriously conflict with the basic 
psychological assumptions in the generalized treatment of similarity judgments. We 
conclude from these results that the construction of valid psychologically-based distance 
functions from analysis of choice probabilities in similarity judgments requires, as 
an initial step, the development of scaling models that take into account the influence 
of “irrelevant” dimensions on choice probability. 

I. INTRODUCTION 

In the first stage of multidimensional scaling, some sort of standard measurement 
procedure is used to evaluate the pairwise differences among the objects that are being 
scaled. In the second stage, the objects are represented by points in an Euclidean 
space of low dimension, in such a way that the interpoint distances reflect as closely 
as possible the corresponding pairwise differences. 

There are two senses in which the Euclidean distances can reflect pairwise dif- 
ferences. Either the distances may reproduce some actual numerical evaluations of 
the pairs, obtained in stage 1, or they may merely reproduce the order of the pairs. 
Some of the methods for carrying out stage 2 of multidimensional scaling assume that 
numerical evaluations are to be reproduced (Torgerson, 1952, 1958), while other 
methods seek a representation that reflects only the order (Bennett and Hays, 1960; 
,Coombs, 1952; Shepard, 1962). Sh p d’ e ar s impressive reductions of complex data 
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University of Pennsylvania. The work was supported by grant NB 04342 from National Institutes 
of Health to the University of Pennsylvania, by grant MH 11504-01 from NIH to the University 
of Michigan, and by two grants-in-aid from Sigma Xi-RESA to the author. Some of the research 
was done while the author was a National Science Foundation Predoctoral Fellow. 
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to spaces of low dimensionality have elevated the “ordinal” methods to the 

forefront of multidimensional scaling techniques. 
The validity of either “numerical” or “ordinal” methods requires some strong 

theoretical suppositions. The purpose of the present paper is to examine some of the 
possible theories within which “numerical” methods may be partially justified. A 
theoretical analysis of “ordinal” methods will be presented elsewhere (Beals, Krantz, 
and Tversky, 1967; Tversky, 1966). 

The assumption that the numbers obtained from some measurement procedure 
behave as distances in an Euclidean space is itself a strong theoretical statement about 
that particular procedure. Even the weaker assumption that the numbers satisfy the 
triangle inequality is a theoretical statement about the procedure. Such statements 
seem unnatural as starting points for theory, since they shed little light on the psychology 
involved in the measurement procedure under discussion. Moreover, several different 

measurement procedures have been employed to obtain numerical evaluation of 
pairwise differences for stage 1 of multidimensional scaling, including application 
of Thurstonian models (Messick, 1956; Torgerson, 1952, 1958) and direct estimation 
techniques (Indow and Uchizono, 1960). It would seem natural to start with a theore- 
tical, psychological analysis of a particular procedure, and within such an analysis, 
to search for a rational dtitancefunction, whose distance-like behavior is a consequence 
of psychological truths about the procedure in question. Such an approach presupposes 
a serious interest in the psychological processes underlying the judgmental task, as 
well as in the geometric representation of object differences. But without this sort of 
analysis, it is hard to see what logical justification there can be for trying to reproduce 
numerical evaluations by means of distances. 

As will be seen, the difficulties encountered in the development of rational distance 
functions are severe, because the judgmental tasks are psychologically complicated. 
In particular, the probability or the confidence with which one difference is judged 
smaller than another depends on factors other than the “sizes” of the two differences; 
this produces violations of a property that I shall call simple scahbility. 

Sections II and III below review two recent attempts to obtain rational distance 
functions, by Lute (1961) and Shepard (1958a). Shepard’s theoretical analysis of 
stimulus confusions in paired-associate learning leads to a particular transformation 
of the stimulus confusion probabilities that ought to behave as a distance measure. 
Lute applies his general theory of choice to the case of similarity judgments, deriving 
a transformation of choice probabilities with distance properties. In Section IV. 

theoretical results similar to Lute’s are presented, obtained under more general 
assumptions about choice behavior. Section V presents data analyses that show clearly 
the great difficulties encountered in using choice models to obtain distance functions; 
in particular, failure of simple scalability is demonstrated and discussed. Section VI 
gives a brief discussion of possibilities for revisions of theory that could lead to satis- 
factory rational distance functions. 
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II SHEPARD’S ANALYSIS OF STIMULUS CONFUSIONS 

Shepard (1957) analyzed paired-associate response, probabilities into a convolution 
of two theoretical probability distributions, one governing stimulus confusions, the 
other, response confusions. A second paper (Shepard, 1958a) proposed a relation 
between the theoretical stimulus confusion probabilities and the “psychological 
distance” between stimuli, in the context of paired-assor+ate learning. 

Shepard assumed that when a stimulus Si is presented on one trial of a paired- 

associate learning experiment, a large number of stimulus trace elements are con- 
diti0ne.d from Si to an internal representation of the stimulus, denoted SF. He further 
assumed that with passage of time, some of the trace elements from that trial dzjjfuse 
in the psychological space of the internal representations, becoming conditioned 
instead to ,representations S$ of stimuli S, , for values of K # i. In addition to this 
diffusion process, he assumed a decay process, over time, for the trace elements from a 
given trial, the two stochastic processes operating independently. 

By making some simple, qualitative assumptions about these two processes, Shepard 
was able to deduce a relation between psychological distance and stimulus confusion 
probabilities. His key postulate, which contains an implicit dejkition of psychological 
distance, is the following: the probability that, in some small time interval, a trace 

diffuses from SF to S$, depends on the psychological distance from ST to S$ (or from 
Sj to S,) but not upon the previous history of that trace, nor upon the “absolute 
locations” of SF and S$ in psychological space. From this, and other simple qualitative 
postulates, Shepard rigorously deduced that generalization is an exponential decay 
function of (Euclidean) psychological distance. More precisely, he proved that 

I 

112 
= e-KDij 

where P$ denotes the probability that, when stimulus Si is presented, it is taken to be 
Sj (i =j is possible). Ps is exactly the theoretical stimulus confusion probability 
mentioned above. The symmetric psychological distance between Si and Sj (which 
must be assumed Euclidean to justify the derivation of Eq. 1 above) is denoted Dij . 
The constant K depends on the diffusion rate and the decay rate of the stimulus traces. 
The expression on the left of the equation is a symmetrized, normalized measure of 
stimulus generalization, in terms of the stimulus confusion probabilities Ps. 
j Essentially the same equation relating psychological distance to stimulus confusions 

was proposed by Lute (1963) on the basis of a quite different psychological theory, 
involving a choice-theory analysis of complete identification experiments. 

To test the above theory, Shepard compared empirical values of the stimulus 
generalization measure, obtained from several experiments in different laboratories, 
with the predicted exponential decay curve. For the most part, these tests were based 
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on the assumption that the distance measures Dij are proportional to physical dif- 

ference measures. He attempted to justify this by pointing out that the stimuli employed 
were evenly spaced at small intervals along the physical dimension, and that the pro- 
perty of even spacing would be preserved by any continuous, differentiable trans- 
formation of the physical measure. 

Shepard’s test of his theory is incorrect, however. The argument that differentiable 
transformations preserve even spacing of small intervals is correct only if the psycho- 
logical distance Dij is a function of physical distance i xi - xj / on the continuum, i.e., 

Dij =f(l xz - xj I) (2) 

for some differentiable functionf. I f  this were the case, then, indeed, one would have 
Dij approximately proportional to / xi - xj 1 , where the constant of proportionality 
isf’(O), the derivative offat 0. However, the very assumption that there is any single- 
valued functional relation between physical and psychological distance begs the entire 
question, since it might easily be that equal physical distances, in different parts of the 
scale, go over into grossly unequal psychological distances (suppose, for example, that 
physical distance was measured in decibels, psychological distance was difference in 

mean magnitude estimates, and Stevens’ power law held). Rather more plausible than 
Eq. 2 is the assumption 

Dij = I dxi) - .dxj) I (3) 

where g is a “psychophysical function” mapping the physical values xi into psycho- 
logical space. Equation 3 is logically equivalent to additivity of psychological distance, 

and is thus inherent both in Shepard’s theoretical analysis (since Dij is Euclidean, 
hence, in one dimension, it is additive) and in his method of plotting data (since he 
assumes that two equal stepsrepresent double the psychological distance of one step). 
However, Eq. 3 does not imply approximate proportionality of psychological distance 
and physical difference; in fact, Dij is approximately 1 g’(x,) / . / xi - x, / , where the 
proportionality constant, j g’(xi) / , can vary from one part of the physical dimension 
to another. 

I f  one makes the unlikely assumption that both (2) and (3) hold, then the resulting 
functional equation implies that both f  and g are linear functions of the physical 
measures, so that psychological distance and physical distance are essentially indistin- 
guishable. This certainly is wrong for arbitrarily chosen physical measures. In view 
of the incorrectness of the logic behind Shepard’s test, it is very difficult to interpret 

the fact that he obtains excellent fits to an exponential decay function. Certainly, this 
cannot be regarded as evidence for the theoretical analysis that led to Eq. 1, unless the 
various experimenters whose data are used all happened to choose physical measures 
that closely represent psychological distances. 

How ought Shepard’s theory be tested ? An alternative approach is to compute the 
psychological distances Dij by means of Eq. 1 and to see whether the distances infact 
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satisfy the constraints assumed in the model-i.e., whether they are well fit by Eucli- 
dean distances, in a suitable number of dimensions. (Of course, this only tests a 
consequence of the theory, rather than the entire theory.) In particular, the quantities 
Dij must satisfy the triangle inequality: for any three stimuli Si , Sj , S, , 

The triangle inequality, however, follows if the following condition is true for 
all ij, K: 

G&& 
33 jk 

(4) 

Although (4) is not quite mathematically necessary, it is hard to see how the triangle 
inequality can be satisfied unless it holds. 

When (4) is satisfied nontrivially (i.e., the two expressions are both smaller than one) 
its content can be phrased as follows: for any three stimuli, Si , Sj , S, , the confusions 
of Si with Sk and of Sj with S, are most unequal when Sk coincides with Sj or Si . 
In other words, the generalization gradient between Sj and St is steepest when one 
of them is the “training stimulus.” 

The preceding condition on generalization gradients, when combined with a theory 
of discrimination learning based on absolute responding, predicts failure of transposi- 
tion. Suppose that a rat in a dark-light discrimination situation is reinforced 
for approach to a gray card (S,) and for not approaching a white card (S,). Suppose 
that, asymptotically, errors are entirely due to stimulus confusions. Then on a trans- 
position test, with a black card (Ss) and the same gray card (S’s), the tendency to 
approach S’s is due to generalization from S, , while the tendency to avoid Ss is due to 
generalization from S, . The tendency is similar for approach and avoidance for S, . 
Thus the ratio of approach probability to avoidance probability is P&/r)3s1 for S’s and is 
P&/P& for Ss . By (4), the latter ratio is larger; a simple Markov model of choice-point 
behavior predicts that the rat will choose S, more often than S, , i.e., transposition 
fails. 

Of course, the fact that transposition is observed cannot be interpreted as evidence 
against Shepard’s analysis, since (among other things) the assumption of absolute 
responding is suspect: transposition may depend on genuine relational learning. 

Shepard’s theory provides a solid .rationale for applying Euclidean multidimensional 
,scaling.models to the distance measures Dij derived by Eq. 1 from paired-asociate 
confusion probabilities: the goodness-of-fit of the Euclidean model in such applications 
provides the most adequate test’of the theory. Shepard (1958b) has applied this 
kind of test to data from small one-dimensional and two-dimensional experiments with 
excellent results. 
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III. LUCE’S ANALYSIS OF SIMILARITY JUDGMENTS 

The analysis of choice behavior by Lute (1959) is based on the postulate that 
relative values of nonzero choice probabilities are unaffected by “irrelevant” alterna- 
tives. This analysis was applied by Lute (1961) t o a generalization of the method of 
triads, in which several stimuli are compared to a standard, and the subject chooses 
the one most similar to the standard. 

Let T denote the set of comparison stimuli and let P&r; z) denote the probability 
that comparison stimulus x is chosen as most similar to the standard, z. For T = ix, y\, 
we abbreviate P,,,,,( X; z) as P(x, y; z). For simplicity, Lute assumes that all the choice 
probabilities are nonzero. The basic postulate then guarantees the existence of numer- 
ical scale values v(x, z), defined for all comparison stimuli x and all standards z, such 
that 

Pr(x; z) = v(xp 4 . 
ix*V(Y* 4 

(5) 

Intuitively, u(x, z) is a measure of the similarity of x to z, since the larger it is, the more 
likely is x to be chosen as most similar to z. The question of symmetry of this similarity 
measure is a tricky one, since the w-scale is unique only up to multiplication of the 
values of u(., z) by constants R(z). Thus, for two specific stimuli x and y, one 
can always obtain z&y) = v(y, X) by suitable adjustment of the units of one of the 
two v-scales, v( a, X) or v(*, y). However, as Lute points out, under certain conditions 
the units for all the scales a(., z) can be chosen so as to guarantee v(x, y) = v(.y, X) 
for all x and y simultaneously. 

Lute also examines the psychological plausibility of the functions l/v(x, y) and 
log[l/v(x, y)] as distance measures. The former is unreasonable since it requires 
v(x, x) = co, which implies that for w(y, X) finite, P(y, X; X) = 0 no matter how similar 
y is to X. For log [l /v(x, y)] to act as a distance measure, the units of the u-scales must 
be chosen so that U(X, X) = 1 for all x. If the units are to be adjusted so that z, is also 
symmetric, then P(x, y; y) = P(y, x; x) for all x and y. Furthermore, the triangle 
inequality is equivalent to v(r, y) < 0(x, z)/v(y, z), i.e., 

qx, y; Y) < 4% y; 4. (6) 

The property expressed by (6) is very similar to the one expressed by (4) in Shepard’s 
analysis, and similar intuitions underlie the plausibility of either. Suppose the com- 
parison stimuli, x and y, are fixed, and the standard z is varied. Then it is plausible 
that discrimination will be sharpest (choice probability farthest from 4) when z 
coincides with one of the comparison stimuli. This is equivalent to property (6) above. 
If, in addition, the two extreme choice probabilities P(x, y; y) and P(x, y; x) are equally 
far from +, then P(x, y; y) = P(y, x; x) as required above. 
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Thus, the basic metric axioms, at least, have a fairly transparent and plausible 
psychological meaning for the proposed rational distance function log [l/v(x, y)]. 
The meaning of more sophisticated geometric properties, including Euclidean ones, 
is much less transparent. 

Critical discussion of Lute’s analysis is deferred to Section V, since all the points that 
I shall raise apply equally to the generalizations of Lute’s work that are presented in 
Section IV. 

IV. A SCALING MODEL FOR THE METHOD OF TRIADS 

The analysis of similarity judgments presented in Section III can be generalized 
considerably. The assumption that all probabilities are different from 0, even if 
true, is impractical, since one easily obtains relative frequencies of zero that are useless 
for scaling. It can be replaced by a much weaker “density” assumption. The scaling 
Eq. 5 based on Lute’s postulate can be replaced (for pairwise choices only) by any 
equation of form 

P(x, y; 4 = F[w(y, 4 - w(x, z>l (7) 

where F is a known function of one variable (embodying much of one’s theory about 
the choice process) and w(x, z) etc. are appropriate disimilarity scale values. For Lute’s 
model, F(t) = (1 + e-t)-1 and w(x, x) = log [I/v(x, z)]; in Thurstone’s Case V, 

F(t) = it (2q7)-(1/2) e-(l/2)s2ds, 
--m 

It is assumed that F will be known explicitly in any particular application. The gain 
in generality by leaving F unspecified lies in the presentation of a unified analysis, 
applicable to any particular scaling formula satisfying (7). 

The basic scaling axiom can be formulated as follows: 

(A) There exist functions w and F such that w assigns a real number to each pair of 
stimuli and F ik a strictly increasing function mapping the real numbers into themselves, 
with F(0) = $, and such that whenever P(x, y; z) # 0 or 1, then 

P(x, Y; 4 = FCw(y, 4 - w(x, 41- 
To maneuver around 0 and 1 probabilities, we require a density assumption some- 

what stronger than the one used by Lute (1959) f or a similar purpose. The following 
is a preparatory definition. 

DEFINITION. A pair of stimuli (x, y) is confusab2e if for every standard I, 
P(x,y; 4 # 0, 1. 

The density assumption can now be formulated. 
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(B) If  P(x,y; a) : L, then ajinite sequence of stimuli x,, ,..., x, can be chosen, such 
that x0 = x, x, = y, and for i = I,..., n, (xipl , xi) is a confusable pair aud 

P(%-l > xi; z) < 4. 
If  (A) and (B) hold, then for any fixed standard z, the scale values w(x, z) are unique 

up to an additive constant. This is shown in the following theorem: 

THEOREM 1. Suppose that P, F, w aye as above, with (A) and (B) satisjed, and that 
w’ is another .function such that when P(x, y; z) # 0, 1, then 

P(x, y; z) = F[w’(y, z) - w’(s, z)]. 

Then fey each x there is a constant k(z) such that fou all s, 

w’(x, JZ) = w(x, z) + k(z). 

Proof. Let k(z) = w’(z, z) - w&z, z). F or arbitrary x we can use (B) to choose 

ro ,..-> x,, , with x0 = X, x, = z, and (xi-r , xi) confusable. Then 

F[w’(xt , z) - w’(xie-1 , z)] = F[w(xi , z) - w(x,-1 , z)], 

and since F is strictly increasing,’ it follows that 

W’(Xi ) z) - W(Xi , 2) = w’(xi_l ) 2) - w(xi_l ) z), 

for i = I ,..., n. Putting these equations together yields 

w’(x, z) - w(x, z) = zu’(z, z) - w(z, z) = k(z). 

In Lute’s analysis, Eq. 6 led to the triangle inequality. In the present analysis, we 
shall need a stronger assumption than P(x, y; y) < P(x, y; z): namely, that, when the x 
to z distance is larger than the x toy distance, there is a chain x0 ,..., x, , with x0 = N, 

% = Y, (Xi--l , xi) confusable, and 

P(x,+ ) xi; y) < P(x,-l ) xi; z). 

[If all probabilities are nonzero, then this assumption will be implied by 
P(x, y; y) < P(x, y; z), since the chain can consist simply of x and y.] In order to 
formulate the assumption rigorously, we introduce a formula for the “distance” 
from x to y: 

d(x,y) = t [w(x,Y) + W(Y, 41 - t [4x, 4 + w(y,y)l. (8) 

Note that d is an absolute scale, invariant under the permissible transformations of 
the w-scale specified in Theorem 1. Note also its similarity to Shepard’s distance 
measure as given by Eq. (1); if wij = log [l/P%;], Shepard’s formula is identical except 
for a multiplicative constant. I f  Eq. 8 is used to calculate d from w, then it is convenient 
to choose the zeros of the scales w(*, z) so that w(z, a) = 0 for all a. 
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The needed assumptions may be stated as follows: 

(C) Let d be defined by (8). If d(x, y) < d(x, z) then there is a Jinite sequence 
x ,, ,.,., x, such that x,, = x, x, = y, and fw i = l,..., n, (ximl , xi) is confusable and 
p(Xi-l 3 Xi; y) < p(xi-l 9 xi; z>* 

(D) For all x, y, P(x, y; y) < 4. 

With these assumptions, we can establish the following theorem. 

THEOREM 2. Suppose that Assumptions (A)-(D) hold and that d is defined by Eq. 8. 
Then d is a pseudometric, i.e., for all x, y, z, 

(Ml> d(x,y) 3 0, 
(M2) d(x, x) = 0, 

(M3) d&y) = d(y, 4, 

(M4) d&y) + d(y, 4 2 4x, 4. 

Note that d is a true metric if the converse to (M2) holds, i.e., d(x, y) = 0 only if 
x = y. In any pseudometric the relation d(x, y) = 0 is an equivalence relation, and if d 
is redefined so that its domain consists of the equivalence classes, then it becomes a 
true metric. 

Proof. (M2) and (M3) follow from (8) without any assumptions. 
(Ml) follows easily from (D), using (A) and (B). 
To prove (M4), let x, y, z be arbitrary. The required inequality is trivial (using 

(Ml)) unless both d(x, y) ,< d(x, z) and d(y, z) < d(x, z). In the latter case, we can 
use (C) twice [once in conjunction with (M3)] to find finite sequences x,, ,..., x, , 
z,, ,..., z, such that x,, = x, z,, = z, and x, = y = z, , and for i = l,..., m and 
j = I,..., n, (xi-i , xi) and (.z-i , xi) are confusable and 

p(xi-l 9 xi; Y) d p(xi-l 9 xi; z> and f@j-l , zj; Y) < P(%l , q; x). 

Then by (A), for i = l,..., m andj = l,..., n, 

w(xi 9 Y) - w(xi-l 9 Y) < W(xi P z> - w(xi-l P z, 

W(Zi , Y) - w(+--l , Y) d W(Zi , 4 - W(Zi-1 , x). 

Summing the left and right sides of all n + m of these inequalities yields 

W(Y,Y) - 4x9 Y) + W(Y,Y) - W(GY) d W(Y, 4 - 4x, 4 + W(Y, x> - W(& 4. 

Rearranging terms, subtracting w(x, x) + w(z, z) from both sides, and applying (8) 
yields 

4x3 Y) + d(y, 4 2 4x, 4 

as required. This completes the proof. 
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Some justification is needed for using the function din the formulation of Assump- 
tion (C) to capture the notion that the x to y  distance is smaller than or equal to the x: 
to z distance. This seems circular, since Assumption (C) is then used to prove that d 
has distance properties. There are two probability criteria that partially capture the 
same notion: 

(i) P(y) z; 4 3 8, 

(ii) P(x, y; y) 3 P(x, z; 4. 

The first implies w(z, X) > w(y, x), while the second one, for nonzero probability+ 
implies w(y, y) - w(x, y) > w(z, Z) - w(x, z). A veraging these two inequalities and 

rearranging yields d(x, y) < d(x, z), by (8). Th us, d is a good compromise between the 
two obvious criteria, and our procedure is not really circular. Moreover, when the 
zeros of the w(., 2) scales can be chosen so that w(x, y) = w(y, x) and w(x, X) = 0 
for all X, y, then criteria (i) and (ii) are both equivalent to d(x, y) < d(x, z) (see below), 
so the hypothesis of (C) could be changed to P(y, Z; X) > l/2. 

It should be remarked that under some conditions, the zeros of the w-scales can be 
chosen so that w(x, y) = w(y, X) for all X, y. This greatly reduces the number of free 
parameters in the scaling model. Under still further conditions, this symmetry of zc 
is achieved by the assignment of zeros such that w(x, x) = 0 for all X. The distance 
formula (8) simplifies, in these cases, to one of the following forms: 

4x, Y) = 4x, Y) - i [4x, 4 + W(Y, ~11, (9) 

4x, Y) = 4x, Y). (10) 

The exact conditions under which these simplifications are possible are developed in 
Krantz (1964). 

There are two key assumptions under which the function d defined by (g), (9) or 
(10) is a distance function. These are the scaling assumption [Axiom (A)] and the 
generalization in (C) of the notion that confusion of comparison stimuli is least when 
the standard is equal to one of the comparison stimuli. The function d is thus a candi- 
date for a rational distance function, since the pseudometric properties are related to 
meaningful psychological assumptions. The psychology involved in (C) is closely 
related to the assumptions implicit in Shepard’s theory of generalization (Eq. 4). 

The scaling assumption (A) is a specialization of the more general equation of simple 
scaZabiZity (see Krantz, 1964): 

fY% y; 4 = %4x, 4, W(Y, 41, (11) 
where F is a function of two variables. Simple scalability states that the influence of the 
pair (x, Z) on the probability of choice is entirely described by one number w(x, z), 
the scale value of the pair. Thus, if (x, Z) and (x’, Z) have the same scale value, they 
will be discriminated equally well from any alternative (y, z). Unfortunately, this 
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assumption can easily fail in practice: two subjective differences (x, Z) and (x’, Z) 
may be approximately equal, but may differ very greatly in the “dz@&y of choice’, 
when confronted with (y, z). If x lies in the “same direction” from the standard z as 
does y, and x’ lies in the “opposite direction,” then (x, Z) and (y, x) will be easily 
discriminated, leading to choice probabilities far from 4, while (x’, Z) and (y, Z) may 
be hard to discriminate. “Direction” is an “irrelevant” dimension (see Coombs, 
1964, Ch. 23 for a discussion of “laterality”) which affects difficulty of choice. Similarly, 
two tones which have about the same loudness, but differ greatly in the “irrelevant” 
dimension of pitch; may differ greatly also in ease of discriminability in loudness 
from a third tone which is more similar to one of them in pitch. In fact, the above 
phenomenon does occur in data using similarity comparisons: see Section V below. 

One main difficulty, then, with the function d defined above is that the psychological 
assumpt@s underlying the basic scaling equation overlook a possibly important 
determinant of choice behavior. 

V. EVALUATION OF THE MODEL 

The scaling model described in the previous section was applied in the domain 
of color similarities. These experiments are described elsewhere in more detail 
(Krantz, 1964; 1967) and only a few essential features will be presented here. 

It should be noted, however, that models for color differences have a long history, 
dating to Helmholtz, which is rather independent of the development of multidimen- 
sional scaling in other areas. Th e experiments below were undertaken in hope of 
contributing to the color-difference problem, and were considered to be an application of 
the above scaling model, rather than a test of it. Thus their design is highly unsuitable, 
in a number of ways, for testing the model. That their results do actually test the 
model is a consequence of the fact that both major assumptions, (A) and (C), are so 
utterly incorrect that their falsity was made evident by crude data. 

A. EXPERIMENTAL METHOD 

Subjects were presented triads consisting of a standard stimulus, Z, and two com- 
parison stimuli, x and y, and asked which color difference was smaller, that between x 
and z or that between y and x. The stimuli were monochromatic lights adjusted for 
each individual subject to a, constant brightness level, slightly above the brightness 
of the surround-field. The surround looked nearly neutral. Figure 1 shows a schematic 
drawing of the stimulus display. Essential stimulus parameters are summarized in 
Table 1. The top stimulus was designated as standard, the two bottom one as com- 
parison stimuli. Each triad was presented equally often.with the comparison stimuli 
in the two spatial .or.ders. 
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FIG. I. Schematic drawing of the stimulus display. The three monochromatic stimuli 
appeared in three holes arranged at the vertices of a triangle, with the standard at the top. The 
rest of the large circle appeared nearly neutral; the area outside the large circle was black. See 
Table 1 for detailed parameters, 

TABLE 1 

ESSENTIAL STIMULUS PARAMETERS 

Test-field visual angle 

Separation of test-field centers 

Surround-field visual angle 

Viewing distance of test-field apertures 

Bandwidth of monochromatic fields 

Test-field luminance 

Surround-field color 
Munsell paper 5 PB 2/6 
Illuminant color temperature 
Approximate surround-field color temperature 

Surround field luminance 

44’ 

3”42’ 

23” 

25.5 in. 

50 y0 of the light passed 
through exit slits at 
X -& 3.3mp, for nominal 
wavelength setting of h. 

1.55 equiv. ft.-candles 

somewhat below 2800” K 
somewhat below 6500” K 

1.15 equiv. ft.-candles 

A total of five subjects was used. Three of them, JPE, KR, and SI, were paid for 
observing. They had no previous experience in psychophysical experiments. The other 
two, RMS and HC, were experienced observers, but were naive with respect to the 
purpose of the experimeht. All subjects were color-normal, as indicated by midpoint 
and range settings for the Rayleigh equation on a Nagel anomaloscope. 
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Each subject judged repeated presentations of between 90 and 225 different triads. 
These triads were chosen so as to yield estimates of similarity-scale parameters for a 
series of interlocked small and large differences spanning a portion of the visible 
spectrum. During any experimental session, judgments were obtained from one sub- 
ject for 13-19 different triads, each repeated 8-12 times. Since the total amount of 
data was limited by the complicated manual control of the apparatus, the sequence 
of trials in any one session was designed to minimize the number of apparatus changes 
and to maximize the number of observations. Most triads were replicated in from 3 
to 6 sessions per subject, although occasional ones were replicated less often. 

B. TESTS OF THE BASIC SCALING AFSUMPTION 

Two types of test of Assumption (A), the basic scaling assumption of Section IV, 
were carried out. One type of test involved estimation (by maximum likelihood) of 
the similarity-scale parameters for an application of Lute’s choice model to a limited . 
set of triads. In each instance, a chi-square test of fit was performed. The parameters 
were estimated and the test performed using data from a single subject for the triads 
in question. Each test of this first type used all possible triads composed of either 
three or four comparison stimuli with a fixed standard. For example, RMS and JPE 
were each tested with 6OOmp as standard wavelength and 590, 591, 606, and 608mp 
as comparison stimuli; a total of six different triads could be formed. Three indepen- 
dent parameters could be estimated for the four color differences, for the model equa- 
tions 

+, y; 4 4 = 4% = - v(x, 4 + V(Y, 4 w?(Y, 4 4% a 

whereF(t) = (1 + e-$)-l, w(x, z) = log [l/v(x, z)]. (There are only three parameters 
because one of the w-scale values may be chosen arbitrarily.) The prediction of six 
independent observed frequencies from a three-parameter model led to a chi-square 
test with three degrees of freedom. Similarly, for a test of the same type, using three 
comparison stimuli, there were three triads, two independent parameters, and one 
degree of freedom. For each test, the maximum-likelihood technique led to a set of 
simultaneous nonlinear equations, which were solved approximately by an iterative 
method. 

From one to three tests of the above type were carried out on each of four subjects, 
for a total of eight tests. These tests are summarized in the first eight entries in Table 2. 
The last column of the table refers to the direction of the deviation of observed from 
predicted frequency; this will be explained below. The number of observations per 
triad for these tests averaged 46. 

The statistical significance of the deviations of observed from predicted frequencies 
for these tests is beyond question. Moreover, the choice model is rejected even though 
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TABLE 2 

CHI-SQUARE TESTS OFTHE SCALING MODEL 

Subject 

RMS 

Pairs 

(560, 567) 
(560, 552) 
(560, 540) 

df 

1 

X2 P Direction 
_-- .-~~~-~ -~-~-. -~ - 

2.08 .lO-.20 

(600, 608) 6.07 .lO + 

(600,606) 
(600,591) 
(600, 590) 

JPE (572, 540) .oo .90-.95 
(572, 581) 
(572, 591) 

(591, 608) 3.14 .05-.lO 
(591,581) 
(591,-572) 

(600,608) 21.48 .oo + 
(600,606) 
(600, 591) 
(600, 590) 

SI (608, 600) 8.94 .ool 
(608, 620) 
(608, 628) 

(600, 610) 4.23 .20-.30 
(600, 608) 
(600,591) 
(600,590) 

KR (608, 600) .20-.30 
(608,620) 
(608, 628) 

1.12 

- (600,608) - 

(600,606) 
(600,592) 
(600,591) 

(fm590) 

extreme 

extreme 

-_ 

less extreme 

extreme 

extreme 

extreme 

extreme 

extreme 

Total 
Total excluding 

JPE’s 21.48 

14 47.06 .oo + 719 extreme 

11 25.58 .Ol 618 extreme 

480/4/2-5 
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the tests involved were biased toward accepting it, in two ways. For one thing, the 
parameter estimates were not required to be consistent with estimates of the same 
parameters obtained in the context of the entire experiment. (Some of the color 
differences involved were used in other triads.) For another thing, a choice was avail- 
able as to what data should be used for any given test. This choice arose from the 
circumstance that in each case, there were previous data for some triads collected 
before the decision was made to include additional triads and test the model. In each 
case, the older data were included only if a better fit to the model was obtained by 
including them. 

Nevertheless, this first type of test is not entirely convincing with respect to the 
rejection of Assumption (A). One reason is that it relies on a specific assumption 
(Lute’s choice model) regarding the shape of the scaling function F. Perhaps some 
alternative scaling function would fit the data better. In order to reject simple scala- 
bility (Eq. 11) and, a fortiori, to reject (A), we show that the deviations from the choice 
model are in a direction that agrees qualitatively with an alternative laterality model, 
which is incompatible with simple scalability. 

As was pointed out in Section IV, dificulty of choice should be much less, and prob- 
abilities should be more extreme, for “unilateral” triads where both comparison 
stimuli lie on one side of the standard, than for “bilateral” triads. In particular, this is 
precisely the prediction of a Thurstonian model, where the discriminal process for 
a pair of stimuli is the difference random variable of the discriminal processes of the 
two stimuli in the pair; the resulting correlation of two unilateral pairs is positive, 
corresponding to an effective reduction of discriminal dispersions (Coombs, 1964, 
Ch. 23). 

Looking at the last column in Table 2 we see that for the eight tests mentioned 
earlier, the observed frequencies are more extreme than the predicted ones in eight 
out of eleven unilateral triads, less extreme in two cases, equal in one case. (The three 
cases of less-extreme-or-equal observed frequencies all occur in JPE’s data; however, 
the large value of chi-square for JPE is due to the one more-extreme-than-predicted 
unilateral triad.) The ninth test in Table 2, for KR, could not be put in the form 
of a chi-square, due to an experimental error in which the wrong unilateral triad was 
presented; however, the results for this unilateral triad are very extreme, as would be 
predicted from the above analysis. 

Some caution must be exercised in interpreting these results statistically, since the 
expected proportion of deviations of observed frequencies in the more extreme direc- 
tion will often be slightly greater than 50%, due to the skewness of the binomial 
distribution. Nevertheless, the above results for unilateral triads seem to support the 
idea that deviations from simple scalability occur in the anticipated direction. 

The second type of test of Assumption (A) involved predicting the data for unilateral 
triads on the basis of parameter estimates based solely on bilateral triads. These 
parameter ‘estimates were obtained, for each subject, from all the bilateral triads 
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presented to that subject. The model used was a modification of the simple Lute 
choice model, which included a bias mechanism that introduced one additional 
bias parameter in each wavelength region studied. The bias model is described in 
detail in Krantz (1964). It still involves a form of simple scalability, and, as discussed 
in the reference cited, the bias parameter does not essentially affect the predictions 

regarding unilateral triads. The parameter estimates from bilateral triads could thus 
be used to obtain predicted choice frequencies for the unilateral triads. 

The results of the comparisons of observed with predicted choice frequencies for 
one class of unilateral triad are summarized in Table 3. Deviations are marked ” -. ” 

TABLE 3 

SQUARED DEVIATIONS OF OBSERVED FROM PREDICTED CHOICE PROBABILITIES FOR 

UNILATERAL TRIADS 

Subject (+I x:+1 C-1 Xc-~, 

RMS 13 35.18 4 13.89 
JPE 8 52.59 3 11.24 
KR 11 53.83 I 0.36 
SI 6 26.26 4 5.10 
HC I 13.54 I 1.92 

Total 45 181.40 13 32.51 

if the observed frequency is more extreme than the one predicted one, ‘I-” otherwise. 
For each subject, separate chi-square statistics (which, of course, do not have the 
chi-square distribution given the null hypothesis) were calculated based on + and - 

deviations. A few additional such tests, involving triads with much larger color 
differences, were inconclusive. These results, although obtained in the context of a 
specific scaling model, suggest strongly that there is a qualitative failure of simple 
scalability in the direction anticipated and qualitative agreement with models such as 
the Thurstonian one described above, which are incompatible with simple scalability. 
Model-free tests of simple scalability have been devised (Krantz, 1964) but unfortun- 

ately they were not available when the experiments reported here were run. Never- 
theless, the present data seem to yield fairly strong evidence against the validity of 
Assumption (A). 

The evidence against Assumption (A) can be reinforced by examination of previous 
color-triads data, which were analyzed using a different instance of simple scalability, 
Thurstone’s Case V. These data were reported by Torgerson (1958). They consist of 
group proportions (based on one judgment per subject for each triad) for similarity 
judgments for triads made up of nine Munsell colors of hue 5R. The Case V param- 
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eter estimates were based on all the data, from unilateral, bilateral, and in-between 
triads. For reanalysis I selected a subset of 36 triads that, with respect to the original 
Munsell space, seemed to be “unilateral.” The observed frequency was more extreme 
than the one predicted from the parameters in 32 of these 36 cases (see Krantz, 1964). 

C. TESTS OF THE “LEAST CONFUSION” ASSUMPTION 

The second critical assumption made in Section IV, Assumption (C), embodies 
psychological content which corresponds to the geometric property of the triangle 
inequality for the transformation d(x, y) = w(x, y) = log [I /a(~, y)]. In particular, 
(C) implies that P(x, y; y) < P(x, y; a). Th is was tested in 64 cases where (x, y; z) 
was a “unilateral” triad, with the (x, y) and (y, .a) d’ff 1 erences quite small. In 59 of 64 
cases, the observed relative frequency of choosing x as nearer than y to the standard 
was greater when y was the standard than when z was the standard. This clearly con- 
tradicts (C). 

D. TESTS OF THE TRIANGLE INEQUALITY 

To what extent is the failure of (C), shown above, a consequence of the failure of 
simple scalability ? That is, when the standard is equal to one comparison stimulus, 
the triad may be more nearly “bilateral,” and the “difficulty of choice” may 
elevate P(x, y; y). One possible way to test this idea is to see whether the 
function d(x, y) = log [l/$x, y)] does act as a distance measure, when the v-scale 
parameters are estimated using only bilateral triads. Hopefully, the difficulty-of-choice 
factor will be approximately constant for all bilateral triads, and the relative values of 
v(x, y) thus obtained will be close to the “true” values. One could then ascribe the fact 
that P(x, y; a) is underestimated from these “true” values, for unilateral triads, to 
“ease of choice,” or high correlation of discriminal processes. 

This possibility was tested by 101 comparisons of log [l/s@, a)] with the sum 

1 
log - 

l 

v(x, Y) 
+ log------ 

“(Y 9 4 

where y is between x and a. In 59 instances, the (x, y) and (y, a) differences were very 
small; in 41 of these 59 cases, log [l/ v x z ( , )] was larger than the sum of the two smaller 
“distances”, while in only 18 cases was the triangle inequality satisfied. Of the 42 
instances involving large (x, y) and (y, a) differences, the triangle inequality held in 
39 cases; usually, it was “oversatisfied” in that log [I jv(x, z)] was much smaller than 
the sum of the two smaller “distances.” 

Thus, even when scale values are estimated from bilateral triads, hopefully elimi- 
nating most of the difficulty-of-choice factor (in fact a moderately good fit of the scaling 
model was obtained for bilateral triads), the triangle inequality fails in a highly system- 
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atic way for the function log [l/$x, y)]. Th is result seems to indicate that Assump- 
tion (C), plausible as it may be, is very much on the wrong track, Because of the 
qualitative similarity of (C) to Eq. 4 above, some doubt is cast also on the appropria- 
teness of Shepard’s theory as summarized in Section II. A much better approximation 
to the triangle inequality was obtained from the function 

4%Y) = [I - +$ 

Psychological distances obtained from this formula agreed well with previous color- 

difference measurements or with predictions from color theory (Krantz, 1964; 1967). 

VI. SIMPLE SCALABILITY AND THE METHOD OF TRIADS 

At first blush, the program of developing rational distance functions seems attractive, 
since the metric space representation of differences would be justified in terms of 
psychological theory, as well as mathematical convenience. Furthermore, the method 
of triads is a “natural” one, in that it uses “direct” comparison of subjective differences 
and permits one to subsume discrimination experiments as part of the similarity 
comparisons (by comparing “small” differences with a zero-difference). However, 
the obstacles seem severe: there is neither an adequate theory of choice probabilities 
for the method of triads, not adequate data that might suggest new theories. One major 
class of theories, those involving simple scalability, are apparently ruled out by existing 

data. The first problem, if the hope of obtaining rational distance functions based on 
comparisons of subjective differences is not to be abandoned, is to find an adequate 
substitute for simple scalability. A Thurstonian theory is one possibility, with non- 
constant correlations assumed between the discriminal processes corresponding to the 
choice elements. Highly similar pairs of differences have highly correlated discriminal 
processes, so that a given difference in “mean similarity” corresponds to a more extreme 
choice probability. The trouble with this sort of theory is that the number of free 

parameters grows as fast as the number of choice probabilities. Some restriction 
governing the correlations must therefore be devised. One possibility might be to 
assume uncorrelated discriminal processes of known form for individual stimuli and to 
generate from these the forms of the discriminal processes for stimulus differences as in 
the example treated by Coombs (1964, Ch. 23). A s an alternative to use of correlations, 
one might try to account for the effect of “over-all similarity” of two differences in 

terms of the entire configuration of differences determined by the endpoints of the 
pairs. New parameters are not introduced, but a question arises concerning the form of 
dependence of the choice probabilities (or of the correlations of discriminal processes) 

on the “irrelevant” similarity parameters. 



244 KRANTZ 

These difficulties are sufficiently formidable that one might well abandon the attempt 
to extract more than the ordering of pairs, and turn to the “ordinal” methods of 
multidimensional scaling (see Section I). For the method of triads, one would use-only 
the information as to whether a choice probability was greater or less than 4, rather 
than the actual estimate of the probability, which is affected by “irrelevant” factors. 
However, the study of factors that affect choice probabilities is in itself a fairly interest- 
ing problem. Development of a satisfactory theoretical treatment of this problem seems 
to be a prerequisite for reopening the question of rational distance functions based on 
similarity comparisons. 
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