
Nuclear Physics A94 (1967) 129--145; (~) North-Holland Publishing Co., Amsterdam 

Not to be reproduced by photoprint or microfilm without written permission from the publisher 

S H E L L - M O D E L  C A L C U L A T I O N  IN 24Mg 

K. WATHNE 
Institute of Physics, The University of Oslo, Norway 

and 
T. ENGELAND * 

Physics Department, The University of Michigan, Ann Arbor, Michigan tt 

Received 5 September 1966 

Abstract: A shell-model calculation is performed for ~4Mg assuming wave functions with maximum 
symmetry in the spacial coordinates. Several interactions have been used including the Kallio- 
Kolltveit hard-core potential. A reasonable agreement is obtained for the energy levels, while 
the E2 branching ratios are in many cases different from the experimental values. The eigen- 
functions have large overlap with the predicted SU3 wave functions. The influence of particle- 
hole excitations in the spectrum is discussed. 

1. Introduction 

The shell-model approach including configuration mixing has been applied with 
considerable success in the beginning of  the sd shell. Such calculations are based on 
the assumption that  the 160 nucleus constitutes a tightly bound system. In  nuclei. 

which have only a few particles in addit ion to this core system, the low-energy part  
o f  the spectra should therefore be well described by the degrees o f  freedom of  the 
extra particles. The available single-particle levels in this region are known 1) to be 
ld~, 2s~ and ld~ which appear in the one-particle nuclei 170 and 17F. 

Many  calculations 2-8)  have been carried out along these lines in order to analyse 
the low-energy spectrum of  the nuclei 1SO, 18F, 190, 19F and 2°Ne. The results 

confirm the basic shell-model ideas. The level separations and the properties o f  the 

corresponding wave functions seem to be well described by this method. However,  
there are some cases where the discrepancy between the experiments and the theoret- 
ical predictions are still too large to be explained as due to the uncertainties in the 

two-body interaction and the single-particle wave functions. This has especially been 
found 9) for some specific states in 180, where the core system is important  even 

for the low-energy excitations. Still, the present conclusion is that  these nuclei are 
reasonably well described in the shell-model picture, and the main component  o f  the 
wave functions are due to the additional particles outside 160. 

In this situation it is very interesting to go one step further and try to analyse the 
nuclei beyond 2°Ne in the shell-model scheme. How far away f rom the closed shell 

t On leave from Institute of Physics, The University of Oslo, Norway. 
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is the method adequate, and where in this region should a different point of view be 
chosen in order to reproduce the energy spectra? We know that in the middle of the 
sd shell the rotational model introduced by Bohr and Mottelson lo, 11) has been 
applied with good results. What will the shell model give here? 
Unfortunately, standard shell-model calculation is very complicated as soon as one 
exceeds three- or four-particle systems. In the sd region the multiplicity of states in 
the shell-model basis for the two particle nuclei 18F and 180 does not exceed five for 
a given spin J and isospin T. Already in the 2°Ne case, this multiplicity has reached 
75. Thus, computation of an enormous number of matrix elements is required, 
followed by a complicated diagonalization procedure. Even with high speed computers, 
it seems impracticable with the present mathematical methods to perform such shell- 
model calculations for nuclei byond 2°Ne. 

However, an interesting feature of the shell-model wave functions, which seems to 
simplify the situation, has been discovered in the beginning of the sd shell. Due to 
the fact that the whole second oscillator shell is taken into account in the calculations, 
the single-particle oscillator Hamiltonian is invariant under SU3 transformations. 
Elliott 12) has shown that the calculated eigenstates for nuclei in this region to a large 
extend preserve the SU 3 symmetry, even when one includes symmetry breaking terms 
as the single-particle I. s term and realistic two-body forces. 

This symmetry property of the eigenstates explains the close connection between 
the rotational-model approach and standard shell-model calculations. In typical shell- 
model nuclei as 19F and ZONe, a collective-model interpretation based on Nilsson's 
deformed single-particle level scheme gives an equally good agreement 7, 14-16). 

Higher in the sd shell especially around A = 25, the energy spectra show typical 
band structure according to the collective-rotational model 17). It is interesting to 
study such nuclei from a conventional shell-model point of view in order to test to 
what extent such wave functions can explain this collective behaviour. 

Based on the SU3 symmetry of the eigenstates, Elliott and Harvey 13) have pro- 
posed an explanation of the level schemes for all nuclei throughout the shell. The inter- 
pretation is based on the SU3 coupling scheme assuming that the eigenstates have a 
large overlap with SU3 wave functions. This idea has been applied to the nucleus 2~Mg 
with a reasonable good agreement for the ground state rotational band 13, 18). 

In this work we have analysed the same nucleus from a more conventional shell- 
model point of view. In light nuclei it appears that the a-particle nuclei with even 
N = Z are well described in the L S  coupling scheme. We have therefore assumed that 
the eigenstates of Z4Mg can be described by the set of eight-particle wave functions 
which have maximum space symmetry characterized by the partition [f]  = [44], 
while the first 16 particles constitute an inert and spherical core. Such a model contains 
enough shell-model configurations to give a reasonable test of the SU3 coupling 
scheme. 

The assumption of maximum space symmetry is based on the fact that the two- 
particle interaction in nuclei is of short range and attractive and therefore gives the 
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largest matrix elements between configurations which are spatially symmetrical. Such 
configurations should, consequently, be the most important ones in the low-energy 
part of the spectrum. This idea has lately been tested by Inoue et al. 8) in the case 
of the Z°Ne, another a-particle nucleus. They found that the next highest symmetry 
contributed with only 10 % to the eigenstates in the low-energy part of  the spectrum. 
The other symmetries gave nearly no contribution at all. 

2. The model 

According to the individual-particle model, we assume that the 16 first particles 
occupy the two first oscillator shells and generate an inert and spherical core. The 
effect of  the core is represented in the calculation by a single-particle, shell-model 
potential. The eight additional particles move in this well, restricted by the Pauli 
principle. As the possible orbits we choose the single-particle levels with positive 
parity which appear in the low-energy spectrum of 170; see fig. 1. This restricts 
our model to positive-parity states only. 

5 0 8  MeV 
1 I / / / 

I = 2 2 0 3  MeV ....,./ 

I = 0  0 . 8 7  MeV ~ .  0 8 7  MeV 
~ E :O  

d 5 / 2  

s l / 2  
d 5 / 2  

Fig. 1. Single-particle orbitals in the 2s - ld  shell f rom 1tO. 

The spectrum of Z4Mg is then assumed to be due to a residual two-body interaction 
between the additional particles in these orbits. 

Our model Hamiltonian then has the form 

where 

H = H o + H s + V ,  

Us = X - v? .s ,  + uo',)  , 

v = ( l )  
i< j  

Ho is the Hamiltonian of the core. The sum in eq. (1) is over the external particles, 
U(ri) being the field of the core. The parameter 6 = 2.03 MeV is the strength of the 
l • s term adjusted to reproduce the splitting between ld~ and ld~_ in the spectrum of 
~70; see fig. 1. 

From the arguments in sect. 1, we further assume that our wave functions, which 
represent the eight particles outside the core, have maximum symmetry in the spatial 
coordinates. This selects the LS-coupling scheme as the natural one. The spatial part 
of the wave functions, therefore, transforms according to the If]  = [44] representa- 
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t ion of the symmetry group $8, giving the conjugate symmetry [f]  -- [22222] for the 

spin-isospin part to account for the Pauli  principle. Thus all wave functions have 

T = 0 and S = 0. 

We can now write our wave functions as 

T(skdS_k[44]ocL = j )  _ , 1 ~ ~(skdS-k[aa]oCL; {rs})X(~S[44~00; {~8}), (2) 

TABLE 1 
The number of basic states with space symmetry [f] = [44] 

L-values 

s ~ d s-k 0 1 2 3 4 5 6 7 8 9 10 11 12 

d s 4 1 6 4 8 4 7 3 4 2 2 1 

sd 7 1 4 7 7 8 8 6 5 4 2 1 1 

s 2 d 6 3 2 7 5 8 5 6 3 3 1 I 

s a d 5 1 2 3 4 4 3 3 2 1 1 

s 4 d 4 1 2 2 1 1 1 

total l0 9 25 20 30 21 23 13 13 6 4 1 1 

with k = 0, 1, 2, 3 and 4. It is a sum over products of a space part  and a spin-isospin 

part  where the summat ion  runs through all the different Yamanouchi  symbols {rs} 

according to the standard Young tableau [ f ]  = [44] for $8, the n-particle spin-isospin 

wave functions being given by X(7" [ f ]TS;{r , } ) (re f .  19)). In our nota t ion  {r8} represents 

the eight characteristic integers (r 8 r7 • • • r~) for the Yamanouch i  symbols. The factor 

h [44] is the dimension of the representation of the symmetric group $8 with par t i t ion 

[ f ]  = [44] 
In table 1 we list the number  of basic states. We see that the problem will be to 

generate matrix elements and perform diagonalizat ion of matrices with dimension up 

to 33. 

The matrix elements of the single-particle Hami l ton ian  in eq. (1) are easily calcu- 

lated to 

(skdS-k~L = JIHs[sk'dS-k'~'L = J )  = 3¢,~,,3kk,{Se2+k(eo--e2) }. (3) 

The  values ofe~ are estimated from the spectrum of WO (see fig. 1) to be 

e o = 0.871 MeV, e2 = 2.03 MeV. (4) 

The final spectrum, however, depends only on the difference between these parameters 

as  long as we do not  try to fit the absolute b inding  energy of the system. Due to the 
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structure of the wave functions (2), the l" s term in H S does not contribute to the matrix 

elements in eq. (3). 
The standard approach in order to calculate the matrix elements of the two- 

particle interaction in the Hamiltonian (1) is to use the technique of fractional paren- 
tage coefficients. This seems, however, to be too complicated in our case. Another 
method which we have chosen is to reduce all the matrix elements to integrals over 
space coordinates only and then apply an operator technique due to Moshinsky 20). 
This is a very powerful method in cases with high symmetry in the spatial coordinates. 
The same approach has been applied in a similar calculation 6) of the spectrum of 
2ONe. 

The most general two-body interaction which contribute to the matrix elements 
with wave functions of the type given in eq. (2) can be written as 

Vi j = [Vs+(rij)Pt + Vt+(r,j)paj½[l + pM] + [l/~-(rlj)p, + Vt-(rij)paj½[l_pM], (5) 

where pU is the Majorana exchange operator, p1 and p3 the singlet and triplet projec- 
tion operators, respectively, and Vs +- (rij) and Ft +- (rii) are radial forms of the interac- 
tion in the different channels. All other terms in the two-body interaction are not 
scalars in the spin,isospin space and consequently give zero contributions to the 
matrix elements. 

The structure of the interaction in eq. (5) is of the form Ti j ( r i j  ) Uij(¢~ i • a j ,  "ci"[j) .  For 
such an interaction operator, we have 

(skdS-k[44]o~L = J] ~" 71. j Uij[sk'd8-k'[44]o~'L = J)  
i < j  

_ 28 ~ (skdS_k[44]eL; {rs}lTTslsk,da_k,[44-]ct,L; {r8} ) 
h[44] {rs}{~'.} 

x (y814~4]00; {~8}1U7817814~4]00; {~}).  (6) 

From the knowledge of the fractional parentage coefficients in the spin-isospin 
space 19), we can easily calculate the contribution from the last term in eq. (6) and 
reduce the whole sum to a space integral for Tii. If  we then apply this method for 
each term in the two-body interaction (5), we get the following formula: 

(skdS-k[44] °~L = JI Z Vijisk'da-k'[44] ~'L = J)  
i < j  

= (skd s-k[44]aLI • ½(Vs + + Vt+)P~ +~(V~-  + 9 Vt-)P~ Isk'd 8-k' j44]e 'L).  (7) 
i < j  

where the operator P+ (P~) has the eigenvalue + 1 ( -  1) when acting on a two-par- 
ticle state which is spatially symmetric (antisymmetric), and the eigenvalue zero 
otherwise. 

This expression of the two-body matrix elements gives a convenient starting point 
for using the operator technique introduced by Moshinsky 20) to obtain the space 
part of the wave functions and the corresponding matrix elements. In order to establish 
the necessary equations we shall in the following give a short review of the technique. 
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We define the single-particle wave functions as a creation operator acting on a 
"vacuum state" by the equations 

Ilm)s =- af~mslO), 1 = O, 2; m = - I  . . . . .  + / ,  (8) 
atmslO) -=- O, S = 1, 2 . . . . .  8 (particle index), 

with commutation relations 

[ a l m s ,  al+m's ']  = ~ss" ~ll '  Omm' '  

Our single-particle wave functions are restricted to the second oscillator shell. They 
are therefore completely characterized by the two quantum numbers I and m. 

The eight-particle wave functions are then given as homogeneous polynomials in the 
creation operators acting on the vacuum state. These polynomials must have the same 
symmetry property under the symmetry group as our original wave functions. We 
also want them to behave properly under rotation in the three-dimensional space. 
These two properties are characterized by the quantum numbers [ f ]  and L. An addi- 
tional quantum number c~ is introduced in order to distinguish wave functions with 

the same [f]  and L. 
From table 1 we know the multiplicity of the basic states for each L-value. The prob- 

lem is to determine the same number of polynomials which satisfy the following 

set of equations: 

where 

Cr, P~(L)IO) = 4P~(L)IO).  r = 1, 2, (9) 

CssP~(L)IO) = O, s = 3, 4 . . . . .  8, (10)  

CuvP,~(L)IO) = 0, u < v = 2, 3 . . . . .  8, (11) 

L o P , ( L ) I 0 >  = L P , ( L ) ,  (12)  

L + t P , ( L ) I O )  = 0, (.13) 

C r s  E + = a l m r a t m s ,  
lm 

gq £ x/l(l + 1)(lmlq[lm') E + = a l m , s a l m  s • 
lmm ~ s 

Here (Imlq Ilm') is the usual Clebsch-Gordan coupling coefficient. 
The two eqs. (12) and (13) represent the condition that the polynomials have 

correct behaviour under three-dimensional rotations with the z-component of  the 
angular momentum equal to L. The three first equations (9)-(11) restrict the polyno- 
mials to the partition [f]  = [44]. 

In this operator formalism, the two-body interaction in eq. (7) is given by 

V = ~ ~ G(1112l' 1 l'2; A)P(l1121'11~2; A), (14) 
1112 A 

l~ll'2 
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where 
+A 8 

P(I1121'1 I'2; A) ½ Z Z + + = [a,,~ atzt]AM[a v 1~ arzt]aM, 
M = - A  s , t = l  

G(l112 li 1'2; A) = ((1112)Ai½(V~ + + VI+)P[2 + lo-(Vs- + 9V,-)Pa21(/i l'2)A). 

The symbols [ . . .  ]M stands for the vector coupling of the two operators. For the 
matrix elements in eq. (7), we get 

((sd)8144] ctL = J] E V/jl(sd)8144] f L  = J )  --- (OIP+~(L)VP,'(L)I O) 
i < j  

= ~ C~,(ltl2111z,A)G(I~I2I~I,2;L ,. A), (15) 
11121"11'2 

A 

with the coefficients C~,(l112l~1~; A) given by the operator product 

+.4 8 
t ,.. + + + (l p L  C~,'(t~t2t~tz, A) = ½ Z ~ (OIP~ (L)Eatlsat~,]AM[ar~ r~t]aM =,(L)]0). (16) 

M = - A  s , t = l  

C L .' t The matrix elements are given as a sum over products of a coefficient ~,(ll lz lx 12; A) 
and a two-particle matrix element G(l112 l~ l~; A). The last factor contains all the physical 
information in the problem, the structure of the two-body interaction and the form 
of the single-particle wave functions. This formula is very convenient for repeated 

L t v .  applications under different physical conditions. Once the coefficients C~,,(I a lz lx lz, A) 
are calculated, it is a straightforward task to generate the matrices and perform the 
diagonalization. 

In order to generate the eight-particle polynomials which satisfy eqs. (9)-(13), we 
follow a procedure suggested by Moshinsky 2o). We start by defining homogeneous 
antisymmetric two-particle polynomials of the type 

= + + + a + " (17) A]m 2 Z (llmllzm21lrn)(ahmjla12m22-at,mtZ /2m21), 
m l m 2  

which have definite angular momentum I = 1, 2, 3 with projection m along the z-axis. 
It is easy to verify that any homogeneous polynomial of degree four in these 

A~ '2 is a solution of eqs. (9)-(11). In order to have a solution of the whole set of  
eqs. (9)-(13), we must choose a combination of the A~' 2 which also have a total 
angular momentum L and M = L along the z-axis. This is easily done by suitable 
angular momentum coupling of the two-particle polynomials. 

From eq. (17) we generate four-particle polynomials 

1,2 1,2 1,2 (18) 
Blllztm = Z (11 m112  m 2 l l m ) A l x m l  Al2m2" 

mira2 

B x'2 represent four particles with the symmetry [f]  = [22]. Clearly the taztm 
The last step in constructing the eight-particle polynomials is then similarly given by 

P~,(L) = ~ (LIMaL2M2ILL)BI(lzL,M~Bt~t,LzM . (19) 
M I M 2  
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This is a systematic and convenient procedure for machine computation. However, 
1 , 2  from the straightforward construction of all B~ z2 Zm in eq. (18), we get a number of 

polynomials which are linear combinations of the other ones and have to be thrown 
out before constructing the P,(L). Similarly there will be extra ones P,(L), which are 
picked out before applying Schmidt's orthogonalization process to them. 

The number of linearly independent polynomials for I f ]  = [22] and [f]  = [44] 
symmetry are thus checked against Elliott's table (ref. 12), p. 136). 

Because of the orthogonalization the eight-particle polynomials are no longer 
characterized by the quantum numbers l of  two and four particles but are numbered 
successively by c~. 

The solutions in eq. (19) show one important feature. They contain operators with 
particle indices s = 1 and 2 only. This simplifies the structure and makes the whole 
calculation relatively easy. The reason is that we have restricted our wave functions 
to maximum symmetry in the spatial coordinates. 

Once we have found the necessary number of independent and orthogonal solutions 
of eqs. (9)-(13), all the coefficients C~,,(l1121~l~; A) can be calculated from eq. (16). 

3. Calculation of the energy spectrum 

In the calculation previously on 24Mg by Elliott and Harvey 13), a two-body central 
interaction is used both with Serber and Rosenfeld exchange mixture. The energy 
spectrum was determined from the maximum SU3 state (2/~) = (84) with space sym- 
metry If]  = [44]. In one case also (2#) = (46) and (08) were included. The results 
show typical rotational behaviour with a K = 0 ground state band followed by an 
excited K = 2 band. This structure is also seen in the experimental spectrum 22). 
However, one major difficulty arises in this approach. The calculated K = 2 band 
starts far below the experimental one. 

In the present work all the basic states with the maximum space symmetry are 
included; see table 1. This corresponds to the following SU a representations: 

[f]  = [441 (2p) = (84), (73), (46), (81), (54), 

(08), (62) 2 , (35), (43), (51) 2 , 

(24), (32), (40) 2, (13), (02). 

To construct the energy matrices we use the method described earlier. All the poly- 
nomials needed are calculated from eq. (19). The only difficulties arise from the fact 
that the technique gives too many polynomials which in general are linearly dependent. 
However, they can be separated into four groups according to the distribution of s- 
and d-particles; see table 1, and the orthogonalization procedure is only necessary 
inside each of these groups. This simplifies the calculation considerably. The coeffi- 
cients C~,(lllzl~l~; A) are generated from eq. (16), and the energy matrices are 
constructed as linear combinations of two-body matrix elements; see eq. (14). The 
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TABLE 2 

The eigenvalues and  percentage intensi ty  of  SU3 components  for the eight lowest states 

137 

J~ Force Calcula ted  (2#) values 
energy 

84 73 46 81 08/54 62 other  (2/~) 

0 + 
A 0 87.7 4.8 2.4 4.4 0.7 
B 0 69.8 14.4 7.0 6.6 2.2 
C 0 73.5 9.8 6.7 7.4 2.6 
D 0 86.0 0.1 2.0 9.3 2.6 

2 + 
A 1.35 91.4 3.8 0.9 3.6 0.3 
B 1.55 77.1 0.1 12.5 4.1 5.4 0.8 
C 1.56 82.2 7.9 3.4 5.7 0.8 
D 1.63 91.1 0.2 0.9 6.9 0.9 

4 + 
A 3.62 90.9 0.4 5.1 0.4 2.5 0.7 
B 3.28 74.2 21.3 0.1 0.5 3.3 0.6 
C 3.46 78.8 0.1 16.3 0.7 3.6 0.5 
D 3.70 87.6 2.9 0.2 0.1 0.7 6.7 1.8 

2 + 
A 2.45 91.0 0.4 4.8 1.4 2.2 0.2 
B 2.81 76.8 0.8 14.0 4.0 3.6 0.8 
C 2.72 82.2 0.9 7.9 3.4 5.7 0 
D 3.06 92.4 1.2 0.4 0.9 4.3 0.8 

3 + 
A 3.43 92.4 1.3 3.5 2.5 0.3 
B 3.90 83.3 1.9 9.7 4.2 0.9 
C 3.65 86.0 2.7 6.0 4.1 1.2 
D 3.91 90.0 3.1 0.5 0.2 4.8 1.4 

4 + 
A 4.27 84.6 2.0 10.3 0.3 2.0 0.8 
B 3.85 69.8 3.5 16.5 2.4 4.6 3.2 
C 3.69 69.4 4.7 15.6 0.1 1.6 4.5 4.1 
D 5.16 82.6 3.3 7.5 0.1 0.4 3.3 2.8 

0 + 
A 7.17 3.6 56.7 25.2 11.0 3.5 
B 6.90 5.0 32.0 27.1 23.0 12.9 
C 5.24 3.8 38.9 22.6 22.5 12.2 
D 7.36 0.1 72.7 11.7 10.8 4.7 

2 + 
A 8.82 5.8 2.8 58.7 0.7 25.6 4.5 1.9 
B 8.75 18.2 12.6 26.0 2.7 26.2 5.5 8.8 
C 7.54 14.4 5.1 41.5 2.1 24.3 6.8 5.8 
D 8.66 1.1 12.6 63.8 2.3 8.8 3.3 8.1 

A - Gauss ian  Serber, B - Gauss ian  Rosenfeld,  C - Yukawa ,  D - Kal l io-Kol l tve i t  interact ion.  
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calculations are carried out for various interactions which have been applied in the 

sd shell with good agreement. This is done in order to eliminate the uncertainty o f  

the interaction as much as possible. In all cases we have used the harmonic oscillator 

wave functions with a size parameter 

>~ 
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Fig. 2. Energy levels with Gaussian potential. Calculation by Elliott and Harvey la); (a) -Serber 
mixture (2/0 = (84), (b) - Rosenfeld mixture (~,#) = (84), (c) - Rosenfeld mixture (hff) = (84)+ 

(46)+(62). Our calculation with all (2#); (d) - Serber mixture, (e) - Rosenfeld mixture. 

To make the connect ion with the SU 3 model  o f  Elliott and Harvey, a calculation is 

performed with the same interaction. It has the fol lowing radial dependence: 

V(ru) = V o exp E- ( ru / ro )Z] ,  

w i t h / 7  o = - 60 MeV and r o = 1.8 fm. The result for the six lowest levels is given in 

fig. 2. It shows the influence of  the number o f  basic states used in the calculation. 
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For the Serber exchange mixture there are small changes. The energy of the two 4 + 
states is somewhat lowered compared to the (2#) = (84) basis, giving poorer agree- 
inent than before. Larger changes are obtained for the Rosenfeld exchange mixture with 
an improved fit to the experiment. A similar effect was observed for other interactions 
which have an odd-state repulsive component. However, the spectrum is still too dense 

8 + ~ 7 + 
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Z 
w 
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7 + ~ i +  - -  0 + 

~ I +  , 5 + 
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6 + ~ 0 + 
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,4 + 
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4 + 
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2 + - -  2 + 
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4 + 

_ _  2 + 

_ _  2 + 
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_ _ 2  + _ _ 2  + - - 2  + 
_ _ 2  + - - Z  + 

o + _ _  o + _ _  o + o + _ _  o + 

[a) (b) (c) (d) Experimental 

Spectrum 

Fig. 3. Energy levels for 24Mg for wave functions with maximum spacy symmetry Lf] = [44], (a) 
Gaussian Serber (b) Gaussian Rosenfeld, (c) Yukawa and (d) KK force. 

with too many low-lying levels. Especially for the K = 2 band the agreement is rather 
poor. 

Inoue et aL 8) have studied a series of  two-body interactions with a Yukawa radial 
shape and applied them to nuclei in the beginning of the sd shell. All the parameters 
are adjusted to give as good a fit as possible to the spectra in this region. We have 
applied all these possibilities. Here we report only the interaction which gives the best 
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agreement with the experimental spectrum. It has the form 

Vs+t(rij ) = Vs+t 1 exp [ -  rifla ], 
' rifla 

where the strengths of the different components are 

V, + = - 2 7  MeV, Vt + = - 3 5  MeV, 

V~- = O, Vt- = + 13.5 MeV, 

with 
a = abx/2. 

Here a is the range of the interaction and b the size parameter of  the oscillator wave 

functions. 
To study the effect of more realistic forces with hard core, we also used the Kallio- 

Kolltveit (KK) interaction applied in this region by many authors 6). The 16 lowest 
levels for all these interactions are shown in fig. 3 with the experimental spectrum. 

The general feature of the various level schemes shows more or less the same 
characteristics. We have a K = 0 ground state rotational band with approximately 
an L ( L +  1) dependence. Some distortion is observed for higher L-values. This effect 
is, however, too large in comparison with the experimental situation and also compar- 
ed to the simpler SU 3 model. Some improvement has been obtained for the K = 2 
band which now starts at approximately 3 MeV. In all cases the odd-state force in- 
creases the energy of the K = 2, Y = 2 state. To analyse this effect further we increased 
the odd-state component in the case of  Gaussian interaction to far above the Rosen- 
feld mixture, but there the rotational structure began to break down, thus giving no 

further improvement. 
Of  all different interactions which have been used, the K K  force with hard core 

gives the best all-over fit. The level density in the low-energy region is less than in all 
other cases. However, the deviations from the experimental spectrum are still too 
large, and it seems to indicate that important degrees of freedom are present in the 
spectrum which has not yet been included in the model. 

The splitting between the 2s and ld single-particle levels has been taken from the 
70 spectrum to be 1.16 MeV; see fig. 1, and it is assumed that this is the same through- 

out the sd shell. However, a comparison with the 39Ca spectrum indicates that the 
ordering of these levels has changed, while the strength of the l" s force is more or less 
the same. In a Hartree-Fock calculation Muthukrishnan and Baranger a 3) found the 
same effect for the s- and d-levels, and the crossing occurred around A = 30. We have 
here tested the influence of this parameter in the spectrum, but we found rather small 
changes which did not give any significant improvement. 

4. The structure of  the wave functions and electromagnetic transitions 

The SU3 classification is known to be a good physical scheme in the beginning of the 
sd shell. We therefore make a transformation in our basic states from the arbitrary 
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TABLE 3 

The (84) component of the wave functions for the same four cases as in table 2 
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(84) normalized to 1 Intensities 
of other (2#) 

F o r c e  K =  0 K = 2  K = 4  (~)  

A 1 12.3 
= B 1 30.2 

C 1 24.5 
D 1 14.0 

A --0.9728 --0.1640 8.6 
B --0.9460 --0.2946 22.9 

.~ C --0.9544 --0.2674 17.8 
D --0.9629 --0.2376 8.9 

A --0.9304 --0.2491 --0.0036 9.1 
B --0.9620 --0.1643 --0.0292 25.8 

.~ C --1.0000 --0.0043 0.0204 21.4 
D --0.6888 --0.6364 0.0121 12.6 

A --0.2149 0.9834 9.0 
B --0.4141 0.9226 23.2 = 

o C 0.3629 --0.9442 18.6 
D 0.2727 --0.9718 7.6 

A 1 7.6 
+ B 1 16.7 
'~ c 1 12.5 

D 1 10.0 

A 0.3770 0.9811 0.0311 15.4 
B 0.1071 --0.9805 0.0071 30.2 = 

o C 0.0513 --1.0063 0.0262 30.6 
D 0.7810 --0.7429 0.0252 17.4 

A - Gaussian Serber, B - Gaussian Rosenfeld, C - KK, D - Yukawa odd-state. 

c l a s s i f i ca t ion  ~, see eq. (19) ,  to  t h e  p h y s i c a l l y  m o r e  s ign i f i can t  q u a n t u m  n u m b e r s  

(2p ) .  T h i s  is o b t a i n e d  by  d i a g o n a l i z i n g  t h e  q u a d r u p o l e - q u a d r u p o l e  i n t e r a c t i o n  Q~j 

(ref.  z0)), w h o s e  e i g e n v a l u e s  a re  k n o w n  to  be  

E(;~u) L = 3(22 + pz  + 2/t + 32 + 3 /0  - XL(L + 1). 

O u r  bas i c  s t a t e s  a re  t h e n  c h o s e n  to  be  e i gens t a t e s  o f  th i s  i n t e r a c t i o n .  W e  a re  n o t  

ab l e  to  d i s t i n g u i s h  b e t w e e n  S U  3 s t a t e s  w h i c h  a re  d e g e n e r a t e  f o r  Q~. T h i s  is t he  case  

fo r  ( 2 / 0  = (08)  a n d  (54) .  A l s o  s o m e  ( 2 p )  va lues  o c c u r  twice .  H o w e v e r ,  t h i s  d o e s  n o t  

g ive  r ise  to  a n y  m a j o r  di f f icul t ies  s ince  t h e  m o s t  i m p o r t a n t  ones  a re  eas i ly  s e p a r a b l e .  
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In  table 3 we have given the eigenstates for  the eight lowest  levels in the spectrum. 

This shows that  (84) is the dominan t  componen t  in the two lowest  ro ta t iona l  band.  

The Gauss ian-Serber  and K K  interac t ion  are in par t icular ly  good  agreement  with the 

SU3 model .  In  all cases a repulsive odd-s ta te  componen t  gives rise to larger admixture  

o f  other  (2#) values which also shows up in the spect rum as a d i s tor t ion  o f  the rota-  

t ional  structure.  The rest o f  the s t rength in the eigenstates is d is t r ibuted  over very 

few addi t iona l  (2/0 states; (46), (08)/(54) and (62). One remarkab le  feature of  the  

K K  force is the dominan t  influence of  (62). This may  be in terpreted as a resistance 

against  t rans i t ion  f rom prola te  to obla te  deformat ion ,  caused by the repulsive hard  

core. 

TABLE 4 

Calculated branching ratios for E2 transitions 

Transition Experimental Pure Gaussian Gaussian KK Yukawa 
(84) Serber Rosenfeld odd 

22 ~ 0 75 84 25 1 7 2 
22 ~ 21 25 16 75 99 93 98 

02 --+ 21 83 0 97 72 94 84 
02 --~ 22 17 0 3 28 6 16 

42 -+ 21 9l 96 29 99 98 98 
42 --~ 2z 4.5 3 33 0.5 1.5 1 
42 -~ 41 4.5 1 38 0.5 0.5 1 

23 --+ 0 55 0 72 17 95 16 
23 ~ 21 45 0 28 83 5 84 

31 -+ 21 100 99.1 95 66 80 66 
31 ~ 21 ~ 1  0.8 3 33 9 15 
31 ~ 41 ~ 1  0.1 2 1 11 19 

The next band  is in all cases p redominan t ly  (46) and starts  with J = 0 and 2. Here 

the mixing of  (2#)ya lues  are considerably  higher, but  still ra ther  few are of  impor tance .  

In  table  4 we have given the s tructure of  the (84) componen t  in the wave funct ion 

d is t r ibuted  over the different K-values in the SU3 scheme. The physical  in te rpre ta t ion  

of  this quan tum number  is the pro jec t ion  o f  the angular  m o m e n t u m  along the intr insic 

axis. A considerable  admixture  of  K-values is ob ta ined  in the wave function,  especially 

for  the K K  force. However ,  the exper imenta l  classif ication of  these states as belong- 

ing to a K = 0 and K = 2 band  seems to survive an extensive shel l -model  calculat ion.  

The exper imental  decay scheme for the low-lying states o f  a*Mg is well knownaa) .  

A small  admixture  of  M1 t rans i t ion  has been repor ted  in some cases 24), but  the ma in  

con t r ibu t ion  is due to the E2 mode.  This is in good  agreement  wi th  our  model  which 

predicts  zero M1 transi t ions.  
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The reduced electric quadrupole transition probability can be written as 2~) 

B(E2; Ji ~ Jf) : Z I ( J i M i I M ( E 2 ;  q)IJfMf) l  z 
qMf' 

_ 1 I ( J ~ l l M ( E 2 ) [ l j r ) l z  ' 
2J i -+- 1 

where the operator M(E2;  q) between T = 0 states has the form 

M(E2; q) = ½e Z r/z Y2q(f2,) • 
i 

The summation goes over all particles. The most sensitive test of  the wave functions 
is the branching ratios. For the absolute transition rates such factors as the radial 
form of the single-particle wave functions and the effective charge due to the distor- 
tion of the core, have major influence. We therefore concentrate on branching ratios 
where these effects are of  minor importance. 

In table 5 we have given all branching ratios for the eight lowest levels. As a 
comparison we have listed the result from the pure SU3 model assuming no K-mixing 
in the levels. For the two lowest rotational bands no improvement has been obtained 
over the simple model and in nearly all cases serious disagreements are found. The 
major reason for the large change from the (84) configuration is due to the K-mixing 
in the eigenstates; see table 4. The transition operator M(E2;  q) is diagonal in the 
SU3 scheme. Hence the other (2#) values play a minor role in the transition strength. 
Reasonable results have been obtained for transitions from the second 0 + and third 
2 + states where the pure model does not give any contribution. This agreement might 
not be fully significant, however, since the competing transitions are highly depressed 
by the energy factor in the formula for the lifetime. 

The experimental transition rates for 24Mg follow very closely the prediction by the 
SU3 model. This is also known to be the case for other nuclei in this region 25). 
However, it seems clear that an extensive shell model calculation has difficulties to 
reproduce this result. The configuration mixing does not improve the picture, as one 
would have expected. 

5. Discussion and conclusion 

This calculation has been based on the assumption that the eight-particle wave 
function for 2*Mg can be represented by the maximum space symmetry states [f]  = 
[44] only. From similar calculations in the sd shell it seems to be well established that 
the L S  coupling scheme is a good approximation. The calculation reproduces the 
well-known rotational structure with a K = 0 and a K = 2 band. However, our 
results also show some disagreements, especially in the case of transition rates. This 
indicates that additional degrees of  freedom which have been omitted, are of impor- 
tance. Two sources of correction to our model can be thought of  as the major reasons. 
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First of all, states with higher space symmetry may have some influence. Also core 
excitation seems possible from the experience in similar cases. 

From the calculation of 2°Ne by Inoue et al. s), it seems probable that only the next 
higher symmetry [f]  = [431 ] should be of importance, at least for interactions without 
tensor components. Such states can mix with the [ f ]  = [44] configurations only 
through the ! • s term in the Hamiltonian (1). in a calculation of the second-order 
correction to the energy we only need to take into account the (84) component of the 
eigenstates. This gives the following expression: 

i([431](2~)/~JTI ~', ti " si l[44](84)odT)[ 2 
E[(84)~J] = 62 Z 

(2u)fl E(84)~tj - -  E(.~u)flJ 

(62/A) ~ 1([431](~./~)/3JTI ~ l~" s , l[44]~(84)JT)l  2, 
(~ta)# i 

where A is the average excitation energy. There are rather few terms in the sum over 
(Zp); (92), (65), (73) 2 and (46). We have calculated the sum for (92) to be approximate- 
ly 0.1, and it is nearly independent of c~ and J. A reasonable estimate of the factor 
(52/A gives ~ 0.5 MeV. With this result no change in the energy levels is obtained. 

Both due to the energy denominator and the matrix element, the (92) term in the 
sum should be the dominant one. It is therefore unlikely that including all (2/~) values 
will change this result significantly. Banerjee et al. 18) estimated the same term in a 
variational approach to give a large contribution to the energy spectrum. However, 
this seems not to be confirmed by a more detailed calculation. 

A similar estimate has been performed for the core excitation effect. The lowest- 
order correction of this type is obtained by promoting two particles from the p-shell 
to the sd shell. Aligning the particles to the maximum total (2#), we get a state of the 
form 

1~) = ](sd) l° ;p-2(104)  K L S  = T = 0) .  

The off-diagonal matrix element for the interaction between this state and the eight- 
particle states can be calculated in the SU3 scheme 9, z 6). An estimate of the unperturb- 
ed positions of these configurations is obtained from the binding energy of Z6A1, 
24Mg and 14N. This gives approximately 10 MeV. The second-order energy correc- 
tion gives ~ - 0 . 4  MeV for the lowest K = 0 states and ~ -0 .1  MeV for the K = 2 
states. This result has the right trend, but the effect is still too small. However, there 
are many close-lying particle-hole configurations which could improve this result. 
A further study on this point is in progress. 
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