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ABSTRACT 

A technique for estimating chemical rate constants from raw kinetic data is 

suggested. Such problems are viewed as nonlinear multipoint boundary-value 

problems for systems of nonlinear ordinary differential equations, for which the 

quasilinearization procedure offers an effective means of numerical solution. 

The method is illustrated using kinetic data obtained by Bodenstein and Lindner 

on some gas phase reactions of nitrogen and oxygen. 

INTRODUCTION 

Recent advances in the technology of digital computers have made 
the numerical solution of large systems of nonlinear differential equations, 
subject to initial conditions, a routine affair. With this basis, many 

effective techniques can be devised for the numerical solution of two-point 
and multipoint boundary-value problems [ 11. This has far-reaching 

implications for science and technology, from both t!reoretical and 
experimental aspects. 

The reason for this may be briefly described as follows. Theory 
frequently provides equations describing a process without giving the 
numerical values of constants appearing in the equations. Observation!; 
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and experiments are then used to provide data for the determination 

of the unknoxvn parameters. This reconciliation of theory and experiment 
is of basic importance, since it is a fundamental met’hod for testing the 
validity of cause-and-effect assumptions and of theoretical structures in 

general. Many techniques are available for redu’:ing the numerical 

solutions of more complex functional equations involving partial deriv- 
atives and integrals to the solution of systems of ordinary differential 
equations (see [Z-6]). 

In this paper we indicate the application of the general method of 
quasilinearization to the estimation of chemical rate constants using 
raw kinetic data. Rodenstein and .Lindner [7] have presented data on 

pressures observed during the reversible homogeneous gas phase reaction 

2N0 + 0, + 2N0,. (1) 

The experiments were carried out at constant volume and temperature, 
The forward reaction is third order and the backward reaction is second 
order. The descriptive differential equation, after various normalizations, 
has the form 

2 = k(a - x)(b - x)2 - KX2, 

where n -= 126.2 and b = 91.9, and k and K are the rate constants to 

be estimated on the basis of the observations given in Table I. 

TABLE. I 

EXPERXSfENTAL DATA= 

t0 1 2 3 4 .5 6 i 9 11 14 19 24 29 39 
x 0 1.4 6.3 10.5 14.2 17.6 21.4 23.0 27.0 30.5 34.4 48.8 41.6 43.5 45.3 

u Table 39 in Bodenstein and Lindner 173. 

Let us denote the nth observation at time t, by We, t, = 1, WI = 1.4, 
and so on. We then want to determine the rate constants k and K so 
that the solution of the differential Eq. 3, subject to the initial condition 

x(0) = 0, will agree as closely as porjsible with the measured values. 

We must, of colxse, introduce an z.ppropriate measure of closeness. 
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QUASILINEARIZATION 

Quasilinearization provides a successive approximation method for 
solving the estimation protlem just posed, It is a quadratically convergent 
technique, so that if we begin with a reasonably good initial estimate, 
we can expect to double the number of correct digits asymptotically 
with each additional step in the process. Here, asymptotically usually 
means from the third iteration on. 

We can first transform the problem of estimating constants within 
the equation into one in which we estimate the initial conditions for 
a system of differential equations. We do this by considering k and K 
to be functions of time that satisfy the djfferential equations 

R = 0, (3) 

I;: = 0. (4) 

The aim is to consider all quantities as functions of time, and all unknowns 
appear as initial conditions. 

As a measure of closeness, we now minimize the quantity 

where 

_x? = 4126.2 

k = 0, 

ti = 0. 

- x)(91.9 - x)2 - KG, X(0) = 0, (6) 

(7) 

(9) 

The minimization is over the initial values of k and K, k(0) and K(0). 
We will sketch the quasilinearization technique in quite general 

terms. Let the N-dimensional vector x(t) be a solution of the differential 
equation 

1 = f(x), 

The first S components 
free to be chosen so as 

M 

Xi(O) = Mi, i = 1,2, . * , s. (9) 

of x(0) are specified, and the last N - S are 
to minimize the sum 

Q= w x(k)) - 42. M >lV - S. PO) 
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.b wuat, (,& x) denotes an inner product, and B is a constant weighting 
vector. As was remarked earlier, our procedure is an iterative one. First 
NV &ect an initial approsimation to the missing initial conditions and 

integrate Eq- i, numctically on the interval 0 < t < t,* Call this vector 

function x*(1). Sext we consider a linearized version of Eq. 9 

A?’ = /((x0) e J(_@)(X - xoj, (111 

whr*re the Jacobian matrix J is given by 

This matrix is known computationally on the interval 0 < t Q 1,. We 

produce numcricaliy II particular Solution p(t) of Eq. 11 on the interval 
I! 5s: I < t,,f ‘ II using some convenient initial conditions, such as 

Then w’c produce numerically 
tbc homogeneous equation 

A, = J(xW,, 

where I+(t) is an A’-dimensional 

i-I 1,2 (...(L s, 

iz s+- 1, . . . . A’.. (13) 

A” - S independent vector solutions of 

j=S*l,S+2 ,...) N, (141 

vector. For initial conditions we choose 

/f,(O) =-- 1),,’ j==.s+1,s-+2 ,... ,N. 

Then the solution of Eq. 11 is representable in the form 

x”(6) = (16) 

where c5 _ ,, cs if, . . . / cs are constants to be determined. They are 
calculated as solutions of the linear algebraic equations 

where for ,u(t&,i we substitute 

i= 1,2 ,-**I M. (18) 
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In view of our choices of p(O) and &(O), we have as our now approximation 
to the initial vector 

The process calI then be repeated to obtain an improved estimate. Detailed 
discussions and many other applications will be found in [ 11. 

NUMERICAL RESULTS 

The quasilinearization technique was applied to the problem described 
in the Introduction. The results are shown in Table Il. 

TABLE II 

NUMERICAL RESULTS 

Approximation k I< 

._.-_--_.___ -.__._ -____ __ .__ _.. _ 

0 1 x 10-s I x 10-4 

1 0.3413 x 1.0-s 0.2554 x lo-2 

2 0.4589 x PO-S 0.3683 x 10-S 

3 0.4578 x 10-S 0.2808 x 10-a 

4 0.4577 x 10-S 0.2797 x 10-a 

Further iterations produced no changes. The entire calculation consumed 
less then 30 set on an IBM 7044, no attempt having been made to strez.::n- 
line the calculations. By comparison, Bodenstein and Lindner, using 
a combination of chemical theory and the observations given earlier, 
estimated that 
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As a point si’ interest, the sum of the squares of the deviations for our 
choices of the parameters is 0.210 x 10-2, and the sum of the squares 
of the deviations for Bodenstein’s and Lindner’s choice is 0.565 x 10-s. 

We do not imply that our values are more accurate than those of 
enstein and Lindner. We only emphasize that our estimates were 

o~~tain~~~ in a systematic, computationally feasible manner requiring 
no further knowledge of the chemical process than that contained in 
Eq. 2, the olrst:rvations, and the initial estimates. 
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