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Abstract: This paper deals with an application of the HF method to deformed nuclei. The two nucleon 
interaction used is a non-local separable potential which acts only in relative s-states. The HF 
equations are solved in the matrix formulation. Calculations are performed for laO, *“Ne, 
24Mg, **Si, %, 36Ar and *Ya. The 4p-4h state of I60 is also investigated. Solutions correspond- 
ing to different kinds of deformation are investigated. Single-particle energies and wav-e functions 
are obtained. The intrinsic quadrupole moments are also calculated. 

1. Introduction 

The shell-model description of nuclei has been very successful in correlating a large 

amount of experimental data. Even some of the collective properties of deformed 

nuclei can be interpreted in terms of a model ‘) which is based on the concepts of 

shell model, viz. “unified model”. The theoretical basis for the shell model is the 

Hartree-Fock “) picture where one obtains a self-consistent one-body potential in 

which the nucleons are moving independently of each other. The derivation of this 

potential from two-nucleon interaction in the HF approximation is very difficult due 

to the presence of the hard core in the nucleon-nucleon force. In recent years it has 

been shown 3, that the two-nucleon scattering data can be fitted with velocity- 

dependent potentials, which have the saturation property needed to explain the 

behaviour of binding energy of nuclei as a function of mass number. Moreover these 

potentials are suitable for HF calculations. Such calculations have been reported 4, 

for closed shell nuclei. HF calculations 5), where only part of the nucleons in the 

nuclei are included, have been carried out for 2s Id shell nuclei using phenomeno- 

logical interactions. Several nuclei in 2s Id shell have rotational level structure, and 

in many cases experimental information about deformation and intrinsic quadrupole 

moment are available. Unlike in the case of closed shell nuclei, the HF approximation 

for non-closed shell nuclei enables one to study the intrinsic properties. 

The rotational collective aspect of nuclear excitations is well explained by “unified 

model” ‘). The model assumes an average potential which is non-spherical, in which 

the single-particle levels are filled according to the Pauli principle. The collective 

motion is obtained through the rotation of the non-spherical well. Hill and Wheeler 6, 

7 Research supported by the National Science Foundation. 
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and Peirls and Yaccoz 7, have given the mathematical description of the unified 

model. The intrinsic wave function is assumed to be a Slater determinant obtained 

by filling the particles in the non-spherical well. Due to the fact that the well is 

deformed an angle D is assigned to specify the orientation of the axis. But Sz is 

arbitrary and hence there is a set of degenerate wave functions which differ only in 

the value of Q. So one can construct a more general wave function, 

Y = 
s 

f(L’)@(l, . . . N; Q)dsZ. 

Peirls and Yaccoz show (for the case of axial symmetry) that by minimizing the 

expectation value of the Hamiltonian between the state Y, with respect tof(Q) the 

value of the energy can be lowered, and for a spherically symmetric Hamiltonian, 

f(f2) CC r,“je, d, 

where Y,“(e, 40) is a spherical harmonics, and angles 8, 9 specify the symmetry axis 

with respect to a space fixed axis. With this value for f(Q) the wave function Y has 

the total angular momentum as a good quantum number. This is also the way in 

which wave functions are constructed in Elliott’s SU, model “). 

There have been many phenomenological average deformed potentials discussed 

in the literature 9), and the most successful one among them is that of Nilsson. The 

Nilsson model assumes an axially symmetric deformation. Although this model is 

used extensively in calculation of nuclear properties, the empherical nature of the 

model makes it difficult to predict the nature of the deformation viz, prolate, oblate 

or asymmetric. Thus an HF calculation will complement the Nilsson model, and a 

comparison of ordering of levels and wave functions can be made. 

The two-nucleon interaction used is a non-local separable force which acts only in 

relative s-states. The parameters of the force (see sect. 3) are chosen to fit the binding 

energy and density of nuclear matter. HF calculations for closed shell nuclei using 

this force have been reported elsewhere lo), and the results were qualitatively in 

good agreement with experiment. Due to the fact that this interaction is purely central, 

the spin-orbit splitting of single-particle levels were not obtained. Although the 

tensor interaction plays an important role, calculations such as the present one 

with a much simplified force can enable one to learn about the validity of the HF 

method. This might lead the way for future calculations with more sophisticated 

interactions. 

The calculations reported here are performed for nuclei in the 2s Id shell (“Ne, 

24Mg, 28Si, 32S and 36Ar) with mass number A = 4n (n is an integer). These nuclei 

are chosen due to the fact that each single-particle level can be occupied by two 

neutrons and two protons (see sect. 4). Calculations were also performed for I60 

and 40Ca, and the results were compared with earlier calculations lo), thus providing 

a check on the numerical computation. A calculation on the 4p-4h state of 160 is 

also made. This is of current interest, because the 6.06 MeV O+ state of 160 together 
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with the excited 2+, 4+ and 6+ states form a rotational band to a good accuracy. 

Shell-model calculations including all 2ho excitations rl) are not able to explain the 

Of state at 6.06 MeV. It is suggested 12) that this state is of a 4p-4h nature. In all the 

nuclei both the prolate, oblate and asymmetric solutions are investigated. 

In sect. 2, a brief review of the HF theory is given. In sect. 3, the two-body inter- 

action used is discussed. In sect. 4, the choice of basis states, approximations involved 

in the truncation of the basis and the iteration procedure are discussed. In sect. 5, 

the calculation of two-body matrix elements is explained. In sect. 6, the results of the 

calculation are presented with discussion. In sect. 7 are the concluding remarks. 

Appendix 1 describes the separation of the two-body wave function in relative and 

centre-of-mass coordinates. 

2. The HF theory 

Only a brief review of the HF theory will be given here. A more detailed description 

of the HF method can be found elsewhere ’ “). 

The Hamiltonian for a many particle system is, 

where T is the kinetic energy operator and V,,,, the antisymmetrized two-body 

matrix element 13) of the interaction. The c are fermion creation and annihilation 

operators. The representation a, /?, . . . is arbitrary. The HF trial wave function for 

an N-fermion system is a Slater determinant of N-particle wave functions, 

IHF) = aTa; . . . &O), 

where 

at = EAEicf;. 
a=1 

(1) 

In this expansion only p of the complete set of states CC, p, . . . are included. This 

truncation is for practical reasons and will be discussed in more detail in sect. 4. 

The N single-particle wave functions + Ii) can be chosen to be orthonormal and 

the set I i) can be completed by choosing wave functions 1 i} for i = N+ 1, N+ 2 * . * p 

so as to be orthonormal to the original N functions and to each other. 

The HF problem is one of solving for the coefficients A by minimizing (HFIHIHF) 

with respect to A. After minimization one obtains a set of pseudo-eigenvalue equa- 

tions, 

(2) 

where 

W = T+r. 

+ Ia> = ca+[O> and Ii> = q+lO). 
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The HF potential r is a function of A and is given by 

with 

Pap = C A/Ji 4%. 
i=l 

The one-body density matrix p satisfies the conditions 

P2 = p, Tr p = N. 

The total energy E, = (HF]H(HF) is given by 

(3) 

(4) 

(9 

E, = ,[F q+Tr (Tp)]. 
i=l 

The expectation value of any one-body operator K can be expressed as 

(HF]K]HF) = Tr (pK). 

Thus the HF problem can be considered to be one of obtaining p which satisfies 

eq. (5) and is a solution of eq. (2). Since I’ [eq. 31 is a function of p, an iterative 

method is used to solve for the eigenvalues and eigenfunctions of W. An initial p 

that satisfies eq. (5) is chosen, r is calculated [eq. (3)] and W is diagonalized. With 

the eigenfunctions of W, a modified p is obtained from eq. (4) and the procedure is 

continued until the values of ATi and .si do not change with iteration. In each iteration 

the particles are filled in the lowest single-particle levels of the Hamiltonian W. 

3. The two-nucleon interaction 

The two-nucleon interaction used in the present calculation is a non-local separable 

potential 14) 

v(r, , y2; 4, r;> = - 6(R- R’)F(r)F(r’), 

with 

R = +(r, + r,), r = ~1-~2, 

F(r) = (4na2)-‘(y/mfx)+ exp (- r2j4a2). 

This interaction acts only in relative s-states. The range CI is chosen to be the same for the 

singlet and triplet components of the force. The parameters CC and y (dimensionless) are 

chosen bydemandingthat the interaction give the bindingenergy/particle of nuclearmat- 

ter (in the HF approximation) to be 15.7 MeV at the fermi momentum k, = I .42 fm- ‘. 
The second-order correction to the energy in nuclear matter for this interaction lo) 

is -0.2 MeV/particle at k, = 1.42 fm-‘. Thus this interaction is suitable for HF 

calculations. Under the assumption that the range c( being the same for triplet and 

singlet components, the binding energy of nuclear matter (or of finite nuclei) is only 

a function of ys + yt and LX (where s and t refer to singlet and triplet, respectively). The 
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values of the parameters are 

c(, = CI, = 1.175 fm, 

ys+yt = 6.167. 

The values of GI and y that fit the effective ranges and scattering lengths of singlet and 

triplet states of deuteron are 

CI, = 0.81 fm, CI, = 0.64 fm, 

ys = 2.3, yt = 3.55, 

but these parameters do not fit nuclear matter. Due to the fact that the range of the 

force is increased to fit nuclear matter the binding energy of nuclei as a function of 

mass number do not saturate fast enough to give the observed binding energies of 

light nuclei “). 

4. The choice of basis states and iteration procedure 

Since we are interested in deformed solutions, in which one expects the single- 

particle wave functions Ii) to be eigenfunctions of a deformed well (such as the 

Nilsson potential), the basis states ICC), ljI> * * * are chosen to be anistropic harmonic 

oscillator functions, viz l~z,n,,lz,). The quantum numbers n,, ny, n, are the number of 

oscillator quanta in the x, y and z directions. These states are 

lIz,nynz) = (b,byb,)~(~+“Y+ninX!ny!nT!)) 

x(l/G)exp(-J&,x2-~byy2-~bZz2) 

x H”x(b,X2)H,y(b,y2)H,,(bZz2), 

where bi = moi/2t (i = x, y or z) and H, are Hermite pdynomials. If a complete 

set is used in the expansion eq. (1) the bi values are arbitrary. But in practical calcula- 

tions a truncation of the basis is made and the oscillator parameters are also con- 

sidered as variational parameters. The size of the basis is decided partly by computa- 

tional limitations and by investigating the effect of increasing the basis. This point is 

discussed in detail elsewhere lo). 

Due to the fact that each single-particle level can be occupied by two neutrons 

and two protons (spins up and down), there is a four-fold degeneracy of the single 

particle levels. The number of occupied single-particle energy levels for A = 4n 

(n is an integer) is n. This is also the reason for considering only nuclei with A = 4n. 

For other nuclei since there is no unique way of filling the levels one should also take 

into account configuration mixing which is beyond the realm of HF theory. 

The single-particle wave functions Ii) are assumed to have parity as a good quantum 

number. Although this restriction is not necessary, it can be shown to be consistent 

with the HF conditions 15). M oreover this assumption reduces the size of the matrix 

Wand hence simplify the numerical problem. Since parity is a good quantum number 
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for Ii), the matrices Wand p do not connect states of different parity and hence the 

matrix W assumes a block diagonal form as shown in fig. la. The two matrices We,,, 

and W,,,, can be diagonalized separately. In physical terms, due to the above assump- 

tion, pear-shaped nuclei are eliminated. At the present time there is very little evidence 

for pear-shaped nuclei. 

The iteration procedure begins by an initial choice of p which satisfies eq. (5) viz, 

P2 = P, 

4 Tr (P,,,, +Podd) = A. 

As an example the initial p for “Ne is shown in fig. lb. The final solution depends 

on the initial choice of p. For example the choice of p shown in fig. lb leads to the 
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Fig. 1. The form of the matrices Wand p under the assumption that parity is a good quantum number 
for the single-particle wave functions. b and c describe the initial choices of p for the prolate and 

oblate solutions in *“Ne. 

prolate solution for “Ne while the p shown in fig. lc gives the ablate solution. The , 

oscillator lengths for the x and y directions are assumed to be the same. For each 

value of b, 6, b,, the ratio b,/b, is varied to obtain the minimum energy. For even- 

parity states, seven basic states are included (all n,+n,+n, = 0 and 2) and for the 

odd-parity states 13 states are included (all n,+ nY +n, = 1 and 3). Including more 

basic states makes the computational part of the problem impractical. But as can be 

seen from the results the anisotropic oscillator functions are a good approximation 

to the single-particle wave functions and hence the approximation due to truncation 

does not introduce appreciable errors in the results. 

5. Two-body matrix element 

Two-body matrix elements of the type (nXnynr, PZ:QZ:I Vln:‘nyn:‘, n:“$,“n:“) are 

needed in the calculation of r [eq. (3)]. The interaction used can be factored in the 
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Cartesian coordinates, 

V(r i,r2; r; , r;) = - (4na2)- ‘(y/mc~)%(X - X’)S( Y - Y’)s(Z - 2’) 

x F(x, x’)F(y, y’)F(z, z’), 

where 

x = &+x2), y = HYl+Y,), z = S(z, f z,), x = x1-x2, 

Y = Y1-Y2, z = zi-z2, 

F(x, x’) = exp (-(x2 + xr2)j4cr2). 

Due to this factorization, the two-body matrix elements can be written as a product 

of three factors of the form 

M, = (n,n:]F(x-x’)G(X-x’)]n:‘n:“) (6) 

and similar expressions for the y and z coordinates. The wave functions In,n!J can be 

expressed in terms of the relative and centre-of-mass coordinates by the following 

transformation: 

%@44%,@4) = c (n*n:lnN)~,i3bx2)(pNi2bX2), 
n,+n',=n+N 

where cp is the one-dimensional harmonic oscillator wave function i6) and x and X 

are defined above. The reason for having different oscillator parameters for the 

centre-of-mass and relative wave function is due to the way x and X are defined in the 

present paper. The transformation coefficients (n,n:]nZV) are given in appendix 1. 

The matrix elements [eq. (6)] is given by 

M,= c (n,n:lnN)(n~n:l’ln’iv)l,I,, , 

n,+n’,=n+N 
n”,+n”‘,=n’+N 

where 

I 

i-m 
I, = _ mcp,(+bx2) exp (-x2/4a2)dx 

= 2”-““(7rnb)‘(a/(+n)!n!)(ba2- l)‘“/(ba2 + l)i(“+ l), n = even 

= 0, n = odd. 

6. Results and discussion 

A few general remarks can be made about the single-particle wave functions and 

energies. In all cases anisotropic oscillator wave functions are a good approximation 

to the single-particle wave functions (see tables l-5). Also except for the difference 

in the oscillator parameters in the x, y and z directions, the structure of the intrinsic 

wave functions is very similar to the aligned wave functions of the SU, scheme *). 

In the case of axially symmetric solutions (20Ne, 28Si and 36Ar), the single-particle 

levels can be denoted by the magnetic quantum number A. The ordering of the levels 
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is qualitatively the same as that of an axially symmetric oscillator with an Z2 (I is the 

orbital angular momentum) term added. But the great depth of the levels show that 

the single-particle potential is highly non-local. The strength of the l2 term changes 

sign as one goes from I60 to 40Ca. This is manifested in the reversal of the position 

TABLE 1 

Single-particle energies and wave functions for the prolate and oblate solutions of 20Ne, ‘%i and SBAr 

Nucleus Single- n 
particle 
energy 

WeV) 

1000) 1002) 1020) 1200) /Oil> /lOl> 1110) 

*ONe -41.9 0 0.9961 -0.0470 -0.0524 -0.0524 0 
b, = b, 
= 0.25 fm-2 - 9.4 0 0.0478 0.9988 0.0069 0.0069 0 
b, = 0.19 fm-2 - 3.3 51 0 0 0 0 0 

- 3.3 0 0 0 0 1 
- 0.54 0 0.0736 -0.0132 0.7051 0.7051 0 
+ 0.33 &2 0 0 -0.7071 0.7071 0 

+ 0.33 0 0 0 0 0 

Yii - 50.3 
b, = b, -16.5 
= 0.25 fm-2 -11.7 
b, = 0.19fm-2 -11.7 

- 4.5 
- 4.1 
- 4.1 

36Ar - 60.3 

b, = b, - 17.9 

= 0.24 fm-2 -16.0 
b, = 0.207 fm-2- 16.0 

- 14.2 
-13.6 
-11.9 

0 
0 

It1 

0 

It2 

0 

0 

*1 

(IkU 

G:: 

0.9972 0.0189 -0.0512 -0.0512 

-0.0166 0.9994 0.0223 0.0223 
0 0 0 0 
0 0 0 0 
0.0729 -0.0303 0.7049 0.7049 
0 0 0 0 
0 0 0.7071 0.7071 

0.9977 -0.0320 -0.0417 -0.0417 
0.0320 0.9995 - 0.0007 - 0.0007 
0 0 0 0 

0 0 0 0 

0 0 0.7071 -0.7071 

0.0590 -0.0008 0.7059 0.7059 
0 0 0 0 

0 

0 
0 

1 
0 
0 
0 

0 
0 
0 
1 
0 
0 
0 

0 

0 
1 

0 
0 

0 
0 

0 
0 
1 
0 
0 
0 
0 

_ 

0 
0 
1 
0 
0 
0 
0 

0 

0 
0 

0 

0 

0 

1 

0 
0 
0 
0 
0 
1 
0 

- 

0 
0 
0 
0 
0 
0 
1 

n is the magnetic quantum number and b = mw/fi. In table 1 the even-parity levels of the 
prolate solution is presented. The even-parity levels for the oblate solutions is given in table 2. 
In tables 3 and 4 the odd parity levels for the prolate and oblate solutions are presented respectively. 

The particles occupy the lowest levels and each level contains 2 neutrons and 2 protons. 

of the 2s and Id levels as one goes from 160 to 40Ca. This fact is also confirmed by 

experiments. The qualitative feature of the single-particle levels of 28Si are much 

more similar to a pure anisotropic oscillator (see fig. 2) than those of 20Ne and 36Ar, 

showing that the 1’ term is much weaker in the vicinity of 28Si. In the case of axially 

asymmetric solutions (24Mg and 32S) the single-particle levels do not have LI as a 

good quantum number, but any one single-particle wave function contains either 
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TABLE 2 

(see for caption table 1) 

Nucleus Single- 

particle 

energy 

(MW 

A lOOO> 1002) 1020) 1200) /Oil> 1101) jllO> 

20Ne -41.3 0 0.9976 -0.0397 -0.0403 -0.0403 0 0 0 

b, = b, - 5.9 *2 0 0 0 0 0 0 1 

= 0.216 fm-2 - 4.5 0 0.0591 0.0554 0.7048 0.7048 0 0 0 

b, = 0.259 fm-2- 3.3 52 0 0 0.7071 -0.7071 0 0 0 

- 1.7 *1 0 0 0 0 0 1 0 

- 1.7 0 0 0 0 1 0 0 

+ 0.3 0 0.0364 0.9977 -0.0407 -0.0407 0 0 0 

YGi - 50.9 0 0.9981 -0.0449 -0.0301 -0.0301 0 0 0 

b, = b, -13.2 +2 0 0 0 0 0 0 1 

= 0.206 fm-2 - 13.2 0 0 0.7071 -0.7071 0 0 0 

h, = 0.29fm-2 -13.18 0 0.043 0.0104 0.7064 0.7064 0 0 0 

- 5.7 &l 0 0 0 0 0 1 0 

- 5.7 0 0 0 0 1 0 0 

- 0.6 0 0.0444 0.9989 -0.0087 -0.0087 0 0 0 

3”Ar -60 0 0.9986 -0.0425 -0.0227 -0.0227 0 0 0 

b, = b, -17.7 12 0 0 0 0 0 0 1 

= 0.216 fm-2 - 17.7 0 0 0.7071 -0.7071 0 0 0 

5, = 0.259 fm-2- 17.1 0 0.0335 0.0337 0.7063 0.7063 0 0 0 

-14.2 &l 0 0 0 0 0 1 0 

- 14.2 0 0 0 0 1 0 0 

- 8.8 0 0.0414 0.9985 -0.0248 -0.0248 0 0 0 

TABLE 3 

(see for caption table 1) 

Nucleus Single- LI 

particle 

energy 

(MeV) 

Single-particle wave functions expanded in the basis Inr nv n,> 

*ONe -23.4 0 0.99881001) -0.0200[003) -0.03211021) -0.0321/201) 
b, = 6, 
= 0.19 fm-2 -17.0 *1 0.99981010) -0.0071]030) -0.0041~210) -0.0192~012) 
b, = 0.25 fm-2 -17.0 0.99981100) -0.0071~300) -0.0041[120) -0.0192[ 102) 

**Si -33.8 0 0.9987001) -0.0279~003) -0.0294~021) -0.02941201) 
b, = b, 
= 0.25 fm-2 -23.8 &l 0.9977~010) -0.03461030) -0.0200[210) +0.0555~012> 
6, = 0.19 fm-2 -23.8 0.99771100) -0.0346[300) -0.0200~120) +0.0555~102> 

36Ar -37.8 0 

6, = b, 

= 0.25 fm2 -33.9 &l 
b, = 0.207 fm-2 -33.9 

0.9975~001) -0.0591[003> -0.02741021) -0.0274[201> 

0.99871010) -0.0234~030) -0.0407~210) -0.0178~012) 
0.99871100) -0.02341300) -0.0407~120) -0.0179~102) 
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TABLE 4 
(see for caption table 1.) 

Nucleus Single- LI 
particle 
energy 

(MeV) 

Single-particle wave functions expanded in the basis [n,n,n,) 

20Ne -20.7 &l 
b, = b, 
= 0.216 fm-2 -20.7 
b, = 0.259 fmm2 -16.8 0 

0.99871100) -0.0471[300) +0.0135[120) -0.01 1102) 

0.99871010) -0.0471~030) $0.0135~210) -0.01~012) 
0.99991001> +0.01481003> -0.00541021) -0.0054[201) 

%i -30.3 &l 0.999ljlOO) -0.0291/300> -0.0168~120) -0.0244/102> 
b, = b, 
= 0.206 fm-2 -30.3 0.9991~010) -0.0291/030) -0.0168[210) -0.0244~012) 
b, = 0.29 fm-2 -20.5 0 0.99991001> +0.0153~003> -0.0002/021) -0.0002/201> 

36Ar -37.4 *1 0.9986[100) -0.04181300) -0.0241~120) -0.0211~102) 
b, = b, 
= 0.216 fm-* -37.4 0.9986/010) -0.0418jO30) -0.0241/210) -0.0211~012~ 

6, = 0.29 frne2 -31.1 0 0.9991 jOlO> -0.04271003) +O.O055lO21) +0.00551201; 

TABLE 5 
The single-particle levels and wave functions for zaMg and ?S (asymmetric) 

Nucleus Single- Parity Single-particle wave functions expanded in the basis jn,n,n,) 
particle 
energy 

(MW 

=Mg -45.2 
b, = b, -28.2 
= 0.245 fm-2 -21.5 
b, = 0.175 fm-z -18.4 

-13.0 
- 9.3 
- 5.7 
- 3.6 
- 1.9 
- 0.8 

32s -55.5 
b, = b, -35.5 
= 0.211 fm-2 -32.2 
b, = 0.274 frne2 -25.8 

-16.7 
-15.5 
- 14.0 
-11.7 
- 8.2 
- 4.7 

+ 0.99621000) 
0.99671001) 
0.9991 lOlO> 
0.9991~100) 
0.0328~000) 

1011) 
1101) 
0.0406jOOO) 

jllO> 
0.0703(000> 

0.9977/000> 
0.99861100) 
0.99831010) 
0.99831001) 

-0.0019~000) 

IllO> 
0.0501 IOOO) 

1101) 
1011) 
0.0451~000) 

-0.0315~002> 
-0.0535~003) 
-0.0121/030> 
-0.0403~300> 
+0.9987/002) 

+0.1257/200) +0.99051020> 

+0.00331002> t-0.98921200) -0.1283/020> 

+O.O005j200) -0.0448~002> 
-0.04431120) -0.01771102> 
+0.0058~210> -0.0305~012> 
-0.0336~021) +0.0440~201> 
-0.05461020) +0.03051002> 

+0.05481200) 10.99721020) -0.0053/002> 

-0.0749[200) -0.0326[020\ 
-0.0022~021) -0.0607/201) 
-0.0379~210) +0.0133~012> 
+0.0110~120> -0.0117/102> 
-0.0008~200) +0.03811020) 

+0.00461020> +0.9985/002) 
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Fig. 2. Single-particle levels for the axially symmetric solutions. Levels of similar structure are 
connected by dotted lines. The levels marked x are doubly degenerate. 
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odd A or even A only. This property is that of the eigenfunctions of an ellipsoidal 

well. In all nuclei there is an energy gap between the occupied and unoccupied single- 

particle levels. This feature is also obtained in some of the earlier calculations i7). 

This gap is larger for the energetically preferred solution as one would expect. The 

single-particle levels are shown in figs. 2 and 3. For “Ne, 28Si and 36Ar, both the 

prolate and oblate solutions are given with dotted lines connecting states of similar 

structure. The level ordering is the same as that of Nilsson ‘) (without spin-orbit 

coupling). 

TABLE 6 

The single-particle levels and wave functions for the ground state of I60 and %a 

Nucleus Single- Orbital Single-particle wave functions expanded in the basis lnz ny n,) 
particle angular 
energy mome&m 

(MeV) I 

160 -38.3 0 0.99801000) -0.0368[~002)+~020)+/200>] 
b, = b, -15.7 0.99991001> +0.0099j003> +0.0057/021> +0.0057~201> 
b, = 0.245 fm-2 -15.7 

-15.7 I 
1 0.99991010) +0.00991030> +0.0057~210) +O.O057jO12) 

0.9999/100) +0.00991300> $0.0057~120) +O.O057j102> 

Wa -65.5 
b, = b, - 39.6 
b, = 0.233 fm-2 -39.6 

-39.6 
-18.2 
18.2 

-18.2 
-18.2 
-18.2 
-17.8 

0 0.9986/000) -0.0306[~002)+~020)+~200)] 

I 

0.9987~100) -0.03941300) -O.O227[j120) +[102>] 
1 0.99871010) -0.0394/030) -0.0227[~210)+~012)] 

0.9987/001> -0.03941003) -O.O227[1021)+j201)] 
1110) 
/lOI> 

2 loll> 
0.28281200) +0.5219~020) -0.80471002) 
0.76601200) -0.62791020) -0.1381/002> 

0 0.05291000> +0.5765[~002>+[200)+j020)] 

The solutions are spherical. 

Since we did not separate the centre-of-mass motion from the total Hamiltonian, 

the ground state energy of the nuclei is obtained by subtracting the kinetic energy 

of the centre of mass, viz. 

from (HFlHjHF). In fig. 6 the energy/nucleon is plotted as a function of A-*. The 

points lie approximately in a straight line as expected from a two-term mass formula 

energy/A = -a,+ a, A-” 

where a, and a, are the volume and surface energy coefficients in the Weizsacker 

mass formula ‘*). The empherical values for a, is 15 MeV and a, is 18 MeV. The value 
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of a, in our case is approximately 15 MeV and this is due to the fact that the two- 

nucleon interaction is chosen to fit the volume energy of nuclear matter. But the 

surface term in our case is 24 MeV which is too large. This is due to the long range of 

the interaction. However the qualitative behaviour is reproduced well with a simple 

force as the one used in the present work. 

The intrinsic quadrupole moment 

TABLE 7 

The ground state energy, the quadrupole moment Q0 and the asymmetry parameter Q2 for r60, *“Ne, 

=Mg, ‘@Si, FS, 36Ar and ‘%a 

Nucleus Ground state 

energy (MeV) 

‘00 
20Ne 

naMg 
**Si 

3% 
36Ar 

Ya 

- 87.0 (spherical) 0 0 
- 105.4 (prolate) +0.61(0.68) “) 0 
- 95.3 (ablate) 
- 130.2 (asymmetric) +0.77(0.80) “) $0.14 
- 165.9 (oblate) -0.83(0.66) “) 0 
-165.6 (prolate) 
-200.3 (asymmetric) -0.72 +0.19 
-246.5 (oblate) -0.57 0 
-240.0 (prolate) 
- 300.2 (spherical) 0 0 

a) Experimental numbers are from refs. la, *6). The sign of Q, is not determined in these experiments. 

and the asymmetry factor 

Qz = (W~I(x~ -Y?WW 

are given in table 7 and fig. 5. There is an abrupt change in the sign of Q, near the 

middle of the shell and this is probably also supported by experiments 19). The 

order of magnitude of Q, also agrees exceedingly well with experimental numbers 19). 

Another interesting feature is the remarkable similarity of these results to those of an 

earlier calculation *) in which only nucleons outside the 160 core were considered 

and the two nucleon interaction used in ref. “) is very different from ours. 

The results for each nucleus with the initial choice of p will be discussed below. 

In giving the initial p we shall present the levels that are assumed to be filled. The 

matrix elements of p between filled levels is 1 and all other matrix elements are zero. 

For example in the case of ground state of 160 initially the states /OOO), 1 loo), 1010) 

and 1001) are assumed to be filled. This implies that 
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if ln,n,n,) is any one of the four levels above. In all nuclei except the 4p-4h state of 

160, the above four levels are filled in the initial choice of p and hence only the levels 

in addition to these will be given. 

6.1. THE I60 AND Wa CALCULATION 

In an earlier paper 4, the results of an HF calculation for I60 and 40Ca were 

reported. In ref. 4), the nuclei were assumed to be spherical and the single-particle 

wave functions were expanded in terms of harmonic oscillator functions in spherical 

-5- 

7 
r” 

4 
: -10 - 

: 
6 

/ / 
/ 

-15 (’ 

x 
0 

16 

/’ 

I 1 I 

0 01 02 0.3 0.4 

Fig. 6. Energy/nucleon versus A-+. 

coordinates. These results are reproduced in the present calculation (table 6). For 

40Ca initially, in addition to the four levels mentioned above, the states 1200), 1020), 

/002), 11 lo), I lOl), 1011) are taken to be filled. Each level is occupied by two neutrons 

and two protons. The HF single-particle levels (table 6) have both orbital quantum 

number and magnetic quantum number as good quantum numbers and the levels 

are (21+ 1) fold degenerate showing that the solutions are spherical. 

6.2. THE *“Ne CALCULATION 

In the case of “Ne both prolate and oblate solutions are obtained. The initial 

choices of p are shown in figs. lb and c. For the prolate case the state 1002) is filled 

and for the oblate case (1 lo> is filled. The prolate solution is preferred by 10.1 MeV. 

6.3. THE =Mg CALCULATION 

The energetically lowest solution for 24Mg is obtained for the initial choice of p 

in which 1002) and 1011) are filled. The solution is asymmetric. An axially symmetric 
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solution can be found by starting with a p in which the states 1200) and 1020) are 

filled, but this solution lies much higher in energy. 

6.4. THE *%i CALCULATION 

In %i once again two solutions (prolate and oblate) are found. The initial choice 

of p for the prolate solution assumes that 1002), 1011) and 1101) are filled and that 

for the oblate solution assumes that 1200), 1020) and 1110) are filled. The energy for 

the two solutions differ by only 0.3 MeV, the ablate being lower. In such cases the 

stability of the minima should be investigated and this cannot be done in any simple 

way in calculations of the present kind. In calculations of equilibrium nuclear de- 

formations using phenomenological single-particle potentials 20), it was found in 

similar cases that the solutions were unstable against asymmetric deformation. 

Recently Litherland et al. 21) have suggested a kind of collective motion in which 

“Si nucleus is alternately prolate and oblate without passing through a region of 

spherical symmetry. This is manifested in a doubling of the rotational bands and there 

seems to be evidence for such a phenomena. 

TABLE 8 

The single-particle energies and wave functions for the I60 4p-4h state 

Single- 
particle 

energy 

(MeV) 

Parity Single-particle wave functions expanded in the basis In,n,n,) 

- 30.4 0.9971 jooo> -0.031/002~ +0.05531200> -0.0414~020\ 
- 18.5 0.9983~001> -0.02621003) -0.0057~021) +O.O522j201‘) 
-11.7 - 0.98751010) +0.15211030) +0.0171210) -0.036310121 
- 8.3 I 0.03351000) +0.9988/002) -0.0266~200) +0.0232;020 ) 
- 5.8 - 0.98561200) +0.0920~300) +0.13131120) +0.05321102\ 
- 0.8 + 1011) 

The oscillator parameters are b, = b, = 0.29 fmm2 and b, = 0.14 fm-2. The energy is -60 MeV. 

6.5. THE =S CALCULATION 

The energetically lowest solution in 32S is obtained for an asymmetric shape and 

the initial choice of p has the states 1200), 1020), 1110) and 1101) filled. 

6.6. THE 36Ar CALCULATION 

In 36Ar two solutions are obtained corresponding to prolate and oblate deforma- 

tions and the oblate shape is 6.5 MeV lower than the prolate shape. The initial 

choices of p for the prolate and oblate cases have respectively the states 1002), 101 l), 

IlOl), 1200), 1020) and 1200), 1020), IllO), IlOl), 1011) filled. 

6.7. THE IGO 4p-4h STATE 

As mentioned in sect. 1, the first excited 0’ state in I60 with 2+, 4+ and 6+ form 

a rotational band to a very good approximation. Shell-model calculations 11) in- 
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eluding all 2hw excitations have failed to explain the O+ state at 6.06 MeV. It has 

been suggested 12) that these states are of a 4p-4h kind. The initial choice of p for 

this case is 

if InX~Ylt,) = lOOO>, 1002), lOOl>, 1010). Four particles are lifted from the state 

1100) to 1002). The results are shown in table 8 and fig. 4. One significant result is 

that the lowest single-particle level has gone up by 8 MeV from the I60 ground state 

solution. In previous calculations 22), these four particles were assumed to be inert. 

The energy of the 4p-4h state is 27 MeV above the ground state which is much too 

high to explain the 6.06 MeV state. This is most probably due to the simplified nature 

of the interaction used in the present calculation. A repulsion in relative odd states 

plays an important role in this case 2 3). 

7. Conclusion 

The main conclusion of the present calculations is that the HF method is well 

suited for nuclear calculations. Even with a very simple two-nucleon interaction, 

the salient features of nuclei are well reproduced. With a more sophisticated inter- 

action, one can hope to use the HF method and in the case of deformed nuclei a 

calculation of the spectra can be made using projection techniques ‘“) which have 

been applied recently for light nuclei. 

The author would like to thank Dr. T. Engeland for reading the manuscript and 

for several helpful comments. I also thank Drs. N. Sherman and K. T. Hecht for 

several helpful comments. Conversations with Dr. M. Baranger of Carnegie Institute 

of Technology have also contributed very much to the present work. 

Appendix 1 

In this section we shall describe the transformation of a product wave function of 

two particles to relative and centre-of-mass coordinates. The wave functions are one- 

dimensional harmonic oscillator functions. The one-dimensional harmonic oscillator 

wave function can be written in terms of the raising and lowering operators 25) 

(rt and q) of oscillator quanta. The two-particle wave function can be written as 

where 

rT = (2mho)-*(pi + imoq,), 

q:. = (2mhc0)-*(p2 + imoq,). 
(A.11 

The momentum and coordinate are denoted by p and q, respectively. In eq. (A.l) 
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let us set h = 1 and mw/h = b, and we obtain 

yl: = p1 +i&q,, 
hb 

ffi = Pz + iJGq, . 
&b 

Let us define the centre-of-mass and relative raising operators to be, respectively, 

r+ = (r:+?d)/J2, 

?+ = (4 -1W2. 
The operator 

ii+ = Pl+Pz 

j2(2h) 
+ iJH2b)Hqr + 4. 

Thus $ creates a quanta with oscillator parameter 2b in the state of momentum 

p1 +p2 and coordinate $(qr +q2). The relative coordinate operator 

?t = (PI-Pz) 

2Jb 
+3iv;& -q*). 

The operator yt creates a quanta with oscillator parameter +b in the state of mo- 

mentum *(pi -pJ and coordinate q1 - q2. Thus if the centre-of-mass and relative 

coordinates are defined as 

Qm = 3h+qd, 
Qrel = h-d 

the oscillator parameter for the relative and centre-of-mass wave functions are modi- 

fied as shown above. 

Now the wave function in the relative and centre-of-mass coordinates is 

InN) = (A.4 

Eq. (A.2) can also be written as 

InW = c <n,n,lWln,nJ. (A-3) 
n,+nz=n+N 

The condition n1 + n2 = n + N is necessary for energy conservation. The wave function 

eq. (A.2) can also be written as 
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Comparing eqs. (A.3) and eq. (A.4), we obtain 

435 

N!n!(-lyk 

(I+k)!k!(tl-n,+k)!(fZ,-k)!’ 

The summation over k goes over positive values for which the factorials are defined. 

1) 

2) 

3) 

4) 

5) 
6) 
7) 
8) 
9) 

10) 
11) 
12) 
13) 
14) 
15) 
16) 
17) 
18) 
19) 
20) 
21) 
22) 
23) 

24) 
25) 
26) 
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