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ABSTRACT: Minimum energy problems in Hilbert function spare are formdated. The methoda 
presented are applicable to both continuous and discrete linear systems. Transformation of a 
particular operator equation into a set of 2n linear differential equatim is described. Ap- 
plications to physical systems are illustrated. 

Introduction 

The term “minimum energy” is derived from the fa& that many physical 
problems involving energy can be formulated such that the signals u(t) involved 
are considered as elements in a Hilbert function space of functions of t with the 
energy of the signal being 

[I u 112 = (u, u) = / 1 u(t) 12dt. (1) 

In a fairly obvious manner this concept may be generalized to the case such that 
the energy of signals may be described by 

II u IK, + II Fu Ilk (2) 

where the input signal u E Hl and the output signal x E Hz are related by 
x = Fu E Hz. 

The methods presented here are strongly motivated by and closely related 
to the previous work of Balakrishnan (1) and Porter (2). It is the purpose of 
this paper to generalize the concept of minimum energy problems from the 
functional analysis view of point with emphasis on both mathematica1 theories 
and physical applications. 

Statement of Problem 

Let H, and Hz be two Hilbert function spaces and F be a transfer operator 
canying H1 into Hz. Let Ft be a bounded linear operator of H1 into Rn and is 
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defined by 

Ft = ik Mt) >( ft, (3) 
i-1 

where the set of range vectors, (@ij;, and the set of functionals, {(fit};, are 
assumed to be linearly independent. If z(t) is an arbitrary element of Rn and 
ti and S are arbitrary elements of H1 and HZ, respectively, from the set U, C H, 
deílned by 

U, = {u:u E Hl, Ftu = z(t) ) (4) 

find the element u which minimizes the functional J(u) where 

J(u) = II u II;, (5) 

J(u) = II F~A 118, + II u Ik, (6) 
J(u) = II Fu - 2 11;s + II u - d lik,. (7) 

Remarks: 

1) The phrase “Hilbert function space” is defined over a finite interval 
7 = [tO, T] of reals, or u = [to, tl* - - t,] to be &(7), or k(a), respectively. 

2) 2% is the value of Fu at a point when the time is equal to t and Fu is 
the unique continuous image of u under F. 

Definitions and Theorems 

In order to deal more concisely with the concept of generalized minimum 
energy problems the results of the solutions are summarized in the following 
theorems : 

Theorem I. 

Let M denote the linear manifold spanned by the set ( fit):, then MA, the 
orthogonal complement of M in Hl, is the nul1 space of Ft and the restriction of 
the operator F’ to M is nonsingular. 

Proof: 

Let Np: denote the nul1 space of Ft. If u E MA then ( fi”, u) = 0, i = 1. * en 
and hence Ftu = 0 which implies that u E NFt hence ML C NF”. On the other 
hand if u E Np: then 

F% = 2 &)( fi”, u) = o 
61 

and since the set { &)y is linearly independent (fit, U) = 0, i = 1, . - -, n, which 
implies that u E MI hence ML > Ni+’ and the first part of Theorem 1 is proved. 
Let FM denote the restriction of Ft to the subspace M that FM is nonsingular 
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(3) is immediate from the fact that FM is a linear mapping between finite- 
dimensional spaces with a domain and range of equal dimensions. 

Theorem II. 

The set U, has a unique element in M which is exactly uo, the solution of the 
problem for the minimization of the functional given by Eq. 5. 

Proof: 

Since FM is nonsingular FM-’ exists and the element deíined by u = F~-lx 
is the unique preimage of x in M. Since M is finite dimensional it is closed and 
we may consider the orthogonsl decomposition Hl = M + MA of Hl. Let uo 
denote an arbitrary element of Hl which may then be uniquely expressed as 

UO = Ul + u2, (8) 

where ~1 E M and 14. E ML. Since MA is the nul1 space of Ft the additional 
relation 

z(t) = FW = F’(ui + uz) = Ftul + Fk.2 = Ftul + 0 

holds. Since u1 is a preimage of x(t) in M it is unique and given by 

From the relation 
UI = FM-*x. (9) 

it is apparent that 
II uo 112 = 11 FM% Ij2 + 11 ~2 112 (10) 

Ij uo 11” 2 I/ Fn9-4 112 (11) 

holds for every other uo E Hl with equality if and only if uo = F~--lx and hence 
the theorem is proved. 

Let z(t) E Rn be a given arbitrary vector and take the set ( fit); as a basis 
for M. Then uo may be expressed by 

7J = 2 cifit 
61 

where c; is a scalar quantity to be determined. It can be shown (2) thet 

c = LF-$3, 

where 5-1 is the inverse matrix of 5 which is defined by 

5 = C(fi",.fi'>l, 

P = col. (al- - *Pn), Bi = <9%+, x>, 
c = col. (Cl. ..c,). 

(13) 

(14) 

05) 
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Thus 
JO = 11 U0 llH12 = (P, 5-‘P). (16) 

Theorem III. 

The element uo which minimizes the functional Eq. 6 is given by 

uo = (1 + F*F) -121, II E M. 

From the operation of adjoint operator Eq. 6 may be rewritten as follows: 

J(u) = ((1 + F*F)u, ULIl. (17) 

Since I + F*F is a positive operator it can be expressed as the product of an 
operator K and its adjoint operator K*, i.e., 

I + F*F = K*K, where K-’ exists. (18) 

From Eqs. 17 and 18, we obtain 

J(u) = (KzL, Ku)H*. (19) 

Let w = Ku E Hz and let Gt denote the linear transformation of Hz onto Rn 
with the property that 

and 
Gtw = F”u = x(t) (20) 

i-1 
(21) 

It is clear that Gt is linear and well defined on HS. Thus, if x(t) E Rn and if 
w E Hz is the element with minimum norm mapping into x(t) under Gt then 
u = K-90 is the u E Hl which minimizes 

J(u) = II Fu llh + II u Ik,. 

While doing so the problem of minimization of the functional Eq. 6 reduces to 
the problem of minimization of Eq. 5 with 

being the operator in question. 

Proof of Theorem 111: 

Let & denote the linear manifold spanned by the set {si);. By applying 
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Theorems 1 and 11 the element wo with minimum norm is given by 

where ci is a constant to be determined. 
From Eqs. 3, 20 and 21, we obtain 

G”w = 2 Mg i”, w> = c &>(K*gt, u) = 2: &)( ji”, u). (23) 
i=l 6-1 i=l 

Since the set (&)y is linearly independent and u = 0 is a trivial solution it 
follows from Eq. 23 that 

fit = K*gil. 

From Eqs. 22 and 24, there results 

Thus 

K*w’ = 2 Cc ji”. 
i-1 

(25) 

or 
K*KuO = ZJ, 

Lemma 1. 

UO = (1 + F*F) -la, 

vEM (26) 

v E M. (27) 

If F is a linear transformation of H1 into Hz then I + F*F is nonsingular. 

Proof: 

We must show that 
itself. 

I + F*F is one to one onto as a mapping of Hl into 

(i) It is one to one, because (1 + F*F)u = 0, u E Hl, implies that (4) 

0 = (V+ F*F)u, U)H~ 
= (u, uk1 + {F*Fu, u).Y~ 
= (u, uk + (Fu, Fu)H~ 
= II ZJ Ik + II Fu Ilk (5) CW 

from which we have u = 0. 
(ii) We next show that the range R of I + F*F is close. It follows from 

that 
ll (1 + F*F)u ll& = II u Ik, + II F*Fu Ik + 2@‘*Fu, uk 

II U + F*F)u 11~1 2 ll u lh cw 

since F*F is positive. By this inequality and the completeness of Hl, R is com- 
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plete and therefore closed. We conclude the proof that R = Hl; for otherwise 
there would exist a nonzero vector uo orthogonal to R and this contradicts the 
fact that 

((1 + F*P)uo, UO)H1 = 0 * 11 uo ij;1 = -(F*Fuo, UO)Hl<O* uo = 0. (30) 

Dejinition: 

Let F be a linear mapping of Hl into Hz. The set H(F) defined by H(F) = 
{ (u, u) :v = Pu, u E Hl) is called the graph of F. The graph of a transformation 
is thus the subset of 

HI X Hz = {(u,v):u E HI,V E Hz) (31) 

for which the ordinate v is related the abscissa u by v = Fu. The basic properties 
pertinent to the present undertaking are summarized by the following lemmas: 

Lemma 2. 

If addition and scalar multiplication are defined on the set H(F) by 

k( f, 9) = M kJ) 
( fl, Sl) + (f2, 92) = ( fl + f2, g1 + 92) 

(32) 

(33) 

then H(F) is a linear space. 

Lemma 3. 

If Hl and H2 are Hilbert spaces and an inner product on H(F) is defined by 

(( fl, Sl>, (f2, 92) >ffV> = (fl, fdH1 + bl, g2Lf2 (34) 

then H(F) is a Hilbert space. 

Lemma 4. 

If F is bounded then H(F) is a closed linear subspace of H, X Hz. 
The above lemmas wil1 be proved in Appendix A. 

Theorem IV. 

If (4, 5) E H(F) then the element uo which minimizes the functional Eq. 7 
is satisíled by 

(1 + F*F) (d’ - U) = v, v E M. (35) 

Proof: 

Since (ti, 2) E H(F) 
5 = FzZ. 
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Let u - z2 = U. Then the functional Eq. 7 may be written as 

(37) 

It follows directly from Theorem 111 that 

(1 + F*F)ü = v, v E M. 

Theorem V. 

If (û, 2) t Hl X Hz then the element uo which minimizes the functional 
Eq. 7 is given by 

uo = (1 + F*F)-l(v + û + F*2), v E M. (38) 

Since H(F) is a closed linear subspace of Hl X Hz it follows that the 
decomposition 

HI X Hz = H(F) + H(F)A (39) 

may be defined along with the orthogonal projection PH of Hl X Hz on H(F). 
Let (U, 2) be defined by 

(U, 2) = Pa(d, q, (40) 

then (u, 5) is in H(F) and (~2, 2) - (9, 2) E H(F)A and the 

II Fu - 2 IEL + II u - fz IL 

= IIFu - 25 IIB, + II 24 - 6 IIH1 + 112 - z lIHs + 11 ü - a IIH1 (41) 

holds for al1 u E H,. The last t&o terms are independent of u and hence it is 
apparent that Theorem V reduces to the case of Theorem IV by taking the pro- 
jection of (z2,Z) on the graph of F. 

Let the operator V of the Hilbert space H1 X Hz be defined by the relation 

V(% v> = (-v, UI, (u, v) E Hl X Hz. (42) 

It can be proved (see Appendix B) that the orthogonal complement of H(F) 
in Hl X Hz is given by 

H(F)r = VH(F*). (43) 

A consequente of this result is that the orthogonal decomposition of Hl X Hz 
on H(F) is given explicitly by the formula (6) 

Hl X Hz = H(F) + VH(F*). (44) 
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This formule wil1 prove useful in defining the orthogonal projection of Hl X Hz 
on H(F). 

Let (8, 2) E Hl X HZ denote an arbitrary vector. Then in view of Eq. 44 
a unique decomposition exists of the form 

(4 2) = u, Fü) + V(Ul, F*ul) 
= (u, Fü) + (-F*ul, UI) 
= (u - F*ul, Fü + UI). (45) 

This equality implies the two equalities 

and 
û = u - F*ul 

U = Fü + ul. (46) 

Operating on the second equation with F* and using the result to eliminate F*ul 
in the first equation produces the result 

ti = (1 + F*F)-l(d + F*5). (47) 

Replacing û in Eq. 35 by ü expressed in Eq. 47 gives 

or 

(I + F*F)[uO - (1 + F*F)-‘(d + F*?)] = v, v E M. (48) 

uo = (1 + F*F)-‘(v + 21 + F*2), v E M. (49) 

A Method of &aluatìng the Optimal Element uo without Inversion of 
Operator 

It was shown that the optimal element uo which minimizes the functional 
Eq. 7 is given by Eq. 49. Therefore, the evaluation of uo involves the inversion 
of (1 + F*F). However, there is a simple method of finding the element uo 
which avoids the inversion of the operator (1 + F*F) if the operator Ft is 
defined by (7) 

Ftu = wt, to)B(s)u(s) ds, (59) 

which is a bounded linear operator and is well known to be the solution of the 
system equation as given by 

z(t) = z(t)A(t) + B(th(t), z(t0) = 0. (51) 

This method is carried out by transforming the operator Eq. 49 into 2n linear 
differential equations. 
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Since v E M bas a unique expansion in terms of any basis for that space. In 
the present instance the rows of matrix +(t,,, t) B(t) provide a convenient basis. 
By introducing the scalar c = col. (cl, ~2.. *c,) we may write 

v(t) = B*(t)o*(t,, t)c (52) 

as a defining relation for an arbitrary v E M. Along the optimal trajectory 
x = Fu” Eq. 49 may be written as 

uo = a + v + F*(2 - 2). (53) 

It is not diflkult to show (see Appendix C) that 

(F5) (t) = B*(t)@*(to, t) JT @*(s, t&(s) ds (54) 
t 

for t E T = [.$,, T] is the defining equation for F* as t sweeps t,hrough 7. Letting 
a(t) denote the tuplet 

I 

T 

a(t) =c- @*(s, to)[z(s) - S(s)] ds 
t 

cc- /‘@*Cs, to)[x(s) - 2(s)lds + lt @*(s,to)[x(s) 
t0 :0 

/ 

t 
= a@o) + +*(s, @[z(s) - 2(s)] ds. 

t0 

2(s)] ds 

(55) 

It is apparent that Eq. 53 may be written in the form 

uo - a = B*(t)+*(to, t)a(t). (56) 

Consider now the vector X(t) = 9* ( to, t) a (t) . Using the property that 9* ( tot t) = 
q(t, to), where q (t, t,,) is the transition matrix for the adjoint system 

@t, to) = -A*(t)*(t, hl), *(to,to) =I (57) 

(r is the identity matrix), it is apparent from Eq. 55 that 

X(t) = 9*(to, t)a(to) + 9*(to, t) /’ @*(s, @[z(s) - 2(s)] ds 
t0 

= Wt,toMto) + *(t,to) /'Wo,s)bb) - a(s)lds 
t0 

(58) 
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which implies immediately that X(t) is the solution to the differential system 

h(t) = -A*(t)X(t) + [z(t) - z(t)], x(t,) = xo. (59) 

The original differential system for this example along the optimal trajectory 
is given by 

a(t) = /l(t)z(t) + B(t)uO(t) 
= A(t)40 + B(t)CB*(0X(t) + dl. 

Thus, we have the 2n linear differential equations 

(66) 

and 

5(t) = A(i)z(t) + B(t)[B*(t)X(t) + al, z(to) = 20 

x(t) = z(t) - 5(t) - A*(t)X(t), x(to) = xo, 

the solution that determines A(t), which in turn determines u”(t) by 

(61) 

u”(t) = B*(QX(t) + 22. (62) 

One important point to be noted is that XO is unknown. Indeed, Xo is a function 
of c which we originally set out to determine. The solution of these equations 
may be expressed in terms of the transition matrix 0(t, to) which is defined by 

&)(t, to) = [!~!)_~!?!Yf;;!~ e(t, to) 

with 
e(h, &l) = 1. (63) 

The transition matrix has 2n rows and 2n columns. It can be partitioned into 
four n X n submatrices 

Solution to the system Eq. 61 thus can be expressed by 

[ 

xw 1 i e11ct, tol @12(4 tol 

II 

x (tol L [ Ql ( 4 tol 
= + 

X(t) e2dt, ho> e2dt, tol x ctol qz(t, tol 
where 

(‘33) 

(65) 
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In particular we have 

Thus, if z (7’) and z (&,) are known this expression determines x (i!,,) . If 2 (to) = 0 
and O12(t, to) is nonsingular then 

This gives 

X(hJ) = e12-l(T, to)C~~~) - Ql(T, Ql. (67) 

q = e22(t, to)e12(T, to)-lC~(T) - dT, t0)l + ~2% td. (f-338) 

Substituting Eq. 68 into Eq. 56 gives 

u”(t) = B*(t) (e,,(t, to)012(T, to)-‘Cz(T) - p1(T, tol1 + qz(t, tol 1 + CQ* (69) 

Physical Applicatìons 

Example I. 

Consider the continuous second-order position control servomechanism 
shown in Fig. 1 where the gain, mass, and viscous damping which, in general, are 

FIG. 1. Second-order position control servomechanism. 

deterministic differentiable functions of time are assumed to be constant. The 
motor armature inductance and backlash of the gear are neglected. Now, by 
fixing $ the following basic equations describe this system: 

ei = Ae, = Akr(6i - 0,) = Ri + klëo 

T = k2i = Jëc, + j&, 

Op = k&, 

(70) 

(71) 

(72) 
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where A = gain of ampliíler 
kl = motor constant 

T, k2 = developed torque, torque constant 
ka = gear ratio 
kr = proportionality constant of potentiometers 
+ = air gap flux of motor 

R = resistance of armature circuit of servomotor M 
Rr, LI = resistance, inductance of motor field circuit 

J, j = inertia, viscous damping referred to motor shaft 

It is desired to find ei(t) such that 

&J(io) = 00, Bo(t0) = 40, 6,(T) = &> do(T) 

and 

J = [: ~9? dt has a minimum value. 

From Eqs. 70 and 71 we have 

or 

where 

$ + Ak4k3e0 = Ahei 

do + ~4~ + do = dei 

(73) 

(74) 

(75) 

Akzkakr 
ao =- 

JR 

d = Akzkr +R . 
c ) 

Let x1(t) = eo(t), a(t) = &(t) and u(t) = ei(t). Then in matrix notation Eq. 
75 may be written as 

where 
2(t) = Az(t) + h(t) (76) 

A=[_l _lj and B=[:]. (77) 
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The transition matrix @(t, to) of the system, Eq. ‘76, is given by 

where 

h(t, to) dJl2@, to> 

act, hl) = 

421ct, kJ 422(& to> 1 
+ll(t, to) = cl exp [-b(t - @Isin Cdt - to) 4 hl 
412(t,Q = sexp[-b(t - t0)lsin [w(t - Ml 
hI(t, t) = caexpC--b(t - to)lshCw(t - to)l 
&(t,Q = c4exp [-b(t - h)lsin Cw(t - t0) + $21 

(b2 + w2)1'2 
Cl = 

w ’ 

ca=-1 ao al - b)2 + w2]"2 

w ’ 
ca=-, c4 = [( 

W W 

w = (Q - b2)‘/2) q, $1 = tan-l JL 
( > -b ’ 

and 

*2 = tan-’ -% 
( > al-b . 

In this example we take the columns of the state transition matrix cP(t, tO) as 
41(t) and b(t) and the vectors fi (t) and fi (t) as the rows of the matrix @ ( to, t) B. 
We consider the control function u(t) as the element in the Hilbert function 
space H1 = L,(7). It is not diEcult to show that (2, 8) 

where 

P = Q?(QT)C4V - @(T,O)dt)l 

/ 

T 
5= @(to)s)BB*9*(Qs) ds 

t0 

fll fn 

= 

[ hl f22 

hl = IT d2+122(t0, SI UT.3 

t0 

f12 = /’ d2+12(to, 8) 422(to, s> ds 

to 

f21 = j-; d2& (to, 8) 412 (to, s> ds 

f22 = lT d2b2(to, sIds. 

te 
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The optimal control function uo (t) or 8P (t) is given by 

u”(t) = B*‘<P*(t@ t)5-‘j3 

d 

= ( fllf22 - fl2f21) 
(dl fi2412 - d2 fl2~12 - 4 f21422 + d2 f11422) 

and the optimal performance index is 

Jo = @, Vj3) 

= ( f f ’ f f > (d12fiz - dldzfiz - dldzfa + dz2fil). 
11 22 - 12 21 

Given specific values of these constants J, f, R, A, hl, k2, ka and kq we can 
compute P(t) and Jo. This method is applicable to high order systems, only the 
size of the related transition matrix increases. 

Example II. 

Given a plant whose dynamic characteristic is defined by 

k(t) = A(t)x(t) + B(Ou(t), t E 7 = [to, T] (78) 

and the reference trajectory 2(t). Find the control function u such that z(t) 
transfers from z(to) = 0 to z (2’) = ZT, and 

J(u) = lT i[(x - 2),(x - S>l + Cu, ~11 ds (79) 
t0 

is minimized. 
We may reformulate the above problem as follows: Given 2 E Hl and 

z(t) E Rn and let F’, defined by Eq. 50, be the transformation from Hl = 
[L2(7)]” onto Rn to find the element u E Hl such that 

is minimized. 
For the present case a = 0 and (Z, 0) is a tuplet of Hl X Hz. The relation 

Fx = u does not hold. Theorem V, therefore, is applied. The element u0 is given 
by Eq. 38 or, after transformation, Eq. 69. 

Conclusion 

Minimum energy problems in Hilbert function space for three types of 
index of performance have been formulated. A method of evaluating the optimal 
element uo without the inverse of the operator (1 + F*F) bas been studied. 

These methods are applicable to both continuous and discrete linear systems. 
In the continuous case we consider H = [L2(r)Im, t E r = [to, T] and in the 
discrete case, H = [&(o)lm, u = [to, tl, - - - tf]. Two examples of continuous 
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linear systems have been chosen for the purpose of illustration. Discrete lmear 
systems can be similarly described. 

Appendix A 

A Proof of Lemmas 2, 3, and 4. Lemma 2 follows directly from the definition. 
To prove Lemma 3 we note that the function 

((fi, 911, (fi,!&) hr(F) = (fi,fdHl + (SI> Qhe 

is an inner product on H(P) as is easily shown. For instance, if w1 = ( fi, g,) 
and w2 = ( fi, 92) then 

(Wl, WZ)H(F) = (fi,f2)H1 + (91>$72hf* = (f2,fihY1 + (82, f7dHn 

= b2, Wl)H(F) 

where w denotes the complex conjugate of w. Thus, it remains only to show that 
H(F) is complete in order to prove that H(F) is a Hilbert space. Let (w, = 
( f,,, g,,) ) denote a Cauchy sequence in H(F) then for arbitrary e there exists N 
such that 

Clearly, this implies both 

Ilfm -fn IIL < el and II grn - Sn I IL < e2, 
el + e2 = e, for m, n > N. 

Since HI and Hz are both complete the sequence fn and g,, both converge to 
points f and g of those spaces. Since gn = Ffn for al1 n it follows that g = Ff 
and hence the element w which is the limit of the sequence {w,} is given by 
w = ( f, g) E H(F) and hence H(F) is complete. 

To prove Lemma 4, let (ul, Ful) , (u2, Fu2) - - - be the sequence of points of 
H(F). Since F is a bounded linear operator this implies that F is continuous, 
therefore 

Fun+Fu as u,,-+u. 

This leads to 

lim (‘G, Fu,) = (u, Fu) E H(F) c Hl x Hz, 
n-rco 

We must show that H(F) is closed or equivalently that its complement> 
denoted by H(F)“, is open. If H(F)” is not open then there must be a point 
(c, FC) E H(F)” such that for each neighborhood N of (c, FC) 
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In particular, the sphere S( (c, FC), l/n) a H(F) c for n = 1, 2, 3, - - -. Thus, 
there is a sequence of points (ul, pul), (uz, &) - - - such that 

(u,, Fu,,) E H(F) and lim (u,, Fu,) = (c, FC) E H(F) 
n+m 

which contradicts to the assumption that (c, FC) E H(F) c. Therefore, H(F) c is 
open and H(F) is closed. 

Appendix B 

A Proof of H(F) A = VH (F*) . Let (z, y) be an arbitrary element of H (F) *, 
then for evexy u E Hl 

0 = (65 Y>, cu, Fu) hl(F) = lx, ubIl+ (Y, FU)Ha 
= (x, U)H~ + (F*y, U)H~ = (x + F*Y, U)H~ (B-1) 

which implies 2 = -F*y or that (x, y) is of the form 

(2, Y) = ( -F*Y, Y) = V(Y, F*Y). 03-2) 

Thus, (2, y) E VH (F*) and hence H(F) A C VH (F*) . Conversely, if (2, y) E 
VH(F*) then 

(2, y) = V(Y, F*Y) = ( -F*Y, y>. 

Por any (u, Fu) , however, we have (u, Fu) I ( - F*y, y) since 

(cu, Pu), ( -F*Y, Y> )H(F) = b, -F*Y)R, + (FT Y)H, 
= - Pu, Y)H~ + Pu, Y hz = 0. 

Hence, ( -F*y, y) E H(F) I which implies VH (F*) C H(F) *, and the lemma 
is proved. 

Appendix C 

A proof of Eq. 54. From the definition of adjoint operator we have 

In particular, if 

(x, FY)H~ = (F*x, Y)HZ. 

Hl = Hz = k(r) then (2, FY)L~ = Wc, YY)L~. (CJ-1) 

In real space L~(to, T) the inner product of two elements u and v is defined by 

(u, v)~e = /'[u,v] ds. 
t0 
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Thus 

(? F~/)Ls = /’ [b), @(SI, to) /” @(to, sz)B(sz)y(s,) d,] ds, 
10 to 
T 

JI 

*L1 

= Y*(sz)B*(sz)**(to, SZ)+*(SI, to)s(si) ds& 
$0 t0 
T T 

= 
// Y* (S2)B*(s2) **(te ~2) @'*(SI, to)s(sd dsldsz 

10 w. 

<I 

T 

B*(4’3*(k3, SZ)@*(SI, to)z(sd dsl, y(s2) 
> 

. 
82 LZ 

From (C-1) and (C-2) we have 

(F*x) (~2) = /’ B*(sz)@*(to, SZ)@*(S~, to)z(sl) ds, 
w 

cc-2) 

or 

(F*x) (t) = B*(t)@*(to, t) JT @*(s, to)z(s) ds. 
t 
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