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ABSTRACT 

Mathematical models of the renal cortex and medulla are developed. The glom- 

erular filtration rate is treated as an input parameter. The differential equations 

for transfer of water and solutes are developed under the assumption that the primary 

driving forces are the osmotic effect of the plasma proteins and the active transport 

of one solute across the walls of the nephric tubules. The system of simultaneous 

ordinary differential equations obtained for the stationary state for constant inputs 

in the medulla present a multiple-point boundary-value problem of some complexity. 

In the course of developing the model a number of problems were unearthed. 

First, it became apparent that the commonly accepted countercurrent exchange 

model for the medullary capillaries is not supported by anatomical studies and that 

a distributed capillary bed model might give a truer picture. Second, it became 

obvious that the information available on the sodium pump is as yet insufficient 

to let us decide unambiguously whether the pump is reversible or irreversible. 

* This work was supported in part by grant GM 892 from the National Institutes 

of Health. 
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Qur present knowledge of renal structure and function is well reviewed 

in the text by Bitts [l?‘J. I[n brief, the currently accepted picture of 

the way rhe kidney functions is as follows. Approximately 80% of the 
glomerular filtrate is reabsorbed in the proximal tubules in an ess‘entially 

isosmotic manner. Since practically all of the proximal tubules are in 

the corte:rt, this may be viewed as a cortical function. Concentration of 

the urine occurs in the medulla. Two hypotheses dominate our present 
view of m:dullary function. One is that the WenZe loop acts as a counter- 
current multiplier by actively pumping sodium ions out of the ascending 

limb. The other and independent hypothesis is that the medullary 
capillaries are also arranged in a hairpin configuration, like the loops 
of PI :nie, and act as countercurrent exchangers. The evidence supporting 
the first of these hypotheses is strong; that supporting the second is 
weak, and in fact recent anatomical studies suggest that the medullary 
capillaries are got arranged in the hairpin configuration [la, 181. 

It would be most useful, in our thinking and speculation about renal 
function, to have available a mathematical model of the whole kidney 
that incorporates the major features of renal structure and the major 
hypotheses of renal function. Many models of particular features of renal 
structure and function have been proposed [14, 12, 13, 16, 23, 241. 
In all of these only ;a portion of the kidney, for example the proximal 
tubules or Wenle’s loop, is modeled. The model of the medulla of Pinter 
and ‘ihohet [16] appears to be unrealistic to us because it neglects water 
movtcment:s. A complete model with both cortex and medulla is needed. 
St:;!1 a mctiel should incorporate only the major features of renal struc- 
ture ;itnd should be capable of showing the typical response of the mam- 
malian kidlney in water deprivation, water diuresis, and osmotic diuresis. 

In this paper we attempt to formulate such a model and we discuss 
in some detail the reasons for including various features in the model. 

FORil~ULATION OF MODEL: ANI~TOMIICAL AND PHYSIOLOGICAL CONSIDERATIONS 

Although structurally there is a small transition zone between the 
cortex and medulia, for the most part the cortex and medulla are separa.te 
and distinctively different in structure; we neglect the transition zone 
and assume that the cortex and medulla are separated by a sharp bound- 
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ary. Although Henle’s loop as commonly described in anatomical texts 

includes portions of both proximal and distal tubules, it is more conven- 

ient to treat it as a distinct unit. Hence for the purposes aIf this paper 

we consider the nephric tubules to consist of three portions, proximal 

tubule, Henle’s loop, and distal tubule. We include the proximal and 

distal tubules of the juxtamedullary nephrons in the model of the cortex, 

and assume that the strictly cortical nephrons consist primarily of prox- 

imal and distal tubules with a small Henle’s section. 

The ccwtex 

The basic assumptions used to derive a model of the cortex follow. 

Assuqbtion 1. Flow in the tubules and capillaries is a lbulk displace- 

ment flow with uniform mixing in a direction perpendicular to the axes 

of these tubes. In effect we assume a uniform fluid velocity at any cross 

section in one of the tubes and an average concentration for a solute 

at any fixed distance along a tubule or capillary. This is a reasonable 

approximation because the capillaries and nephrons have very small 

diameter-to-length ratios. This assumption has been used by Bergmann 

and Dikstein [l], Burgen [2], Dole [3], Kelman [12], Kuhn and Ramel 

[13], Wesson [24], and Pinter and Shohet [lG]. We further assume that 

volume changes are entirely attributable to the water movements. 

Assamfition 2. We assume uniform ;;,ld rapid mixing of the inter- 

stitial fluid of the cortex. In effect we assume that there are no significant 

concentration gmdients in the interstitial fluid and that we can use a 

mean concentration of any solute in the interstitial fluid in our equations. 

The fact that there is no structural orientation in the cortex favors this 

assumption. The close juxtaposition of different elements in the cortex 

also provides support for this assumption since a small portion of inter- 

stitial fluid may contact portions of proximal tubules, distal tubules, 

and the capillary network. Furthermore the capillary net from one 

glomerulus anastomoses freely with those from neighboring nephrons. 

Physiological evidence in support of this assumption is provided by 

observations mentioned by Pitts ([17], page 102). If inulin and labeled 

sulfate are injected into the renal artery, sulfate appears in the urine 

before inulin does. Inulin does not cross the wall of the nephron but 

sulfate does, hence this observation provides some evidence for down- 
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stream transfer of sulfate through the interstitial fluid. Wesson [24] 
used this assumption in his treatment of urea excretion. 

Assamy!&n 3. We neglect the thin segment of Henle’s loop for the 

cortical nephrons but allow for a short thick segment. These are reasonable 

assumptions because the cortical nephrons have rather small loops of 
Henle and many have no thin segments. The thin segments and distinctive 
hairpin arrangement are a unique structural feature of the medulla and 
come primarily from the juxtamedullary glomeruli. 

Assun.q!hw 4. The proximal and distal tubules of the juxtamedullary 
glomeruii are included in the cortex. This seems reasonable since the 

medulla consists almost entirely of Henle’s loops, collecting tubules, and 
blood vessels. We include the capillary networks of the proximal and 
distal tubules of the juxtamedullary nephrons with the cortical capillary 
beds and treat the medullary capillary networks as separate and restricted 
to the medulla. 

Assumption 5. The functioning of the cortex should be represented 
as a summation of effects contributed by each of the cortical nephrons 
and capillaries. We replace the approximately 1.05 - 106 cortical nephrons 

$9 ii 

FIG. ‘1. Schematic of model of cortex: 0. interstitial fluid; 1, cortical capillary bed; 
2, cortical nephrons; 4, ‘7. proximal and distal tubules of juxtamedullary glomeruli. 

[l’?] by one lumped tubule of length equal to the average length of these 
tubules and with total surface arca and cross-sectional area per unit length 
equal. to that of the sum for these tubules. The cortical capillary beds are 
similarly lumped. This assumption has been used in many previous 
treatments [3, 23, 241. For the stationary state @de in/m), we assume 
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that the cross-sectional area and surface area per unit length are constant 
along the capillary bed and for the proximal and distal tubules separately. 

The model of the cortex that has just been outlined is summarized 
schematically in Fig. 1. 

Because of the unique structural arrangements in the medulla some 
of the assumptions made for the cortex do not hold. The collecting 
ducts and Henle’s loops run parallel to one another in the medulla. We 
refer to the direction parallel to these tubes as the longitudinal axis of 
the medulla. The basic assumptions are again presented. 

Asswwption I. Although the loops of Henle are not all of the same 
length, we assume that they are and use one lumped model for all of the 
descending limbs and another for all of the ascending limbs. We use 
the commonly accepted hypothesis that active transport is restricted to 
the ascending limb; however, the model can be modified to include active 
transport in the descending limb of Henle’s loop if necessary. 

Assumption 2. The collecting tubules are assumed to begin at the 
medullary boundary and to be of the same length as the limbs of the 
loop of Henle. 

Asswnption 3. As for the cortical model, we assume bulk displacement 
flow (plug flow) in each tubule and uniform concentration of any solute 
inside a tube throughout a cross section at any distance along the length 
of each tubule. 

AssumPtiotr 4. The interstitial fluid of the medulla is assumed uniformly 
mixed only in a direction perpendicu!ar to the longitudinal axis. The 
interstitial fluid may be viewed as contained in another impermeable 
tubule running in the direction of the longitudinal axis, a tubule that 
contains all the other tubules and capillaries and with which all the 
other tubules interchange solutes and water. So as not to prejudge the 
issue, we include the possibility of a longitudinal flow of interstitial 
fluid in the model. 

Assuvq%ion 5. There is some doubt about the structure of the medullary 
capillary beds. At least two models are possible and we will examine both. 

Mat2ematicaE Biosciemes 1, 227-261 (1965) 



232 JOI-IEU’ A. JACQUEZ, BRICE CAHNAHAK, AND PETE3 ABBRECHT 

The picture commonly presented in the textbooks [17] is that the blood 

vessels form hairpin ,100~s similar in shape to Henle’s loop and act as 

countercurrent exchangers. M’e refer to this as the cozcntercwent exchange 
plodel of the medulla. However, there is now anatomical evidence for 

L qui+ different arrangement. Plakke and Pfeiffer [18] report that, 
0 , . .the va~a recta arise in leashes from the efferent arterioles of the jux- 

tamedullary glomeruli and descend, many as unbranched vessels, in 

parallel bundles to break up into capillary plexuses at different levels 

of the meldulla.” They further report that the capillary plexuses are 

most dense in the outer zone of the medulla, adjacent to the cortex, 

and that this zonation appears to be correlated with the ability to form 

a concentrated urine. In the model based on this picture we assume that 

the vasa recta are nonexchanging conduits and lump the capillary plexuses 

as a set of capillaries that run perpendicular to the longitudinal axis of 

the medulla and are distributed at different levels with mosr lying in the 

outer zone. Because we have assumed complete mixing in the interstitial 

fluid at any distance down the longitudinal axis, capillaries at one level 

are all bathed by interstitial fluid of constant composition. We call this 

model the distributed capillary bed model of the medulla. Schematic 

diagrams of these two models are shown in Figs. 2 and 3. 

In the model we consider only three solutes. One, M, is actively trans- 

ported across the walls of the tubules of the nephrons; the other two, 

s and u’, are not actively transported. One of these, x, may be thought 

of as urea; the other, ZU, will be needed when we consider osmotic diuresis. 

Although zt may be thought of as sodium, we treat ZI as a nonionic solute. 

Including the ionic nature of the transported solute would make this 

already complicated model even more difficult to handle and we suspect 

that the essential feature required is the active transport of an osmotically 

active solute. In any case, we believe that the model can be expanded 

to include this feature later. Thus only two driving forces that can 

lead to sohite and solvent movement are included in the model, active 

transport of solute tt between the nephric tubules and interstitial fluid 

and the osmotic effect of the proteins in the capillary plasma. The inter- 

stitial fluid and gIomerular filtrate are treated as free of protein. Except for 

the active transport of u, the movement of soltite and solvent is assumed 

to follow Fick’s law. 

Two effects are neglected in this first model, the Donnan effect and 

the interaction between solure and solvent movement described by the 

cross coefficients in the phenomenological laws for diffusion ias postulated 
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in irreversible thermodynamics, Hence we do not include a reflection 

coefficient fcr each solute. The interaction terms might be important 

for the more permeable solutes. \Qe have not tried to model the process 

of glomerular filtration; the glomerular filtration rates are treated as 

input parameters of the model. Possible effects of pressure gradients on 

solute and solvent movement across the tubular walls have not been 

included in ,this model. 

from 

to renal 
vein 

FIG. 2. Schematic of the countercurrent exchange model of the medulla: 3, inter- 

stitial space; 5, 6. descending and ascending limbs of Henle’s loop; X, collecting 

tubules; 9, 10, descending and ascending limbs of capillary loops. 

FIG. 3. Schematic of the distributed capillary bed model of the medulla: 9, capillaries 

distributed at different levels in the medulla. 

Concentrations are given in millimoles per cubic centimeter or millios- 

moles per cubic centimeter. These units are assumed 

for the solutes zc, x, and w. For the proteins in plasma, 

moles per cubic centimeter are used. 

to be equivalent 

the units millios- 

1, 227-261 (1967) 
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‘GOTATION 

We use the following notation in the equations that are derived in 
Idle next section. The index i associated with each tubule (see Figs. 1-3) 
Is used as a subscript. 

tt 
1% distance along tubules in the cortex, cm 

1”i distance into medulla from the Icorticomedulhiry boundary, cm 
‘b 
6 distance along ca.pillaries in the distributed capillary bed 

model of the medulla, cm 

1 time, min 
&, kXi, kw, permeability of tubule i to ti, X, and UY, respectively, cm/min 

kUj permeability of tubule i to water, cm4/milliosmole-min 

Lj length of tubule i, cm 

A j(t-) cross-sectional area of tubule 2’ at time t, cm2. This is assumed 
to be independent of distance for any one tubule. However, 
this assumption does not appear in the stationary-state equa- 
tions and is not essential for the argument. 
surface area per unit length of tubule i, cmsjcm. We assume 
the Si are piecewise constant; that is, constant for each 
anatomically distinct tubule such as the proximal or distal 
titbules. 
volume of cortical interstitial fluid, cm3 
Permeability per unit length of tube i to water under an 
osmotic gradient. This is really a product of the permeability 
constant ktf, and the surface are.a per unit leng!:h of tubule Si. 
We assume it is piecewise constant. Units : cm5fmilliosmolemin. 

~rri, Kxi, K*i permeabilities per unit length of tube i for solutes za, 
X, and r~. Again lthese are products of true permeabilities 
and surface areas and are assumed to be piecewise constant; 
thus KUi = krli * Si. Units: cm2/min. 

I%(Et % 24Jrl~ 0s PI&J b) concentration of protein in tubule 1 in cortex 
and tubules 9 and 10 in countercurrent exchange model 
of medulla, millios8moles/cma 

$,(r, q, t) Concentration of protein at distance c along the length of 
the capillary tubules, which lie at a depth q, in the distributed 
capillary bed model of the medulla, m~lliosmoles~cma. 

%#) concentration of transported solute in interstitial fluid of 
cortex, mmoles/cm3 

il/fm%evvzatical Biosciences 1, 227 - 26 1 ( 1967) 
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Mj(& 4, %(rl 4 concentration of actively transported solute at distance 

E or q down tubule i in the cortex and countercurrent 

exchange model of medulla, respectively. The units of 

concentration, mmoles/cm3, are assumed equivalent to the 

units milliosmoles/cm3. 

Concentration of the transported solute at distance c down 

the capillary tubules, which lie at depth ‘I, in the distributed 

capillary bed model of the medulla, mmoles/cm3. 

volume flow rate in cma/min in cortical tube i at time t at 

distance E along the tubule. For the capillaries this refers 

to plasma flow, not blood flow. 

volume flow rate in tube i in the medulla at time t and distance 

q from the cortico:medullary boundary, including the inter- 

stitial fluid as tube i = 3. For the countercurrent exchange 

model of the medulla, i = 9 and 10 for the descending and 

ascending limbs, respectively, of the vasa recta. Units: 

cm3/min. 

Volume flow rate at time t and distance 5‘ along the length 

of the capillary tubules, which lie i-t 7. depth 7, in the 

distributed capillary bed model of the medulla, cma/min. 

concentrations of the nontransported solutes in interstitial 

fluid of cortex, mmoles/cm3 

xJE, 4, q(E, 08 q(ql 41 q(q, t) Concentrations of the two solutes that 

are not actively transported in tubule i, in cortex, and in 

countercurrent exchange model of medulla, respectively ; 

mmoles/cm3. 

x&I, ‘I, t), t+JL ‘I, 4 Concentrations of the nontransported solutes at 

distance 5 down the capillary tubules, which lie at a depth q, 

in the distributed capillary bed model of the medulla, 

mmoles/cm3. 

T,@,(E), ,+)), ?(Qj)# 543cq,, The function that describes the transport 

of M from the inside to the outside of tube i in the cortex or 

in the medulla. For tube 2, for example, this would be 

Q$(& 3 u.0) * The transport term is written S,T,(tiu,, ztO) 

where S,, the surface area per unit length, is piecewise 

constant and Til might be a different function for each of 

the different portions of the tubule. Thus S, and T, might 

differ for the proximal and distal tubules in the cortex. Units 

of T : mmoles/cm*-min . 

MathenzaticaE Biosciences 1, 627-- 262 (1967) 
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FORMULATIOh’ OF MATHEMATICAL MODEL 

We derive the basic equations first for the cortex and tlhen for the 

medulla. 

FIG. 4. Schematic diagram of flow in capillary bed. 

Volume. In Fig. 4, consider the infinitesimal segment of capillary 
tubule (tube l), (6, 5 + A$) at a distance 6 down the length of the capil- 
laries. The volume of this element is A,(t) d[. The rate of change of volume 
in this segment is the volume flow rate entering at ii: minus the volume 
flow rate leaving at E + d[ plus the rate of entry of water under the 
osmotic gradient across the wall. 

The protein concentration is in milliosmoles per cubic centimeter. 
Expanding ui(E + dt, t) in a Taylor’s series, retaining only the first-order 
terms in d[ and simplifying, gives Eq. 2. 

In order to simplify notation, we do not carry the independent variables 
in the remaining equations since they are obvious from the context and 
the section on notation. 
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Sol&es. Again consider the unit of volume shown in Fig. 4. The 
total amount (millimoles) of solute u in this volume is A,%, dl. Its rate 
of change with time is the rate at which 
minus the rate at which it leaves at 4 + 
plus the rate at which it enters across the 
Eq. 3. 

24 enters at E, ~(6, t)u#, t), 
d& v&E + d5, t)u1(5 + dE, t), 
wall, Kwl(uO - uJ df, giving 

(3) 

Similar equations must hold for x and U. 

The cortical nephrons 
The equations for the cortical nephrons are similar to those for the 

capillaries except for the absence of protein and the inclusion of a transport 
function to describe the pumping of u from the tubular fluid into the 
interstitial fluid. The nature of this function and its relation to models 
of carrier transport will be discussed later. The transport function 
S,T,(u,, uO) represents the rate at which u is transported per unit length 
of tubule from inside the tubule into the interstitial fluid. Hence it 
enters the equations with a minus sign. The equations for the cortical 
nephrons then become the following. 

Volume 

af42 
__ = - $ + &&, + x2 + w2 - 

at 

Solutlx 

ab42u2) = 

at - 
a(>;) + K,&,, - ui) - 

%42x2) = _ W2v2) 

at at + Kh(xo - XL)- 

- 

z”o- x0 - zqJ). (4) 

S,T2(~29 %I)- (5) 

(6) 

(7) 

Note that we use the same independent variable, 6, for the distance 
along the nephron as for distance along the capillaries; this causes no 
difficulty because the ti~o sets of differential equations interact only 
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indirectly through the space-independent concentrations in the inter- 
stitial fluid. A similar set of equations holds for the proximal and distal 
tubules of the juxtamedullary nephrons (tubes 4 and 7, respectively); 
only the subscripts change, 

Cortical &terstitial fluid 
The conservation equations for volume and total solutes in the cortical 

interstitial fluid are obtained by integrating the flows across the walls 
of all of the cortical tubules and across the corticomedullary boundary. 

L 

avo - = - at 5 K,,(P, -t u1 + x1 + q - u. - q, - ~0) dt 
0 

I ‘2 

- 5 K&E i- x2 + w, - a.40 - x0 - wo) at 
0 

L, 

- I JL,(z~~~ C x4 + w4 - abo - x0 - wo) d[ 
0 

I -7 

- I K,.,(z~;- + Xi + w7 - aa0 - x0 - wo) aE 

0 

- v& t). (8) 

The volume flow rate of interstitial fluid between cortex and medulla, 
~~(0, t), is defined as positive when into the medulla. We neglect movement 
of water or solutes by diffusion across the corticomedulla!*y boundary. 

Solutes. For the transported solute ‘L: the equation becomes 

Mathematical Hioscieaces 1, 92’;; --- 261 (1967) 
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The equations for the other solutes, AZ and W, are similar except for the 

absence of the transport terms. 

t(xov,)= 
at 

- 

- 

L, 

K,,(x, - x,) a5 - x~v~(o, 0. I (10) 
0 

LP 
r 

a(wJ@) = _ 
at 3 K 

WI 
(w. _ wls a5 - I Kw,(wo - w2) a5 

0 0 

L, L7 

- I Kw,(w, - @Q) aE - Kw,(wo - 7%) aE - w,v,(O, t). (11) 

o- s 
0 

Meddla 
The equations for the medulla differ for the countercurrent exchange 

model and the distributed capillary bed model; however, the equations 
for Wenle’s loops and collecting ducts are the same for both models so 
we present these first. 

Loop of He&e 

The equations for the ascending and descending limbs of the loop of 

Henle are almost the same, differing only in (1) the values of the physical 
parameters, (2) the boundary condir ions, and (3) the presence or absence 
of R term for the transport of zc. . 

Voltinze. By a derivation that is essentially the same as that used 
for the cortex, the equation for volume change in the descending tubule 

becomes 

aA -= 
at - 2 + K&5 + ~5 + w5 -- 14, - x&x - zkg. (12) 

Mathematical Biosciences 1, 227-261 (1967) 
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Here ti8, x3, and ZQ are functions of q. The same equation holds for the 
ascending limb (tube 6) except for a change in subscript. 

Solutes. For the transported solute 21 we OF L-in El. 13 for the descend- 

ing limb. 

(13) 

A term for the transport of u, - SJ&s, @, can be added if needed in 
further studies, The corresponding equation for the ascending limb 
contains a term for the transport of u. 

WA3~ -- = - zy + Ku& - u6) - S,T,&, us). 
at (14 

The equation for “cs is 

Similar equations hold for ws, x6, and ws. 

Collecting ducts 
For the collecting ducts a similar set of equations hol& Eqs. (16-19). 

843 
---Z 

at 
-~+K.,(u8+x8+w8-u8- x3 -- ws). (16) 

V8%~ 
at = - 9’. + Ku&~ - 24%) - S*T&t*, ug). 

%%3w,) a(w8v8) _t Kws(w8 - w8). -__- _z _ --- 

at % 

(17) 

(19) 

The eountercuwent exchange model 
For the countercurrent exchange model (Fig. Z), the medullary 

capillaries are treated as longitudinally oriented with descending and 
ascending limbs like those of the loops of Henle. 

Mntkenzulical Uiosciewces 1, 227 - 261 (19671 
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CupiZlaries. The equations for the capillaries are like those for the 

limbs of Henle’s loop except for the absence of the active transport term 

and the presence of the protein. 

aAD _ a', 
- - -q- + &,I#,+ uD -t XD + wQ - N3 - x3 - w3). 
at 

(20) 

A similar equation holds for the ascending limb, tube 10. For the solutes 

the equations, are of the form 

(21) 

with similar equations for x9, wa, zcra, xX0, and wIO. 

Interstitial fhid. For the interstitial fluid the same approach leads 

to the following rather messy equations. 

aA3 -------= 
at - 2 + K& + x3 4 w3 - us - x5 - ws) 

+ K&3 f ~3 + ~3 -- ~3 - xs - ~3) 

+ fL,(f43 + X3 + w3 -- U3 - X3 - 2418) 

+ &&3 + x3 + w3 -- $3 - ND - x3 - w3) 

+ K&43 + x3 + w3 -- A, - %D - x10 - WlO). (22) 

%43~3) a(zt,v,) --= _ 

at arl 
+ Ku,@3 - u3) + KQ(% - ~3) + &(%3 - ~3) (23) 

a(443X3) = 

at 
- fg$ + #,,(x3 - x3) + &(X3 -- 3G3) 

+ Kx,(xa - X3) + K&D - X3) + f&.(X~3 - 5). 

A similar equation holds for ~~(11, t). 

(24) 

The tiistribatted capillary bed model 
For this mode! let ~~(0, t) be the total blood flow to the medullary 

capillary bed and let A, represent the total cross-sectional area of the 

medullary capillary bed. Let f(q) dq be the fraction of the capillaries lo- 
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cated between 7 and q + dq in the medulla, where j’k f(q) dq = 1. It is 
assumed these capillaries run in a direction perpendicular to the q axis. 
Then ~(0, t)/(q) ~lq and A&) dq are the fractions of the initial volume 
flow and of the total cross-sectional area over an incremental depth dq 

at depth q in the medulla. The transfer constants now also depend 

on q through the density function f(q) ; for example, the transfer constant 
for u for those capillaries lying between q and q + dq must be Ku,/(~) dq, 

where K#, is the constant for the entire capillary bed. Let 5 represent 
distance along the capillary bed. We assume, for simplicity, that all of 

the capillaries are of length L,. The quantities vs, ti,, x9, us are now to 
be considered functions of both 71 and t. The volume flow rate at time t 

at distance 5 along the capillary bed and between q and q $- dq is 

v,((, 4, t) dq; thus v&c, 7, t) is a volume flow density. 

Wd(rl~3 
--1-11- -_ 

at - 2 + h’,f(q)(P3 + Hg + wg - @3 - x3 - 2473). (25) 

(26) 

Equations similar to Eq. 26 apply for the other solutes, :rs and u+,. 

The interstitial s@ace 

The equations for the interstitial space are quite involved since they 
must include, for any 17, and integral over the length of the capillary, L,. 
They are : 

W3) _ av3 
-. - - - + JG,(f43 * X3 -/- w, - us - x5 - w5j 

at arl 

+ KCS(a3 + x3 + 7~‘~ - zts - x6 - w3j 

-!- K,,(u, t x3 + w3 - us - x8 - w8) 

2 ‘0 

+ f(d 
I 

K&43 + ~3 + ~3 - P&l - x9(C) - H&) - q,(C)] dC. 

0 

(27 

For the transported solute, Eq. 28 holds. 
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The corresponding equations for the nontransported solutes x and ZJJ are 
somewhat simpler ; for example, 

V3X3) -- = - -____ 
at 

a(x3v3) -+ K,,(x5 - x3) + K,(x, - x3) 
% 

+ K&g - 

Initial and boundary conditions must be added to complete the model. 

THE EYUATIONS OF THE STATIONARY STATE 

The equations for the time-dependent case are extremely difficult to 
handle; the equations for the stationary states, however, are much more 
amenable to analysis and numerical investigation. We seek the time- 
independent solutions under the assumptions that the initial flow rates 
and concentrations of solutes are constants and that the cross-sectional 
areas and surface areas per unit length are constants or at least piecewise 
constant. The set of partial differential equations then reduces to a set 
of ordinary differential equations. We display these for future reference ; 

they are easily derived from the previous equations. 

cortex 

Cafiillary bed 
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For steady-state conditions with plasma of constant composition entering 
the kidney, let fir(O) and v,(O) be the initial protein concentration and the 
initial volume flow rate in the cortical capillary bed. Thenby conservation 

of maqs, p&W,(O) t= KIWI and A(0 = A(O~%(O~/~#)~ 

Cortical nephrons 

dv2 - K,(u, + x2 + w2 - ,uo - x0 - .- - 
d5 

w& . (34) 

W27J2) 

at 

= K,,(u, - zt2) - s,7-,(~,, flo). 

W2v2) = K,,(x, x2). 
dF 

Similar equations for w2 for the and distal of 
thz nephrons (tubules and 7). latter can 
only a effect on over-all operation the cortex there 
is one juxtamedullary for approximately 7 cortical 

[ 131, 

Cortical interstitial jhirl 

I 4 

zr&) = - 
I 

Kv,(P, -i- ZJ~+ xl + q - u,, - x0 - q,) d5 
0 

L* 

- 

5 

K&2 + ~2 + w2 - q, - x0 - q,) d5 

0 

1-s . 

- 

1 

K&4 -I- x4 + w4 - UO - x0 - w()) a5 

0 

Jh 

- 
I 

Ki1,(@, i- x7 + w7 - uo - x0 - WfJ) aE. 

0 

(37) 
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For IQ, add an equation similar to Eq. 39. 

Medulla 

Lo@ of He&e 

!.s = K&4, + x5 + wfj - 213 - 

6 

x3 - w3). w 

W5v5) 

d’l7 
= &,(~3 - u5). 

W5v5) ___- 

dr 

= I&(X3 - x5). 

ew5) 
-_L_- = KW6(W3 - w5). 

dr 

(41) 

(42) 

(43) 

The equations for the ascending limb (tuY,e C; and collecting duct (tube 8) 

are of the same form as Eqs. 4043 except ior the addition of a transport 

term of form -- S,T&,, zc3) or - S,T&,, Ma) to Eq. 41. 
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Comttmwwzt exchange model 
Capillaries 

- = K,(p, -t- Z&g + x9 -t wg - @3 - x3 - w3). 
4 

dq 
(44) 

dh,qJ -- = K&t3 - UfJ. 
4 

Equations similar to Eq. 41 hold for X, and ze+,. For the ascending cap- 
iHaries (tube IO), the equations are identical, except for a change of the 
numerical subscript 9 to 10. If es(O) and v,(O) are the steady-state protein 
concentratioja and vo!ume flow rate entering the medullary capillaries, 
then from conservation of mass, P,(P]) = &,(O) * vs(0)/vs(~) and PI&~) = 

= - P*K%swf~&)~ 

+ K&3 + x3 + w3 - zcs - ~6 - %) 

-I- K&3 + ~3 + ~3 - ~$3 - xs - ~3) 

+ K&3 + 5 + ~3 - Pt, - % - %J - ws) 

f Ke,,(‘93 + ~3 4 ~3 - P,, - OHIO - XIO - %o)* 

+ K&t9 - ~4~) + f&r&x, - ~3) + s,;r,(%p 6~3) 

-i- s, 1‘&3, f$). 

W3v3) 
-___ = K.&g - ~3) + &,(x3 - “3) + K&3 - ~31 

4 

+ K&, - ~3) + JL,,( xl0 - x3). 

Th*! equation for w3 is the same form as that for x3. 

The dist&&ed capillary bed model 

Caf3illa~ies 

1dvg(qI, i) 
.-I_- 

de 
= f&f(q) ($3 + us + xQ + WQ - u3 - x3 - w3) * 

(46) 

(47) 

(481 

(49) 
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f! = K,,,f(q)(u, - ug). 

247 

(50) 

The equations for x9 and wg are similar to Eq. 50. 

The interstitial space 

dv3 
- = KVa(U~ + “3 + w,3 - 2.45 - xg - wwg) 
drl 

+ K&3 + x3+ 'Lp)3 -qj - x3-- WfJ 

+ K&3 + ~3 -t w3 - a3 - ~3 - ~3) 

LB 

+ f(r) 
5 
K&43 + ~3 + ~3 -P,(C) - dC) - M) -- w,(T)1 K. 

0 
w 

4f43v3) 

drl 
= K&3 - u3) + Ku&~3 - ~3) + K&3 - ti3) 

(52) 

W3v3) 

drl 
= K&j - ~3) -t K,(% - ~3) + K&3 - ~3) 

Initial conditions 

The conditions assumed given are the initial flow rates v,(O), v,(O), 

vq(0), v,(O) and concentrations: 

P,(O) = P,(O)~ milliosmoles/cm3; 

H,(O) = uJ0) = u,(O) = u4(0), mmole/cm3; 
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s&O) = x,(O) = .T&O) = x,(O), mmole/cm3; 

q(0) = W,(O) = a,(O) = W&O), mmole/cm3. (54) 

Under the steady-state assumption these are no longer functions of time. 
Here we have negiected the Donnan effect in the formation of the gjomer- 
ular filtrate. 

The boundary conditions at the corticomedullary boundary and at the 
junctions of the ascending and descending limbs of Henle’s loop and the 
ascending and descending limbs of the capillaries iu the countercurrent 
exchange model follow from assumptions of physical continuity of flows 
and concentrations. For the model of the distributed capillary bed these 
are as follows. 

%(O)~s(O) = Gw,W,) + %buJ&,) - (fi? 

The boundary conditions on x and w are similar to those for ZG. For the 

countercurrent exchange model the following conditions must be added. 

THE TRANWORT FUNCTIOIK 

Although a great deal of information has been gathered on the over-all 
nature of sodium resorp$ion in the kidney, little specific information is 
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available upon which to base a model of the sodium pump. The minimum 
data needed for at least an empirical functional description of the action 
of the pump are (1) measurements of total net fluxes across the tubular 
wall for a number of different concentrations of sodium inside and outside 
the tubules, and (2) measurements of the passive permeabilities of the 
walls of the tubules. 

Materials that are transported generally cannot readily cross the cell 
membrane passively under the influence of concentration gradients alone. 
The currently favored hypothesis of the mechanism of active transport 
is that the transported material forms a complex with a component of 
the cell membrane, a carrier, and that this complex can cross the cell 
membrane more readily than can the free compound. In order to obtain 
transport against a concentration gradient such carrier systems are 
assumed to be linked in some manner to the metabolic reactions of the 
cell; in effect, free energy from cellular metabolism is used to move the 
compound against a concentration gradient. In the kidney, sodium 
reabsorption is said to be gradient-time limited, that is, the amount 
reabsorbed is determined by a limiting gradient against which the pump 
can move sodium and by the length of time the glomerular filtrate remains 
in the tubules. This characteristic distinguishes sodium from compounds 
such as glucose for which there is a maximum rate of reabsorption, the 
glucose T,. If the rate of filtration of glucose is less than the T,,, 
essentially all of the glucose is reabsorbed; if it is greater than 
the T,, the rate of reabsorption is T,. In terms of the carrier hypothesis 
of transport the difference between these two types of reabsorptive 
mechanism is attributed to differences in the affinities of the transported 
compounds for the carrier. Glucose presumably has a high affinity for 
its carrier and hence this system shows a sharp saturation effect. On the 
other hand, sodium is assumed to have a low affinity for its carrier and 
its transport becomes gradient-time limited. 

Most of the detailed studies on the kinetics of active transport systems 
have utilized cells that can be handled as suspensions, such as red cells 
and ascites tumor cells. For such systems the phenomenon under study 
is a transcell membrane transport. In the kidney, however, we are 
concerned with a transcellular transport. Although a number of good 
studies on sodium transport in renal tubules are available [5, 6, 10, 11, 
20, 21, 251, only the intratubular concentration of sodium has been varied 
in the experiments reported; thus full sets of data (that is, fluxes of 
sodium for different intratubular and extratubular concentrations) nec- 
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essary for at least an empirical characterization of the transport systems 
of the proximal and distal tubules are not yet available. In lieu of this, 

we will use as our transport function one that was derived for the steady- 
state flux for a relatively simple carrier model of transcell membrane 

transport [S] and show that with an appropriate choice of parameters 
we can match the experimental findings on tubular transport that are 

available. 

FIG. 5. Diagram of carrier model of active transport. 

The model is shown in Fig. 5. It consists of four main steps: (1) the 
format.ion of a complex between a carrier (C) and the transported substance 

(U) at the inner surfac, n of the membrane; (2) transfer of the complex 
to the outer surface; (3) dissociation of the complex at the outer surface, 
and (4) transfer of free carrier back to the inner surface. For the sake of 
generality each of these processes is shown as a reversible process. In 
order to obtain active transport at least one of these processes must be 
linked to cellular metabolism. For the present this can only be introduced 
on an rzd lioc basis as an asymmetry between processes 1 and 3 or as an 
aq~nxetry between the two directional transfers of free carrier in process 
4. We do know that the linkage cannot be in the transfer of carrier- 
substrate complex (process Z), for this would make exchange fluxes 
dependent on cellular metabolism. It should be clear that we are using this 
as a temporary crutch until more complete data and a better model 
blecome available. It should also be stressed, however, that for the purpose 
d this work we do not need a model that incorporates all of the details 
of the mechanism of active transport; it need only mimic the empirically 
d,etermined behavior of the pump. We will neglect the potential difference 
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between the inside and outside of the tubules because the transported 

substance is treated in the model as a nonelectrolyte. 

The transport function for such a model is simplest in form when the 

transfer processes, 2 and 4, are considerably faster than process 1 or 

3. In that case the transport function is given by Eq. 67 (see [8]). 

T(ui, u,) = aui - u” 
A +Bui+ czc,’ 

Otherwise, the denominator in Eq. 57 also contains a term in the product 

Ui - uo. Here 21: is the concentration inside the tubule, zc, is the concentra- 

tion outside the tubule, and T(zci, U,) is the pump flux per unit surface 

area of the tubule, defined to be positive when directed from the inside 

to the outside of the tubule. The net flux is the sum of the pump flux 

and the passive (diffusion) flux, Eq. 58. 

Fner = aui - u” 
A$BUi+CUo 

+ h‘(Ui - UO). (58) 

In Eq. 58, KU is the permeability constant for the tubule. Equation 58 

can be written as the difference between two one-way fluxes, F, (flux 

toward the outside) and Fi (flux toward the inside), 

F, =- 
a& 

A 
- i- hi, 

+ Bui +- CU, 

Fi = 
UO 

A + Bui + CU, 
-I- kuUm 

(59) 

P-3 

each of which contains two terms, one attributable to the pump, the 

other to passive movement. It turns out that if the process that is linked 

to cellular metabolism- is practically irreversible, then a >> 1 and the 

term U.J(A + Bui + CUJ becomes very small when compared with 

q/(A + Bu, + CuJ. If this term is also small when compared with 

k(ui - uJ, the leakage flux in Eq. 58 is entirely passive and the pump 

is a one-way, or irreversible, pump. In this case the maximum gradient 

is attained when the passive leakage flux exactly balances the one-way 

pump flux. The pumps involved in amino acid transport in ascites tumor 

cells seem to be of this type [9]. On the other hand, if the pump term 

in F, is not negligible, we have a reversibEe pump; that is to say, if by 

some means the gradient is made large enough, the sign of the pump 

term in Eq. 58 is reversed; in effect, the large gradient causes the pump 
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to run backwards. For tne reversible pump, the pump flux decreases as 
the gradient increases and the maximum gradient attainable occurs 
when the leak flux just balgnces the net pump flux. For both types of 
pumps, the reversible and the irreversible, exchange diffusion can occur [7]. 

Our first problem was to try to determine the nature of the pump. 
Igo direct evidence is available on which to base a decision. However, 
data on fluxes in the tubules are available. Some estimates of the 
permeabilities, usually calculated by neglecting the electrical potential 
gradient [S, 6, 21, 251, are also available. Gertz [a] measured the sodium 
fluxes into the tubules when these were perfused with a low sodium 
!;olution made isosmotic with mannitol. He calculated the permeabilities 
using the assumptions that the pump flux is negligible under these cir- 
,cumstances and that the transtubular potential can be disregarded. 
The values he obtained were 3 * 10m3 cm/min for the permeability of the 
.rat proximal tubule and 8.4 = 10-* cm/min for the permeability of the 
rat distal tubule. We note that if the pump is irreversible, the measured 
:inward flux would have to be less than or equal to the true leakage flux 
because the pump would be acting to oppose the leak. In this ca.se the 
reported values for the permeabilities must be Zowwer bounds for the true 
permeabilities. On the other hand, if the pump is actually reversible, 
part of the inward flux at high gradients could be contributed by the 
reversed pump and these estimates of the permeabilities must then be 
upper bounds for the true permeabilities. 

Next we calculated the permeabilities from data in the literature, 
using the assumption that the pump is irreversible, and then calculated 
the energy cost of the passive leak in mannitol diuresis to see if the com- 
puted permeabilities give reasonable values for the energy cost; if not, 
this would be evidence for a reversible pump. We used three sets of 
permeability data for the proximal tubule. From the data of Giebisch 
et al. [6] we calculated a permeability of 4.3 * PO-3 cm/min for the proximal 
tubule and from Ullrich’s data (Fig. 6 of [21]) we obtained a value of 
13.2 l 10V5 cm/min. Gertz’s value of 3 - 10-S was the other value used. 

The energy cost of the passive leak during manni.tol diuresis is given 
by Eq. 61: 

(61) 

Thi.s represents the minimal energy consumption required to maintain 
the concentration gradient across the tubular wall. In Eq, 61 FL is the 
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passive leakage flux and S is the surface area. We calculate this for man 

in mannitol diuresis, assuming the same sodium gradients are attained 

as have been reported for the rat [5, 6, 10, 21, 25-J. For the 1.2 l 106 

proximal tubules in one kidney we assumed a radius of 20 ,u, and that 

the gradient was naintained over a full 2-cm length of each tubule. 

The concentrations used were u0 = 146 meq/liter and zcj = 95 meq/liter. 

Substituting into Eq. 61, we obtain energy costs of 1.31 cal/min, 1.87 Cal/ 

min, and 5.76 cal/min, using respectively the permeability given by 

Gertz [5], the one we calculated from the data of Giebisch et al. [6], 

and the value given by Ullrich [21]. If we use the metabolic conversion 

factor of 5 Cal/ml O,, these are equivalent to extra oxygen consumptions 

of 0.26, 0.37, and 1.15 ml 0, per minute, respectively. To these we must 

add the cost of maintaining the gradient in the distal tubules. For these, 

Gertz [S] gives a permeability of 8.4 - lo-* cmjmin and from Ullrich’s 

data [21] we obtain a value of 4.6 - 1O-3 cm/min. We assume a radius 

of 20 p, a length of 1 cm, a total of 1.2 - 106 tubules, and that Ui = 25 

meq/liter [25]. Substituting in Eq. 61, we obtain energy costs of 1.63 

and 9.0 cal/min or extra oxygen consumptions of 0.33 and 1.80 ml 0, per 

minute. Adding the values for the proximal and distal tubules, we obtain 

an extra oxygen consumption of 0.6 - 3.0 ml 0, per minute per kidney 

to maintain the sodium gradients in the proximal and distal tubules in 

mannitol diuresis. These values are large enough to be measured exper- 

imentally even when scaled down for a dog kidney, but al-:, not unreason- 

able oxygen costs in terms of the reported oxygen consumption of the 

kidney [19]. Thus, although the reported permeabilicies appear to be 

very large at first sight, the energy cost of the resultant leak fluxes is 

not so large as to make the irreversible pump model improbable. Of 

course, the permeability estimates are quite rough and there is some 

q.uestion about their validity because the potentials were not taken into 

consideration in their calculation. However, this would require integration 

of the Nernst-Planck equation across the tubular wall and for this both 

the potential profiles and the concentration profiles would be needed. 

It is possible to use the permeabilities as calculated but to include the 

electrical work term in the calculation of the energy cost; this procedure 

multiplies the foregoing estimates by a factor of 2-3, giving an energy 

cost that is still within the reasonable range. 

In terms of what is generally known of cellular transport systems and 

in view of the arguments presented earlier it seems to us reasonable to 

assume that the sodium pump in the kidney is an irreversible pump. 
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For comparative purposes, however, we have calculated the parameters for 
both reversible and irreversible pumps, in order to illustrate the differences 
in their charctcteristics, and have used each in some of our computational 

work. 

?arametevs for irreversible pumps 

For an irreversible pump the flux is given by Eq. 62: 

T(Ui, I,tJ = --- 
aui 

A + BUi + cu, * 

Only three of these parameters are independent; hence we redefine A, 
B, an4 C by dividing numerator and denominator by II: to give Eq. 63: 

(63) 

No data are available for which the extratubular f:oncentration zbO was 
varied, so that A and C cannot be estimated separately, hence we define 
D = A -f- Cu, and try to fit Eq. 64, which will hold only for the one value 
of zc, for which data are available. 

Finally, since u is treated as a nonelectrolyte in our model, the data on 
sodium transport were treated as though NaCl were transported and all 
fluxes and concentrations ol” sodium were multiplied b>* 2; thus all data 
are for u, = 290 mmoles~litcr. 

Proximal &b&e. In Table I we give the fluxes we have calculated 
from data reported by Giebisch et aE. [6] and Ullrich [217. The fluxes 
reported by Ullrkh, seit II, can be obtained directly from Fig 6 of his 
paper [21]; the fluxes in set I were calculated from the data reported by 
Giebisch et al. [6], using the assumption that the tubllles are 20 p in 
radius, The two sets differ considerably. Each set was fitted with Eq. 64 
with the diffusion term added. For the first set we obtain a permeabil- 
ity constant of K = 4.3 - 1O-3 cm/min and pump parameters D = 345 
minjcm and B = 180 cm2-minlmmole. The characteristics of this pump 
are shown in Fig. 6; note that the net flux is zero at a concentration 
r&i0 of z&~, = 0.62 as reported by Giebisch et al. [6]. For the flux data 
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from Ulhich’s~ paper we calculate a permeability of 18.2 l 1O-3 cm/mm and 
pump parameters D = 72, B = 657. The character&tics of this pzlmp 
and the leak fluxes are shown in Fig. 7. The fluxes in set I ma.y be some- 
what low since both Giebisch et nl. [S] and Gertz [5] have also reported 
fluxes for isosmotic resorption 4% = 290) :Ihat are nearer to the value 

FIG. 6. Characteristics of irreversible pump for proximal tubules, calculated from 

data of Giebisch et al. [6] (set I of Table I). The extratubular concentration u, 

is assumed to be 290 * 1OW mmoles/cms. 

-zooo- 

FIG. 7. Characteristics of irreversible pump for proximal tubules, calculated from 

data of Ullrich [2] (set II of Table I); u, = 290 - 10M3 mmoles/cm3. 

given by Ullrich. However, Figs. 6 and 7 do show the general characterk- 
tics of an irreversible pump and indicate that we have some la%itude in 
varying the pump parameters and the permeability of ZJ in the model. 
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TABLE I 
FLUXES OF 26 IN PRL’XIMAL TUBVLE 

- 

up 

(mmoles/liter) 

Set Ib Set IIC 

(mmoles/cm”-min) (mmoles/cm3-min) 

0 - - 3840 l 10-e” 
120 - 390 l 10-e - 

200 141. 104 - 

- 214 - 0 

290 730 - 1W 1104. lO+ 

a l.4, = 290 mmoles/liter. 

b Calculated from Giebisch et ul. [6]. 

c Calculated from data in Ullrich [Zl]. 

d The flux is defined to be positive when directed out of the tubul 

Distal tubule. We do not have as much experimental data for the 
distal tubule as for the proximal tuf ule, and that which we do have shows 
considerable variability. For the maximum gradient in mannitol diuresis 
the values that have been rx?ported for “cJz+, are 0.16 [25], 0.26 [21], 
0.34 [5], 0.37 [ll], and 0.42 [lo]. We have tried to fit the data repor- 
ted by Ulhich [Zl] but obtain negative values for the parameter D; from 
the nature of the model, the parameters are inherently positive. Using 
Gertz’s value for the permeability [6], the ratio 0.4 for u&, for the 
maximal gradient in mannitol diuresis, and the flux for isosmotic reabsorp- 
tion given by Ullrich [21], we obtain a pump with the parameters 
D = 174, B =I 5.35 l 103. A number of others can be chosen that also 
have fluxes for isosmotic reabsorption approximately one fifth those in 
the proximal tubule and that give zero net fluxes for u&, in the range 
0.2-0.4. 

Reversible pumps 

In order to fit the available data with a reversible pump we must 
assume that the reported permeabilities are much too large and choose 
some value for the permeabilities in order to calculate the pump parameters. 
We have arbitrarily chosen a permeability of 6 9 10-4 cm/min for the tu- 
bules in order to fit Eq. 57 with the reported data. For set ‘x of the data 
in Table I we obtain a = 1.71, D = 275, B = 25. For comparison with 
the corresponding irreversible pump (Fig. 6) the characteristics of this 
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pump are illusttated in Fig. 8. Note that although the net flux for the 
two pumps is tire same, the pumps differ markedly in their operating 
characteristics, and that the permeabilities differ considerably for these 
two cases. For some of our computational work with reversible pumps 

we used a pump with the parameters a = 1.62, D = 89, and B = 312, 
which comes closer to fitting the data in set II of Table I. 

-7COJ 

FIG. 8. Characteristics of a reversible pump %r proximal tubules, calculated to fit 

data of Giebisch ef UC. [S] ; sr, = 290. lWs mmoles/cms. 

For the distal tubules the data on maximal transtubular gradients 
give us estimates of 2.4 [lo] and 2.7 [ll] for the parameter a. From 
Windhager and Giebisch’s data, however, we obtain estimates of 2.7 and 
6.2 for a in the proximal and distal parts, respectively, of the distal 
tubule. For some of our computations we have used a pump with the 
parameters a = 6.6, D = 4730, B = 357, which gives the fluxes reported 
by Gertz [5]. 

As was mentioned previously, no data are available on which to 
base estimates of the parameters A and C. This is of no consequence 
for the model of the cortex but A and C are needed for the transport 
function in the medulla because both intratubular and extratubular 
concentrations of 24 change. From the basic model [S] we can say that 
C must be positive and smaller than B. In lieu of any other information 
we have simply guessed that it will be approximately one half the value 

of B. I 

PARAMETER VALUES 

In choosing parameters for the model, we attempt to model a kidney 
of the size of the human kidney with approximately 1.05 l 106 cortical 
nephrons and 0.15 l 106 juxtamedullary nephrons. 
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Lengtks 

The. lengths of the different tubules vary somewhat, but these are 

fairly well documented in most texts of histology. The following values 

seem reasonable : L, =..= 3 cm; L, = 3.5 cm (2 cm for proximal tubule, 

0.5 cm for the Henle segment, 1 cm for distal); L, = L, = L, = L, = 

- 1.5 cm; L, = 2 cm; L, = 1 cm. For the countercurrent exchange 

modei, L, and L, were both taken to be 1.5 cm. For the distributed 
capillary bed model, an initial estimate of 1.5 cm is used for L,. 

Surf ace areas 

Rough estimates of surface areas per unit length were obtained from 

estimates of diameters and numbers of the various tubules. These initial 
estimates are crude and do not take into account the highly folded nature 
of the cell membranes : some -night easily be orders of magnitude off 
the mark. 

S, = 4.5 - 104 cm2/cm S, = Ss = 0.63 l 10” 

s, = 4.4.103 s, = 1.59 103 

S, = S, = 0.63 - lo3 s, = s,, = 2.1 l 10s 

Permea bilitics of tubules 

The transfer constants K used in the equations represent products of 
permeabihties and surface areas per unit length, K = kS. The initial 
estimates of permeabilities were based on the data of Pappenheimer 
et al. [15] for the capillaries and th,ose of Gertz [5] and Ullrich et al. 
120,211 for the nephrons. 

Capillaries. k, = 3.8 - 1O-2 cm*/milliosmole-min ; k,, = 2 l 1O-2 cm/min ; 

k,, kz, = 1O-2 cm/min. 

iVephro?zs. k,, = 0.25 cm4/milhosmole-min for proximal tubule (see 
Which [21 J) and descending limb of Henle; k, = 0.04 for distal tubule 
and collecting duct; kv = 0.002 for ascending limb of Henle loop; 
k, = 1-5 9 1O-4 cm/min for reversible pump model and 4-10. 1O-3 cm/min 
for irreversible pump model ; k, = 10-s cm/min ; kw = 10-3-10-s cm/min 
(mannitol). 
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As indicated in the previous section, different permeabilities must be 
used for ZJ depending on whether we use an irreversible pump or a 
reversible pump in the model. 

Idial values 
The flow rates in the capillaries represent plasma flow rates. 

VoMte /low rates. ~~(0) = 236.5 cm3/min ; v,(O) = 54.0 cm3/min ; 

v*(O) = 7.72 cm3/min; v&O) = 26.75 cms/min. 

Irtitial coltce&utions. p(O) = 2 9 1O-3 milliosmoles/cm3 (from Pitts 

[l?]); zc,(O) = ug(0) = u&O) = 2&&O) = 0.280 milliosmoles/cm3; x,(O) = 
= x&O) = x,(O) = X&O) = 0.02 milliosmoles/cm3; r%(O) = 24)2(O) = 
= r%(O) = w&O)-to be used when we consider osmotic diuresis; 
otherwise 0. 

DISCUSSION AND CONCLUSION 

We wish to emphasize that we are not trying to build a detailed 
model of so&m transport or for that matter of the kidney. We already 
have perfect models, abundant in detail and variety, in the real kidneys 
of different species. Our purpose is to construct a model, stripped of 
superfluous detail, that incorporates what are apparently the most 
significant features of the architecture of the kidney and that describes 
the functioning of the basic units. We wish to see to what extent such 
a model can explain the concentrative function of the kidney. In a sense 
this is a feasibility study. We hope and expect to obtain further insight 
into the nature of renal function. In fact it is obvious that the very process 
of formulating the model helped us to clarify our own ideas and to define 
those features of renal function for which we need more detailed exper- 
imental data. In the course of this, it has become apparent that our 
knowledge of many of the basic physical parameters required in the 
model is quite imprecise. 

A number of problems have been raised; their resolution depends on 
further experimental work. First, there is the possibility that the com- 
monly accepted countercurrent exchange model of the medullary capil- 
laries is in error and that a distributed capillary bed might be a truer 
picture. Indeed it seems possible that the distribution function of the 
capillaries in the medulla is a major determinant of the concentration 
profile attained in the interstitial fluid of the medulla and hence in the 
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concentrative iunction of the medulla; we hope that computational 
studies on the .nodel will indicate whether this is a possible explanation. 

Second, there are some questions concerning the nature of the sodium 
pump that have not been fully resolved. Although we have favored au 
irreversible pump, the data are not so clear-cut as to eliminate the 

possibility that the pump is reversible. 

The model has been formulated with the intention of carrying out 

numerical studies on a digital computer. Hence we are not forced to 
make further mathematical approximations to subject the differential 

equations to analysis. Even so there are a number of difficulties. It is 

usually not difficult to integrate numerically systems of 20 or 30 well- 
behaved simultaneous ordinary differential equations, provided initial 
conditions are known. In this case we have a multiple-point boundary- 

value problem of some complexity, a very much more difficult problem 
to solve numerically. We intend first to examine the behavior of the 

model of t!ie cortex in isolation and then the behavior of the various tubules 
in the medulla using a fixed concentration-distance profile in the medullary 
interstitial fluid, in each case varying individual parameters in order to 
satisfy the over-all material balance conditions for solvent and solutes 
that any mathematical solution of the equations must satisfy. Then we 
hope to integrate the full set of equations for the medulIa and finally to 
incorporate the models of the cortex and medulla into one composite 
model of the kidney. The results of these computational studies will 
be published in subsequent papers. 
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