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For a population of identical one compartment systems with daily inputs 
which are random samples from a stationary distribution the mean of the 
daily balance (balance = input minus excretion) taken over the popu- 
lation of compartments or over days for one compartment is linearly 
dependent on input with a slope which is independent of the distribution 
of the inputs and an intercept which depends only on the mean of the 
distribution of intakes. Analytical and simulation studies on a model with 
three daily inputs gives essentially similar results. Even if the inputs are not 
from a stationary distribution but the inputs to a population of com- 
partments are all from the same distribution, one still obtains a linear 
regression of the mean of the daily balance over the population of com- 
partments, on intake for any particular day but this no longer holds from 
day to day. This provides a theoretical basis for the interpretation of 
balance studies on populations of individuals when the daily intakes 
of an element under study cannot be kept constant. 

1. Introduction 

The clinical investigator is frequently interested in measuring the intake 
and excretion of various dietary constituents and the balance between intake 
and excretion. Under ideal conditions, such a “balance study” is carried 
out by putting the patient on a constant dietary intake and measuring both 
intake and excretion. However, it must be emphasized that it is often not 
possible to maintain a constant intake over a long study period. Such studies 
are useful in defining the nutritional needs for normal function as well as 
many abnormalities of absorption, metabolism or excretion in disease 
states. 
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A balance study is an application of the law of conservation of mass to 
an open system. At any time, the rate at which an element enters the system 
minus the rate at which it leaves the system must equal the rate of accumu- 
lation of the element in the system. For many elements the rate of excretion 
from living systems is proportional to the amount in some compartment 
or compartments. For example, the assumption that urinary excretion of 
inorganic iodine is proportional to the amount in the extracellular space 
is a good assumption, if there are no large changes in renal function during 
the course of an experiment. If the intake is constant, such systems approach 
a stationary state in which the daily excretion equals the daily intake. If the 
intake is then changed to a new level, the system goes through a transition 
period which lasts for a few turnover times of the element in the system, 
after which the system is in a new stationary state. However, in studies on 
populations in the natural state considerable fluctuation is found in the daily 
intake of many elements. Rustagi (1964) has shown that the distributibn of 
daily intakes of lead, cadmium and chromium approximates the log-normal 
distribution. The daily intake of iodine in humans also follows a skewed 
distribution which approximates a log-normal distribution (Vought & 
London, 1964a). For such circumstances, it is not obvious how the daily 
balance:;, that is the balances calculated from each day’s intake and excretion, 
depend on the distribution of intakes and on the turnover time of the system 
for the particular element under study. This problem was first brought 
to our attention when we attempted to analyze a set of data on daily balances 
of iodine from a study of iodine balance on a group of pregnant women 
(Dworkin, Jacquez & Beierwaltes, unpublished data). 

The present paper is an attempt to answer some of these questions. For 
this purpose we will examine some simple one-compartment models with 
use of the assumptions that (i) the rate of excretion is directly proportional 
to the quantity of the element in the system, and (ii) the intake is a random 
sample from a stationary distribution. 

2. A Simplified Model with One Intake Per Day 
To bring out the basic features of the problem let us first consider a 

uniformly and instantaneously mixed one compartment system for which 
the intake occurs as a single instantaneous input at the same time each day. 
We develop a finite difference model using a basic time unit of one day. 
Let us introduce the following notation and assumptions: 

Xi The amount ingested on day i. It is assumed that this is a random 
sample from a stationary distribution. For this model we make the 
further simplifying assumption that this intake is instantaneous and 
occurs at the start of day i. 
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q1 The total amount of the element in the compartment at the start of 
day i, just before the intake Xi. 

k The excretion constant. The excretion rate at any time is assumed to 
equal k times the amount in the compartment. 

Thus the amount present in the compartment at the start of day i is qi+Xi 
and the amount excreted on the ith day is (qi +Xi)(l -ewk). Note that the 
turnover time for the element in question is I/k days. 

The amount of element remaining in the system at the end of day i is qi+ i. 

fJ+l = (qi+Xi)Ck. (1) 

Suppose that this process has been going on for n days and that the amount 
in the compartment at the start of the process was ql. Substituting the corres- 
ponding equation for qi, q,- I,. . . into equation (I) gives equation (2) 
for a+ 1. 

qi+l = xie-k+xi-, e-2k+xi-2e-3k+. . . +xiwnel eenk+ql eCnk. (3) 

From the assumption that Xi is a random sample from a stationary distri- 
bution, we have E(x,) = E(x,-,) = , . E(xi-,-r) = /lx where E( ) is the 
expected value operator. (In the remainder of the paper we use the term 
“expected value” in its technical sense in statistics. If q(x) is a distribution 
function and g(x) is any function of the random variable x, the expected 
value of g(x) is, Erg(x)] = s g(x)cp(x) ds.) Taking expected values of both 
sides of equation (2) and using the notation E(qi+ i) = pqi+ i, gives 

n-1 

P qr+l = pxemk 1 ewrk+E(q,)emnk. 
0 

(3) 

The finite sum in equation (3) is a truncated power series which may be 
summed to give equation (4) 

P 
= c1 e-ktl-e-“k) 

4it1 x G-k + Etql) e-nk’ (4) 

If n is large and E(q,) is of the same order of magnitude as pL,, the terms in 
ewnk are very small and may be neglected. We note that this is not a very 
stringent requirement, thus if eMk = 0.5, eelok < O@l and the above 
assumption is adequate for n > 10. This assumption is equivalent to writing 
equation (2) as an infinite series, as though the process had been going on 
for an infinitely long time; we use it without further comment in the remainder 
of the paper. With this assumption E(qi) = E(qi+,) = . . = pq, and 
equation (4) may be written as in equation (5). 

eek 
(5) 
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By definition, the balance for day i, bi, is the intake minus the excretion, 
equation (6). 

bi = xi-qi(l-e-k)-xXi(l -em”) = xie-k-qi(l-e-k). (6) 

We are interested in finding the conditional expected value of bi for given 
intake xi, that is, the expected value of bi for xi fixed, /lb,. This is obtained 
by taking expected values of both sides of equation (6) but treating xi as 
if it were a constant. 

pbr = xi eTk- p,(l-emk) = (xi-&emk. (7) 

Thus the expected daily balance is a linear function of the intake. In other 
words, equation (7) predicts a linear regression of daily balances on the 
intakes with a slope, eek, which is a function of the turnover time only, and 
an intercept of -pX emk. Note that this system has the property of ergodicity; 
that is, given a population of identical individuals, the means in equation (7) 
can be interpreted as means over the population on any one day or as means 
over days for any one member of the population; for either case equation (7) 
gives the regression of mean balance on the intake. Furthermore, the para- 
meters of the regression line depend only on the mean value of the distribution 
of intakes but are otherwise independent of the distribution of intakes. The 
main property of the distribution of intakes which has been essential to the 
argument so far is the assumption of stationarity. If CT”, is the variance of the 
distribution of intakes, it is not difficult to show that the variance around 
the regression line, 0: = E[(b,-&‘I, is given by equation (8). 

e-zk(l -e-k)? 2 
d = E[@,-pd2] = -1-e-2k- cx. (8) 

3. A Population of Compartments 
Retaining the previous simplified model, suppose we have a population of 

individuals (compartments) which is characterized by some distribution 
of values of k, kj being the excretion constant for the jth individual. Let x,~ 
be the amount taken in by the jth individual on the ith day and let qij be the 
total amount in the jth individual at the start of the ith day. We further assume 
that the distribution of intakes is stationary and that the distributions of 
intakes and of the kj are independent. Equation (1) then becomes 
equation (9). 

4i+l.j = (qij+xij)eukJ. (9) 

Equation (2) also is modified slightly (equation (10)). 

4i+l,j = x,je -kJ+xl-l,je -2ki+. . . . (10) 
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Taking expected values over the distribution of intakes, we obtain equation 
(I 1) for the jth individual. 

Pqj = ihe -kj C e-rkj _ cheek’ 
1-e-k” 

(11) 

The balance for the jth individual on the ith day is then equation (12) 
b,j = xi,eekj- qii(l -em”‘). (12) 

For any one individual, the results are the same as before. Now in equations 
(11) and (12) take expected values over the distribution of the X-i to obtain 
equations (13) and (14). 

phi = h--C1x~E[e-k’l. (14) 
The effect of the distribution of the k, may be seen by expanding the argu- 
ments of the expected value operator in Taylor’s series around the mean pk 
and then carrying out the expected value operations term by term. For the 
balances (equation (14)) this gives the simple expression, equation (15). 

Phi = (xi-P.Je- 
Bk 

In this equation &J and &4 are the third and fourth moments around the 
population mean, &, and ut is the variance. Again a linear regression is 
obtained but the slope depends on the moments of the distribution of the k,. 

4. Distributed Inputs 

Now let us consider how the results of the previous model are changed 
if the intake in one day is distributed over the course of the day. For the 
general case, if the intake in time df at t is x,(t) dt, the amount of the ingested 
element remaining at the end of day i is : 

1 

I xi(t) e -(I -Ok&, 
0 

Then the total remaining in the system at the end of the day is given by 
equation (I 6). 

1 

4r+ 1 = qrebk+ I x,(?)e-(‘-‘jkdt. 
0 

(16) 

For practical purposes, the major intake of any element occurs at three 
distinct meals, so we consider a model with three inputs. Suppose the intakes 
on day i are xtl, x,~ and xi3 at times t,, t, and r3, respectively. Assume that 
each of the intakes is a random sample from a stationary distribution. The 
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times of ingestion, tl, tz and i, may also be considered to be random variables 
but we do not do this here. Then the amount present at the end of day i 

is given by equation (17). 
qi+l = qie-k+Xile-k(1-r1)+)CiZe-k(1-f2)+Xi3e-k(1-13). (17) 

Although the development can now be carried out as before, this approach 
turns out not to be useful because in most balance studies only the total 
intake in a day is measured. This suggests that we attempt to reformulate 
the problem in terms of the total intake, xi = .yil +xi,+xi,. Referring 
back to equation (10) let us define Li so that equation (18) holds. 

xil e-W-td +Xi2e-k(~-~z)+Xi3e-k”-‘~’ = x,e-A I . (18) 
Given xilr xi2, xl3 and t 1, t, and t,, equation (18) can be solved for j.,. 
Thus we replace the original problem with one in which all of the intake is 
assumed to occur at the start of the day but now the excretion constant for 
the input xi is a stochastic variable dependent on xii and tj. The amount 
remaining in the compartment at the end of day i is now given by equation (191 

4i+l = qieek+xievAf. (19) 
It is convenient at this point to change to the variate Ki = eeX1, equation (20). 

4i+l = qievk+KiXi. (20) 

Equation (20) can again be expanded into an infinite series. 
qj+l =KiXj+Ki-~Xj._~e-k+Ki-2Xi-2e-2k+. . . (21) 

Taking expected values and noting that E[Kj.uj] = /L~/~,-+-B~.~, where cKX 
is the covariance of K and x, leads to equation (22) 

(21) 

The balance for day i is now given by equation (23). 

bi = xi-qi[l-e-k]-xi[l-Ki] = &xi-q,[l-emk]. (23) 
The conditional expected value of bi, for given intake xi, is then 

p(bl = xiEIKi/Xil-~KC(.x-aKx (24) 
where E [KJxJ is the conditional mean of Ki given that x equals xi. Assume 
that !:[Ki/~~i] depends linearly on -‘ii. Thus we consider only a linear regres- 
sion of Ki on xi. Then E[Ki/xi] is given by equation (25). 

E[Ki/Xi] = p, + 3 (Xi-pJ. (25) 

Finally, substituting equation (25) into (24; gives equation (26) for ,.+,,. 
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In this case, p(b, contains a quadratic term in xi. To estimate the relative 
contributions of the linear and quadratic terms note that for .Y~--P, = G,, 
the quadratic term becomes gKx whereas the linear terms reduce to 
~xki+~Kx~x/~x---Kx. For many cases of interest pX 9 (T~ and ph. > uKX 
and the quadratic term becomes small in comparison to the linear term. The 
problem simulated in the next section provides a good example of such a 
case. 

5. Simulation of a One Compartment Model with Three Daily 
Stochastic Inputs 

In order to compare the predictions of this theory with some reported 
results on iodine balance, we first simulated a one compartment model 
with stochastic inputs at three fixed times on each day. The times chosen 
were 0.02, 0.17 and 0.42 days. The mean values and standard deviations 
were chosen to correspond approximately with the data reported by Vought & 
London on iodine intakes at breakfast, lunch and dinner (Vought & London, 
19643). The program was written in MAD (Arden, 1963 : Caller, 1962) and 
compiled and run on the IBM 7090 at The University of Michigan Computing 
Center. Starting with an amount qi in the compartment on day i the logarithms 
of each of the three intakes for day i were chosen by drawing random 
samples from three normal distributions which had means of 3.2, 4.3 and 
4.3 and standard deviations 0.45, 0.60 and 0.60, respectively. An excretion 
constant of k = 0.6 was used. The total intake xi, the amount excreted, 
the balance b, and the values of Ki and li were then calculated and finally 
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FIG. 1. Histogram of distribution of daily intakes on sample of 500. 
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the amount remaining at the end of day i, qi+ 1, was calculated. This process 
was then repeated for days i+ 1, it 2, . . . . To initiate the calculations, 
q1 was chosen close to the mean value ,L+ The simulation was run for 500 
consecutive days. The distributions of the xi, K, and bi, which were obtained 
are shown in Figs 1 to 3 and the mean values, standard deviations and 
covariances calculated from the sample of 500 are given in Table 1. For 
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FIG. 2. Histogram of distribution of K, = e-Xl; 1, is the apparent excretion constant 
for the ingested material on the assumption it is all taken in at the start of the day. 

TABLE 1 
Results of simulation on one compartment model with stochastic inputs 

Variable 
Sample Sample Covariance 
mean standard deviation with x 

.Tl 26.7 13.4 
X1 93.0 60.6 
X3 87.2 54.6 
x 207.0 19.9 

; 295.3 0444 63.9 0.028 - 0.248 
K := e-A 0642 0.018 0.165 

b - 0.263 58.1 4021 
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FIG. 3. Histogram of distribution of balances obtained on sample of 500 on the 
compartment model with three stochastic intakes. 
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FIG. 4. Scattergram showing dependence of balances on intake for the 500 samples 
drawn from the model. 
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comparison with data on iodine balance (Vought &London, 1964a ; Vought & 
London, 19646), the intake and balance may be given the units of micrograms 
of iodine per day. Figure 4 shows a scattergram of the balances and the best 
fitting linear regression line. The intercept and slope of the regression line 
are -130.6 and O-6296 with standard deviations of 3.6 and .0*016, respec- 
tively. The calculation of the parameters pK, bKX of the bivariate distribution 
of the K, and xi is a difficult task which we have not attacked. However, 
if we use the sample means and covariances given in Table 1 as approxi- 
mations to the parameter values and substitute these in equation (26), 
neglecting the quadratic term which is quite small, the intercept and slope 
predicted by equation (26) are - 132.9 and O-636, respectively. 

6. The Non-stationary State 

The assumption of a stationary distribution of intakes has been essential 
to the developments so far. It is important to know to what extent this 
assumption may be relaxed. For example, we expect that the equations 
developed so far would change little if in a study on a population the para- 
meters of the distribution of intakes changed slowly in comparison to the 
turnover time of the element under study. We consider the simplified model 
with one intake but now assume that the distribution function for the intake 
varies from day to day. First we note that equation (2) holds for all cases. 
However, E [x1] = px(i) where p,(i) is the mean of the distribution of intakes 
for the ith day. Taking expected values, gives equation (27). 

p,Ji+l) = E[qi+,] = e-‘r$OpX(i-r)e-‘k. (27) 

The balance for day i is again given by equation (6). If we take expected 
values for given xi 

p*(i) = x,emmk-E[q,(l-emk)]. 

Substituting from equation (27) 

lb(i) = xieek -(l-e-k)e-k,E,p,(i-r-l)e-rk. (29) 

Thus for a population of identical individuals, if the intake of each individual 
on day i is a random sample from the same distribution then equation (29) 
again predicts a linear regression of the mean daily balance for day i on the 
intake for day i with slope e-‘; however, the intercept now changes from 
day to day. Furthermore, the dependence of mean daily balance on daily 
intake for different duys for one individual is no longer necessarily linear 
but is now determined by the functional dependence of p,(i) on i. 
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7. The Transition Period for a Step Change in the 
Distribution of Inputs 

As part of our simulation studies on a model which was set up to simulate 
an iodine balance study, we ran a simulation of the transition phase after 
a change from one distribution of intakes to another. At the same time 
this provided an example of a non-stationary process for which the daily 
balances should fit equation (29). For this study the model with three daily 
stochastic intakes was used. The intakes on any one day were again assumed 
to be at O-02, 0.17 and 0.42 days and the excretion constant was k = 0.6. 
The system was alternated between two IO-day periods, one on a low intake 
and one on a high intake. For the high intake period the distributions of the 
logarithms of the three intakes for a day were normal distributions with 
means of 3.9, 4.6, 4.6 and standard deviations of 0*50, 0.65 and 0.65, 
respectively. For the ZOW intake period the corresponding means and standard 
deviations were 2.7, 3.7, 3.7 and 0*35,0*50,0*50, respectively. The simulation 
was run for 100 such 20-day cycles. The mean daily intake was 107.5 for the 

TABLE 2 

Summary of simulation study of transition periods 
between high and low intakes 

Day 
Amount in 

compartment 
mean 

Mean Mm 
intake balance 

Mean Mean 
I eeA 

1 402 f 10.4t 106 f 3.2 -123 f 5.2 0445 0641 

z 299 231 4 f 4.1 6.0 106 104 & f 2.9 3.1 -36 -68 zt * 295 3.0 0447 0445 0640 0.641 
4 195 f 3.3 102 f 2.9 -22 f 2.5 044 0641 
5 172 f 2.6 106 f 3.2 -10 f 2.5 0446 0641 
6 163 f 2.3 113 f 3.9 -6 31 2.6 0444 0.642 
7 162 f 3.0 110* 3.4 -2 * 24 0445 0.641 

!  160 160* f 2.6 3.0 107 113 f f 3.1 3.6 -4 0.5 f f 2.5 2.8 0446 0443 0642 O-540 
10 156 f 2.2 109 f 3.0 0.5 & 2.2 0444 0.641 
11 156 f 2.3 316 f 13.4 130 f 8.5 0.459 0.632 
12 286 f 9.0 327 f 13.8 81 f 10.4 0446 0641 
13 367 f 10.0 307 & 12.7 30 f 8.7 0.452 0.637 
14 397 f 10.4 304 f 11.5 15 f 8.7 0.452 0.637 
1.5 411 f 9.7 307 f 13.1 10 f 10.1 0.452 0.637 
16 422 f 9.6 306 f 13.6 6 3~ 9.8 0447 0640 
17 428 f 10.7 298 f 12.2 -4 f 9.7 0.455 0.635 
18 425 f 9.2 293 f 11.1 -6 f 8.2 0.455 0.634 
19 419 f 8.6 305 f 13.5 6 f 9.5 0.451 0.637 
20 425 f 10.0 298 f 12.2 -3 f 8.4 0.460 0.632 

t Standard deviation of mean. 
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FIG. 5. Graph of sample mean balance for transition periods after step changes in 
distribution of intake between a low intake (days 1 to IO) and a high intake (days 1 I to 20). 
Sample size for each day is 100. 

TABLE 3 

Summary of regression of balances against intake by days, 
during transition period after step changes in 

distributions of intake 

Day 

1 
2 
3 
4 
5 
6 
I 
8 
9* 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

intercept 

A 

Standard 
deviation of 

A 

Slope 

B 

- 198.6 16.2 0.72 
-118.0 10.1 0.48 
-95.1 6.5 0.56 
-91.4 5.6 0.68 
-86.9 4.1 0.73 
-72.2 3.2 0.63 
-65.9 4.8 0.58 
-77.8 4.6 0.69 
-78.9 4.3 0.70 
-71.7 3.9 0.65 
-68.1 3.2 0.63 

-143.3 10.8 0.69 
-149.9 11.7 0.59 
- 177.1 13.3 0.63 
-203.8 11.5 0.70 
-191.6 10.7 065 
-210.5 12.8 0.69 
-194.0 11.7 O-64 
-189.4 9.8 O-64 
- 176.8 12.0 0.58 

Standard 
deviation of 

B 
.- -___- ~. .-- 

0.15 
0.09 
0.06 
0.05 
0.03 
0.03 
O-04 
0.04 
0.04 
0.03 
0.01 
0.03 
0.04 
0.04 
0.03 
0.03 
O-04 
0.04 
0.03 
O-04 
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low intake period and 306-I for the high intake period. TabIe 2 summarizes 
the results for the 20-day cycle. Note that the first day on the low intake 
is the first day on low intake after transition from the high intake. Figure 5 
presents a plot of the mean daily balances for the 20-day cycle. Table 3 gives 
the regression lines of daily balance on intake obtained by the standard 
least squares fitting method. The application of an analysis of covariance 
to the data gave no significant differences between the slopes for the different 
days at the P = OWl level but did give a significant diffewnce between the 
intercepts at the P = O*OOl level. This was, of course, to be expected- 
equation (29). 
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