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Abstract-The stability of the conduction regime of natural convection in a vertical slot has been studied 
analytically. For Pr .C 127 the instability sets in as horizontal stationary ceils. The critical Grashof 
number is nearly independent of Prandtl number. For Pr > 12.7 the instability sets in as a travelling wave. 
As the Prandtl number is increased the onset of instability approaches the correct limiting solution which 

is constant as a function of GrPr1’2. 
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NOMENCLATURE 

thermal diffusivity ; 

Fourier coefficients; 
non-dimensional wave speed. 
in d~ensional form ~yd ZZ?c,/v : 
orthogonal functions: 
operator 8/8x; 
gravity; 
Grashof number; 
critical Grashof number; 
width of the slot; 
number of terms in the truncated 
orthogonal series: 
pressure; 
Prandtl number ; 
general variable; 
Reynolds number; 
Rayleigh number; 
time ; 
temperature: 
mean temperature Tm = 

CT( + L/2) + T( - WI/2 ; 

t Preaentiy: Assistant Professor of Mechanical Engineer- 
ing, The Ohio State University, Columbus, Ohio, U.S.A. 

$ Author suffered an accidental death since the comple- 
tion of this research. 

5 Presently: Member of Technical Staff, Gulf Energy and 
Environmental Systems, San Diego, California, U.S.A. 

AT, 

u, v, w, 
u. 

2 
Z. 

Greek symbols 
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Superscripts 
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OF 

temperature difference AT = 
T( + L/2) - Tt - L/2); 
x, y, z-velocity components: 
characteristic velocity 
U = ~~AT~~v~ 
coordinate normal to the walls: 
vector of Fourier coefficients; 
vertical coordinate opposite to 
gravity. 

wave number (A = 2ltfa wave- 
length): 
coefficient of thermal ex- 
pansion: 
T- Tm; 
matrix Eigenvalue; 
matrix Eigenvalue and kine- 
matic viscosity; 
non-dimensional amplification 
factor, in dimensional form 
VOJC : 
imaginary part of d (note d = 
iaGrc); 
stream function. 

base flow quantity: 
perturbation quantity. 
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INTRODUCTION 

IN THIS note an investigation of the stability of 
the conduction regime of natural convection in 
a vertical slot is reported. Although a number of 
publications starting with the work of Gershuni 
[l] have appeared in recent years on this prob- 
lem, most of them have been limited to small 
Prandtl numbers. The most complete work to 
date is that of Rudakov [2] who obtained results 
for Prandtl numbers up to ten. For this range of 
Prandtl numbers he found the instability to set 
in as stationary convection at a Grashof number 
of about 7700 with a variation of at most 5 per 
cent as a function of the Prandtl number. An 
experimental study as a part of the work by 
Vest and Arpaci [33 confirmed this magnitude 
of the critical Grashof number as well as the 
mode of instability. 

For large Prandtl numbers Gill and Kirkham 
[4] found the instability to set in as travelling 
waves. with a non-dimensional wave speed 
equal to 8.5 x 10e3. This value is about 6 per 
cent higher than the maximum base flow velocity. 
The relation 

Grr = 9.4 x 103 Pr-% (11 

summarizes their numerical results for the 
conduction regime, giving the asymptotic limit 
for the onset of instability as the Prandtl 
number approaches infinity. 

The aim of this note is to give the results for 
the intermediate values of Prandtl numbers 
and in so doing bring out any novelty the 
transition region might have. 

FORMULATION AND SOLUTION 

A fluid of kinematic viscosity v. thermal 
diffusivity a, and coefficient of thermal expansion 
7 is considered. The fluid is contained in a 
narrow vertical slot. the vertical walls of which 
are at uniform but different temperatures. A 
Cartesian coordinate system is fixed at the mid- 
plane of the slot in such a way that the positive 
z-direction is vertical, opposite in direction to 
the gravity g. The side walls are at x = + L/2, 

where L denotes the width of the slot. If the slot 
is closed from the top and the bottom the basic 
fluid motion which develops. as a result of a 
small temperature difference being imposed 
between the side walls, is parallel (except near 
the ends of the slot) with rising fluid adjacent to 
the hot wall and sinking next to the cold one. 
Defining the characteristic velocity of the thermal 
motion as U = ~~A~~j~. where AT is the 
difference between the side wall temperatures. 
the :-component, being the only non-zero 
component of the fluid velocity. is given by 

The temperature distribution follows the linear 
relation 

0 s _=- 
AT L 

(3) 

where 8 ZE T - T,. with T, as the mean tem- 
perature of the side walls. For the subsequent 
equations no special symbols are used to 
distinguish the dimensional variables from the 
dimensionless ones. This should cause no 
confusion. 

If we consider small perturbations to be 
introduced to the basic flow, the linearized 
equations governing the spatial and temporal 
behavior of the perturbation quantities (denoted 
by primes) take the form 

11’ = y’ = w’ = 0’ = 0 at x = f +. 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 
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The scaling, which is the same as used above 
with the addition of p/v for time, results in the 
parameters Grashof number Gr’ = trL/v and 
Prandtl number Pr = v/a to be present, It has 
been shown by Vest and Arpaci [3] that for the 
present problem the critical disturbances are 
independent of the y-coordinate. This allows 
the stream function to be introduced through 
the de~nitions 

Assuming now that the disturbances have a 
z-dependence in the form 

&x, 2, t) = &x, t) exptitrz), (11) 

eliminating the pressure, and letting D = a/ax, 
the equations (4)-(g) readily reduce to 

$(D’ - ct’)tp -!- i~tG$j@ - a’)4 - D%%$] 

- 06 = (r>Z - a2)%$ (12) 

88 

dt 
i- id%6 - iuGr$ = +$D’ - c&e (13) 

+=r>+=e=o atx= sf+ 04) 

The Galerkin method was used to solve the 
system (12)--(14). An orthogonal series for the 
stream function was constructed from the C and 
S functions discussed by Harris and Reid [5], 
Trigonometric functions 

cos,(x) = cos(p,x) and sin,(x) = sin&,x) (15) 

where 

p?n = (2m - 1)~ and km = 2mrc (m = 1.2,. . .) 

WI 

were used for the expansion of the temperature, 
In the two series 

&x7 t) = $, [a$)G,(x) + BREWS&)] 07) 

8(x, t) = z Ed,(t) sin,(x) + ie,(t) cos,tx)] (18) 
“=I 

the imagina~ unit has been introduced for 
convenience as the coefficients a,, b,, d,, and e,, 
are in general complex. substituting the expan- 
sions f17)--(18) into equations flZff14) and 
orthogonali~ng these leads to an algebraic 
Eigenvalue problem 

A dX &+BX=O or (&r-i-B)X=O. (19) 

The vector X consists of the coeftients of the 
series (17)-(18) and the matrices A and B 
quantities resulting from o~hogon~~ization. 
Due to the form of equations (12)-713) the 
elements of A and B are real. The onset of 
instability for‘the flow was determined by either 
solving numeri~alIy for the 4N Eigenvalues 
associated with an N-term expansion or, in the 
stationary case, investigating the sign change of 
the determinant of the matrix B. 

DISCU~I~N 

In using what is a convergent procedure for 
obtaining the solution, one relies on a rapid 
convergence of the constructed expansions in the 
parameter ranges of interest. The use of simple 
ort~gon~ functions does not necessarily lead 
to a satisfactory meeting of this requirement as 
was evidenced by Dolph and Lewis [6] in the 
analysis of the plane Poiseuille flow and by 
Gallagher and Mercer [7] for the plane Couette 
flow. In both investigations it was found that as 
the product uR (or being the wave number of 
the disturbance and R the Reynolds number of 
the base flow) was increased, the convergence 
deteriorated. The reason for this becomes 
obvious from a WKBJ type of analysis [S] 
which shows the rapidly oscillating nature of the 
solutions when UR is large5 as well as their steep 
variation near the turning points of the equations, 
To account for all the harmonics in a complicated 
solution a large number of terms have to be 
included in the expansions. 

These arguments can be extended for the 
present problem directly when the Prandtl 
number is zero for then the energy equation can 
be disregarded and one is left with an Orr- 
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Table 1. Non-dimensional amplijicationiactor err for Pr = 0, x = 2.65 

N 0 4000 
Grashof number 

8000 12000 16000 20000 

1 - 314 -18.9 12 46 81 115 
2 -37.18 -21.3 2 ‘3 40 55 
3 -37.16 -21.76 0.5 21.3 41.3 61.5 
4 -37.159 -21.784 0.40 21.1 40.8 60.25 
5 - 37.1586 - 21.7877 0.368 21.00 40.53 59.68 
6 -37.1583 -21.7884 0,363 20.98 40.48 59.62 
7 - 37.15822 -21.78855 0.3616 20.977 40.472 59,573 
8 -37.15818 -21.788610 0.3611 20.9757 40.468 59564 
9 -37.158161 - 21.788630 0.36089 20.97493 40.4658 59.5606 

10 -37.158150 - 21.788639 0.360798 30.97459 40.4649 59.5588 
11 -37.158144 - 21.788642 0.360753 20.97443 40.4645 59.5581 

Sommerfeld type of equation with a cubic 
velocity profile. As it turns out, and the results 
in Tables 1 and 2 verify this, the product aGr is 
low enough at the state of marginal stability to 
insure rapid convergence. The same is true. as is 

Table 2. The Grashoj number oj’ the critical 
mode as a,fimction of the order of approxima- 

tion N ond wave number G( jbr Pr = 0 
_~_ 11_- - _.~_ 

N 
d( 4 5 6 7 

2.50 7988.6 7993.2 7994.0 
2.55 7958.9 7963.7 7964.6 
2.60 7938.0 7943.1 7944.0 
2.65 7926.1 7931.4 7932.4 7932.6 
2.70 7923.2 7928.9 1929.9 7930.1 
2.75 7929.8 7935.8 7936.9 
2.80 7952.6 7953.7 

shown in Table 3, for non-zero but small 
Prandtl numbers. The results in Tables 1,2 and 
3 are in good agreement with those obtained 

earlier by Rudakov [2]. At Pr = 10 Rudakov 
found the convergence to start to become 
slower and did not proceed to investigate higher 
values of the parameter Pr. That the con- 
vergence is retarded is not surprising since, 
while the terms aGr in the momentum equation 
determine the rapidity of the convergence for 
small Prandtl numbers. the parameter aRQ 
(Ra = GrPr is the Rayleigh number of the flow) 
in the energy equation becomes important as 
Prandtl number increases. 

In light of this, it would appear reasonable to 
obtain a simplification to the equations (12~(14) 
for a large value of Pr. This was done by Gill and 
Davey [9] in connection with a related problem 
concerning the instability of a free convective 
boundary layer. Their work was extended by 
Gill and Kirkham [4] to include both the 
convection and conduction regimes of natural 
convection in a vertical slot. The results of Gill 
and Kirkham have been cited earlier and 
besides the onset of instability occurring now as 

Table 3. 7he critical Grashoj number as a jum tion oj the order of approximation N and 
the Prandtl number Pr ,for 3~ = 2.65 

_____ 
N 

Pr 1 2 3 4 5 6 7 8 
~.- ______- _~___~ 

O@Ol 6444 7650 7901 7913 7918 7919 7920 7920 
0.01 6386 7549 7793 7805 7810 7811 7811 7811 
0.1 6085 7107 7337 7349 7354 7355 1355 7355 
1.0 7868 7883 8000 7983 7989 7989 7989 7989 

10 10686 8386 7948 7903 7898 
~___ _____. ~___ 
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FIG. 1. The states of neutral stability as a function of Prandtl 
number. 

travelling waves, there is a Prandtl number 
dependence (see equation (1)) which was largely 
absent when Pr is small. 

This indicates two different physical mech- 
anisms of instability. In fact, by calculating the a 
energy integrals Hart [lo] showed that as Pr 
was increased there is a tendency for more of the 
disturbance energy to originate from the poten- 
tial energy associated with the buoyancy effect 
than as transfer from the kinetic energy of the 
base flow by the action of Reynolds stresses. The O- 

I I I t I 

IO 20 30 40 SO 

extrapolation of equation (1) shows that a Pr 
travelling wave mode, which is more unstable FIG. 2. Variation of the critical wave number as a function 
than the stationary one, might already exist for of Prandtl number. The dimensional wave number is Ld(- 1 

Pr = 2. As this mode, according to equation (1) 
would also be associated with lower values of 
Gr when Pr increases, the convergence of the 
series might not be intolerably slow. 1 

The results of our calculations, summarized 
in Fig. 1, indeed confirm this. The transition to 
the travelling wave regime was noted to take 
place at Pr = 12.7. Through the transition, as is 
shown in Figs. 2 and 3, the wave number drops 
from 2.8 to 0.8 and then increases again for 
higher values of Pr. The wave speed, being zero 
for Pr -c 127, assumes a value of 7.49 x 10d3 
after the transition and continues upwards as 

lo 

0 
x 
c: 

I I 
i 6 , I I i I 

IO 20 30 40 50 

Pr 

Pr increases. An example of the type of conver- 
gence obtained in this region is shown in Table 4. 

FIG. 3. The wave speed at critical state as a function of 
Prandtl number. The dimensional wave speed is gyA?‘i?c,/v. 
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The Eigenvalue given here corresponds to the 
critical mode slightly beyond the onset of 
instability. As it was felt that ten terms in the 
expansions gave satisfactory accuracy on the 
calculation of the amplification rate to estimate 
the critical Grashof number to be within 0.5 per 
cent of the actual. the subsequent calculations 
involved finding the Eigenvalues of 40 x 40 
matrices. At Pr = 10~ and beyond more 
terms would have been needed but as we 
approached the equation (I) rapidly no calcula- 
tions were made for Pr > 1000. 

N (T? 0; 
..~. 

1 0.1956970 554425 
2 0.0957718 6.61836 
3 0.1025940 6.63448 
4 0.0418630 6.79936 
5 0.0526547 6-78805 
6 0.0328684 6.78645 
7 0.0305637 6.79115 
8 0.0290949 6.79105 
9 0.0304117 6.78714 

10 0.0295103 6.79218 

To give an indication of the Eigenvalue 
spectra, Figs. 4 and 5 for Pr = 5 and Pr = 50, 
respectively. are included. Following Rudakov 
[2] the Eigenvalues are labelled as isothermal 
@-levels) or non-isothermal (v-levels) in 
accordance with whether they originate from 
the momentum or the energy equation, respec- 
tively. This identification could be made con- 
veniently since for Gr = 0 the two equations 
become only Ioosefy coupled. At low values of 
Grashof number all the Eigenvalues were found 
to be real with the first four. for Pr = 5, and the 
first thirteen, for Pr = 50, originating from the 
energy equation. An increase in the Grashof 
number resulted in these combining into com- 
plex conjugate pairs. The wave speeds corres- 
ponding to the complex conjugates are shown 
in the lower portion of the figures and are 
scaled by a factor of (ctGr)-’ to facilitate com- 

FIG. 4. eon-dimensional damping factor and wave speed 
for c( = 2.65:PP-= 5. 

FIG. 5. Non-dimensional damping factor and wave speed 
for a = 2.65. Pr = 50. 
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parison with the base flow velocity. For Pr = 5 
the lowest isothermal level combines first with 
the fifth non-isothermal one but bifurcates upon 
a further increase in Grashof number into two 
real levels again. The lower branch of this 
bifurcation determines the point of instability. 
As the non-isothermal levels are brought down 
with an increase in Prandtl number there comes 
a point at which the lowest non-isothermal levei 
becomes the critical one. This occurs at Pr = 
12.7 and the mode of instability near this point 
depends on the relative ampli~catio~ rates of 
the stationary and travelling modes for a given 
value of Gr. 

to 12.7 the wavelength of the critical waves is 
about eight times the width between the walls, 
this diminishing to about twice the gap width 
as the Prandtl number tends to infinity. Finally, 
as the Pr is increased the instability becomes 
more thermal in its origin. 

We wish to thank Professors V. S. Arpaci and C. M. Vest 
for the many helpful suggestions, the University of Michigan 
for their computer support, and the Department of Mechani- 
cal Engineering of The Ohio State University for the 
secretarial help. 
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SUR LA STABILITE DU REGIME DE CONDUCTION EN CONVECTION NATURELLE 
DANS UNE FENTE VERTICALE 

R&ens&-Gn a Ctudie analytiquement la stabilite du regime de conduction en convection naturelle dans 
une fente verticale. Pour Pr < 12.7 ~instabilit~ apparait sous forme de cellules horizontales stationnaires. 
Une majeure partie de l’energie cinitique de perturbation est transferee par I’action des contraintes de 
Reynolds depuis l’eeoulement de base. Le nombre critique de Grashof est presque indbpendant du nombre 
de Prandtl. Pour Pr r 12,7 l’instabilitc apparait comme une onde progressive. Quand le nombre de 
Prandtl est accru, le debut de l’instabilitc approche la solution limite correcte qui est une fonction de GrPr*. 
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DIE STABILITiiT DES BEREICHS DER W~RM~LEITUNG BEI NATiiRLICHER 
KONVEKTION IN EINEM SENKRECHTEN SPALT 

Zusammenfassrmg-Die Stabilitat des Bereiches der Warmeleitung bei natiiriicher Konvektion in einem 
senkrechten Spalt wurde anaiytisch untersucht. Fur Pr < 12,7 beginnt die Instabiiitat dumb Bildung von 
station&en, horizontalen Zellen. Der Grossteil der kinetischen Stiirungsenergie wird durch Reynolds- 
Krafte aus der Grundstriimung tibertragen. Die kritische Grashof-Zahl ist fast unabhangig von der 
Prandtl-Zahl. Fur Pr > I?.7 setzt die Instabilitlt als eine fortlaufende Welle ein. 

Bei wachsender Prandtl-Zahl nlhert sich der Instabilitatsbeginn der korrekten Grenzlosung. eincr 
konstanten Funktion von Gr.Pri. 


