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Abstract The electric dipole matrix clements of hydrogen fluoride have been calculated by numerical integration
for transitions involving large quantum numbers ¢, J. Overtones have been included through Ar = 5. Molecular
wave functions obtained by numerical integration of the Schridinger equation were used. The influence of the
mechanical motion on the matrix clements has been determined for Morse and Rydberg-Klein Rees (RKR)
potential functions. The influence of the electric dipole-moment function approximations has been investigated
by a comparison of matrix elements obtained with approximations having the form of a truncated polynomial
and a wave-function expansion. The inaccuracies in the matrix clements caused by uncertainties in the dipole-
moment coefficients have been investigated.

I. INTRODUCTION

THE PROBABILITY per sec, A(u — [), that a molecule will spontaneously emit radiation and
arrive at a lower energy state is a quantity of great importance to many applied physics
and engineering problems. The measurement or calculation of A(v — /) is exceedingly
difficult for most transitions of interest. i appropriate measurements are not available
for a particular energy-level system, one must calculate the A(u — [) from first principles.
If experimental information is available for a given system, it may be possible to model
the electrical and mechanical motion of the molecule and, within the limits imposed by
the model, A(« — ) may be calculated for otherwise inaccessible transitions.!

A case in point 1s the probability for spontaneous, infrared emission from upper
vibration-rotation levels in diatomic molecules. To date, no direct measurements of
these probabilities have been made. However, for most molecules, probabilities are known
from absolute absorption—strength measurements on transitions involving the lowest
vibration—-rotation levels. The proportionality between line strength and transition
probability is ¥

S o [Kulpl 1.
The quantity {u|p|l) is defined as
Lulplly = J“P,y.‘l’, dndV SN
ny
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where the W are solutions of the Schrodinger equation for a system of three nuclear degree-
of freedom (V' ~ r. 0, ¢) and n clectronic degrees of frecdom with coordinates, ». The
and { are scts of quantum numbers specifying upper and lower stationdary cnergy states
of the diatomic molecule. The clectric dipole-moment function is a function of », r_ 4. .
Extrapolation of (ulp|l> from small (u, /) values to large values involves: (1) modeling
the function p: (2) solving a simplified form of the Schrodinger equation: and, (3) perform-
ing the integration in equation (1). This extrapolation is the subject of this paper. Fhe
remainder of Section 1 reviews concepts basic to an understanding of the model to be
developed and a brief review of pertinent literature.

1.1 Definition of the dipole moment u(r)

The basic assumption in molecular theory is the Born Oppenheimer approximation.'™’
a theory in which the electron motions arc assumed to be independent of the vibrational
and rotational motion. To this approximation. the solution to the Schrodinger equation is:

Won r 0.) = U, () Y0, p) (2)

where J and M are quantum numbers specifying the rotational angular momentum and
its projection on a space-fixed axis: U, is the wave function which describes the clectronic
state with quantum numbers n;; YJ(0. ¢} arc associated Legendre polynomials: and wir)
1s a solution of the radial Schrodinger equation:

d*ry) N Saim| RPIJ+ 1 )

] S E—vi =" i = o, (3)
dr- h* ) Smrs ) i

In the above, i i1s Planck’s constant; n is the reduced mass: E 1s the stationary cnergy
value; and V(r) is the mechanical potential which describes the nuclear motion.

Symmetry requires that in the case of a diatomic molecule. the molecule-fixed dipole-
moment function, p,. be directed along the internuclear axis:

e =D i, ()
.

where the sum is taken over all electrons and nuclei: ¢ is an effective charge for cach particle:
and ¢, is the coordinate along the nuclear axis within the frame of reference fixed in the
molecule. The dipole moment p(i. r. 0. b) is given as a function of direction cosines relative
to the laboratory frame (x. y. 2):

00 ) = gl sint cos o
i r 0.p) = gl sin 0 sin ¢ (3
Ay ) = |pg cos (.

For fixed electronic states. the mean value of |u,| depends strongly on r. but not on 1.

Therefore. for fixed n;. an average clectric dipole-moment function may be defined as:

ey = | Ukppln U, dig (6)

Y
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The components of equation (1) may then be rewritten as:

' I M, r 0. pilne I M

n2n

” .
= fdrrzl//,"i, J Uklng(n. nU,, dny,, f f d sin 0 d¢ sin 0 cos Y'Y (7)
4]

n 0 0
or, if n; is suppressed. as is customary for ', = n;

n2n

f *
I M\p eI My = f drr?g® utrng J J d0 sin 0 d¢ sin 0 cos ¢ YA YA (8)
0 00

The procedure is the same for g, and y,. Squaring and summing these results give:

[, r 0. Qe =Y Y [0 M p(r, 0, g, J. M|

MM i=xy.:z

b 5 n2n ¥ 5
> [J rtdr fn/'/l("Wu/j| |r(j j d0sin 0d¢ Y’ sin 0 cos qu_‘)’)
MM
0 00

mln . 5 nln . 5
ff dOsin0dgp Y3 sin0sin YY) + ff dOsin 0de Y3 cos 0 Y;)’) ] (9)

00 o0

Il

+

x

T eI Y = ] H P dr ff.,»mww,J}

0

2

where

J+1 R Branch
m= (1

—J P Branch.

The reduction of (9) to (10) is straightforward, and it shows that the factor [m| in (10) arises
from the transformation properties of the electric dipole moment.' Since |m| is uniquely
determined by the quantum number J, we will consider only the radial dipole quantities
eI uned .

1.2 Properties of the {o'J\ur)ed >

The {v'J'|u(r)ledy form an array, with the rows labeled according to the upper (primed)
level involved in a transition, and with the columns labeled according to the lower (un-
primed) levels. It can be shown that this array has all the properties of a matrix; con-
sequently, the individual quantities {v'J'\u(r)eJ> are called the matrix clements of the
dipole moment. Once they are calculated, the vibrational section rules may be determined
for a particular u(r) model and potential function. For example consider the lowest order
approximation. If it 1s assumed that pu(r) is proportional to the displacement from nuclear
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cquilibrium. x = » — »_. then
X)X (12

It is also assumed that the mechanical motion is harmonic and that there is no interaction
between the vibrational and rotational motions. then

JU+D JU+1)

(13

r P

and
Fx)y « X7 (14

In this case, the solutions to (3) are the Hermite polynomials, ™ and the vibrational matrix
clements are independent of J:

) f/ U+ -
e+ lxjey = : ) (1
T (z) 06
r—Hxpey = ]
v i
where the rows are labeled by o = 0. 1.2, . That is:
0 12 0 0
N 0 I 0
0 [ 030
0 0O (320

The matrix indicates that in the harmonic approximations (&) (10), only the lundamental
series (Ar = + 1) occurs, and this matrix indicates the relative series values. 1If more realistic
functions of u(r) and V(r) are chosen. the zero elements become finite and one predicts
overtong scrics, where Ar > + 1.

Once the electrical and mechanical motion has been modeled and the matrix elements
have been determined analytically or numerically, the isotropic transition probabilities

{in intensity units) may be found from the following relations '
A ) = 64714\,3[”1“ e 5| molecule-see) !
Al v’l')_3/1(2j’+l)<l wned > (molecule-sec
B’ 1 320 m| PRTTPIE cm? (a7
v )= oy —<e Fled )
3220+ 1) s ~" \molecule-crg-sec
20 +1
B(t'J —vJ)= (,,,,,,,,,,,), B(v'J — vJ).
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1.3 Recent developments in the determination of <¢'J'|u(r)lvd >

Integration of equation (1) within the framework of the Born—-Oppenheimer approxima-
tion has been achieved by several authors using mechanical and electrical models which
have varying degrees of sophistication. OPPENHEIMER'® considered the effects of vibration—
rotation interaction (r # r, in equation 13) on the strength of vibration—rotation lines for
harmonic oscillations of the nuclei (equation 14) and for the linear approximation of
u(r) (equation 12). He found that rotational effects altered the square of the matrix element
of each line from the harmonic approximation of equal strength lines, by a correction
factor. F:

[T lutr)|od Y12 = e dr)e > F (18)
where {(v'|u(r)jv) is the rotationless matrix element. In the above. for fundamental band
P and R branch lines:

F=1+4J[1+3J -5 P Branch

(19)
F=1-49J+1)[1=53(J+1)—3%] R Branch

where 3 = (2B,/w,). HERMAN and WaLLis!'* extended the Oppenheimer result to include
the effects of an anharmonic potential for a dipole-moment function in the form:

wry =~ My+M,(r—r,). (20)

The F-factors of Herman and Wallis contain a parameter #§ = M /(M r,). which predicts
an increase in intensity of the P branch lines over the R branch lines (or vice versa, depending
on the sign of #). This model, represented by equation (20), was recently extended to include
quadratic and cubic terms in the dipole-moment function. The case of a rotating Morse
oscillator was treated by Heaps and HErRzBERG ? in 1952 and later by HERMAN et al.!'2-!%)
An alternate analytic approach was taken by TriSCHKA and SALWEN'* who expressed
wir) as a linear expansion of molecular wave functions. This is possible, since the wave
functions form a complete orthonormal basis.

More currently, numerical techniques have been used for determination of electric
dipole-moment functions and molecular wave functions.!'>’ CasHiON'® has tested the
validity of empirical potential functions by numerically integrating the Schrédinger
equation.

This paper is concerned with the determination of ¢lectric dipole matrix elements
o' pulr)|vd > by numerical integration of the Schrodinger equation and the r-dependent
integral which appears in equation (10). The influence of V(r) on the vibrational matrix
elements will be investigated by a numerical integration of equation (3) for J = 0, for
several different functions V(r). The influence of V(r) and the vibration-rotation inter-
action will be determined by repetition of these computations for J > 0. The influence of
the form of u(r) on the matrix elements will be investigated by numerical integration of
equation (10) for the polynomial form of u(r):

wy(r) = Z Mir—r) = Mog4+M(r—r,)+ --- (21)

and for the wave-function expansion of Trischka and Salwen:

!ﬁi(r) '//1(")
= Ao+ A ST
o)~ 0T My ™

o (r) = Z A,
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Application of these computations will be made to the high ¢, J transitions of the HF
moleccule. for the pure rotation. fundamental, and overtone bands. The rotationless wave
functions yr, will be used for g, even for the J dependent matrix clements. a procedure
analogous to that used with the polynomial expansion.

20INFLUENCE OF b)) ON THE MATRIX ELEMENTS

2.1 Morse potential

A number of potential functions have been used in the calculation of dipole-moment
matrix elements. Because a comprehensive evaluation of the various forms of potentials
has been given in the literature.!' 7'® an extensive comparison will not be attempted here.
Rather. we have chosen to compare results obtained from the Morse potential, one of the
most simple and commonly used empirical potentials, with the Rydberg Klemn Rees
potential (RKR). a form which gives better agreement with the true energy levels of the
molecule.

The expression which we have used for the Morse potential is

5

e = e ey (23]
J) = A 23
) A X, -
where
{ . 1.2
f= e (24
=l 2
and
[ 3
= ' (23)

This type of empirical potential function was originally used because it allows a closed-
form solution to the radial Schrodinger cquation and it reproduces the energy levels of
most molecules reasonably well. More important here, this potential s casily constructed
with just three independent parameters. which are defined in terms of spectroscopic
constants known for virtually all diatomic molecules. Thus. if this potential viclds good
results for matrix-element calculations for HE (one of the more difficult molecules to
model because of its high degree of anharmonicity). then it should yield reasonable results
for most diatomic molecules.

2.2 RKR potential

The RKR potential function is obtained by a Wentzel Kramers: Brillouin (WKB)
procedure originally outlined by RypBERG er @l 1?21 f this procedure is used, the classical
turning points of the vibrational motion are determined dircctly from the observed energy
level transitions of a particular molecule. Consequently. line positions calculated with an
RKR potential are generally much more accurate than those obtained from Morse or
other cmpirical potentials. In the present investigation. we have used two RKR potentials
for the HF molecule. An RKR potential generated by FALLON ¢f al??) was used in the
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initial calculations. It was found, however, that the turning points were not sufficiently
dense to compute high overtone matrix elements. A new RKR potential having finer
increments in r was therefore generated. The matrix elements calculated with these two
RKR potentials were equivalent for small A transitions, but were quite different for higher
overtones (A > 3). The line positions calculated with either RKR potential differed from
measured line positions by less than fifteen wavenumbers, even at the highest vibrational
and rotational states considered. In contrast, the line positions predicted by the Morse
potential varied from the measured values for HF by more than two hundred wavenumbers.
The preceding is not to be taken as an argument that the matrix elements calculated with
the RKR potential are better than those calculated with the Morse function, since a poten-
tial which exactly reproduces the cnergy levels of a molecule is not unique.??*+** Different
wave functions can be derived from potentials constructed {rom the same set of energy-
level data, and thus even if the exact form of the dipole moment were known, the computed
matrix clements would not necessarily be unique. However, when two potentials give
results which agree closely, it might be assumed that the molecule is being modeled reason-
ably well.

2.3 Effect of potential functions on vibrational matrix elements

Let us express the matrix elements in the form of equation (18):

T e Iy = ey G TF, m)]. (26)

The J-dependent F-factors will be discussed in a later section of this report. Our concern
here is with the vibrational matrix elements, {t'|u(r)|c>. The effect of the potential function
on the vibrational matrix elements can be seen by inspection of Figs. 1-7. Figures 1-6
compare the Av = 0, 1, 2, 3, 4 and 5 matrix elements calculated with the Morse potential
function to those calculated with the RKR potential function. The wave functions have
been computed numerically from equation (3) for J = 0 and the matrix elements (equa-
tion 10) have been computed numerically with the polynomial form of u(r) truncated
after the cubic term. This approximation to u(r) will be written p(3p). The dipole and Morse
parameters used for all calculations are given in Table 1.

It is clear that matrix elements involving small ¢ depend very little on the potential
function. However, for larger v, the dependence of the matrix elements on V(r) becomes
more pronounced. It can be concluded that as v, " and Av increase, the differences in the
computations for RKR and Morse potentials also begin to increase noticeably. This is
to be expected, since the Morse parameters used for the computations were chosen to
agree with line positions of small Av transitions and the RKR potential was determined
using all line-position data available. The RKR potential is tabulated in Appendix I.

2.4 Effects of potential functions on the F-factors

A number of authors have obtained analytical expressions for the F-factors for the
lower vibration transitions. HERMAN, ROTHERY and RuBIN (HRR)!'® considered the case
of arotating Morse oscillator with a linear dipole moment. A comparison of the analytically
calculated F-factor of HRR to our Morse and RKR potential calculations for the fun-
damental band of HF shows that all three methods give identical results. In Fig. 8, the
results of a similar calculation for the 4 — 5 band of HF have been compared with the
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TABLE 1. DIPOLE-MOMENT COEFFICIENTS

RKR potential
(Potential parameters as in Appendix Ly, = 091717 = 10 “¢my

alp) w2p) 13p)
M, = 1.7957 M, = 17966 M, 1.7965
M, 14968 M, 1.5093 M, 1.5229
M, — 02372 M, 0.0806
M, - -14077

Morse potentral
(e, = 4137.25¢cm 1, X, - 887206, B. .- 20946cm roo= 091717 < 10 % em)

iy 1 2ph wl3p)
M, - 17972 M, 17986 M, [.7982
M, 14938 M, -~ L3108 M, 1.5220
M, o 03478 VM, = (L2333
Vv, I 095K

10*

M, = ( ) Debye
cm

Experimental parameters

Ol 0> 1819 = 10 " esu-em

CNpr) 0 = 9850 = 10 22 ¢su-cm (Ref 2)
2lp(r)|0 1.253 < 10 " esu-cm (Ref. 3
1.6028 « 10 21 esu-cm (Ref. 23]

PRIT IS

HRR calculations for the | — 2 band. the highest comparable A = | transition calculated
by HRR. This comparison indicates the underestimation of the /'-factor that is expected
if HRR is used rather than the numerical computations, It can be seen that the Morse
and the RKR potential give nearly identical results. whereas the HRR F-factor is sig-
nificantly different. Figures 9 and 10 show the results of these three methods when they
are applied to the first overtone (0 — 2) band and then to the second overtone (0 — 3)
band of HF. All three methods give nearty the same results for the 0 — 2 band. Figure 10
illustrates however that the HRR approximate theory fails when applied to the sccond
overtone band. In this latter case, the Morse and the RKR potentials also give significantly
different results.
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FiG. 3. Av = 2 matrix elements for HF. Fi1G. 4. Ar = 3 matrix elements for HF.

3. INFLUENCE OF THE ELECTRIC DIPOLE-MOMENT FUNCTIONS ON THE
MATRIX ELEMENTS

3.1 Polynomial approximation

[t will be shown that the dipole moment y(r) has a much greater influence on the matrix
clements than does the mechanical description of the molecule. A comparison between
two forms of u(r) follows. The most commonly used expression for wu(r) is the truncated
Taylor-series expansion about the equilibrium separation

wr) = Mr—r,). (27)
The M, are taken as parameters to be determined from experimental mecasurements.

Usually. as many parameters are taken as there are measurements available for that
molecule, and a set of simultaneous equations are solved for the M/s. Generally, the
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i 8 1 ‘ )
o2’ ’ 0.00—2 _}
0 2 4 6 8 10 0 2 4 6 8 10
v v

F1G. 5. Av = 4 matrix elements for HF. Fii;. 6. Av = 5 matrix elements for HF.
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F1G. 10. HF vibration—rotation interaction factors for v = 0« v = 3.

overtone sequence measurements are the experimental information: thus, the equations
are:

Umax

0y = 3 M| Y lr—r)or® dr (28)
i=0
forv =0 .

where v, 1s the upper state of the highest overtone-data available. M, is often taken to
be equal to the permanent dipole moment, and the first equation is eliminated. The remain-
ing equations are unaffected, since because of the orthogonality of the eigenfunctions.
terms containing M, appear only in the first equation. The rotationless matrix elements
on the left-hand side of equation (2) may be determined only within an ambiguity in sign
by band-intensity measurements, since the measured intensity is proportional to their
square, {viu(r)|0>2. This ambiguity can be resolved by additional information obtained
from other band measurements (BENEDICT e al'') or through the measurement of a
number of individual lines in each band (MEReDITH). The values of the integrals in the
above equations can be determined in closed form if the harmonic, Morse, or certain
other functions are used or they can be evaluated numerically, as in our present calculations.
Once these values are determined, the system of v,,, equations in the same number of
unknowns may be easily solved. Generally, this procedure will determine different coeffi-
cients, M., for different potential functions, even for the same values of the experimentally
measured matrix elements. Also, as v, Is increased to t,,,+1 by the inclusion of an
additional measurement, all of the M,’s previously determined will change value as a non-
zero value of M, . is determined.

The dipole-moment function as determined above can then be used as a method of
interpolation and extrapolation to calculate any other matrix elements of interest :

e = | w,,f[zo M,»<r—re)i] v dr. (29)

Umax
t
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3.2 Warve-function approximation

A completely different, and more elegant approach to the analysis of experimental
data was suggested in 1959 by TRISCHKA and SALWEN.""*" In this approach. the dipole
moment i1s expanded in terms of the radial wave function of the molecule:

Wikr)
wry = ) A, {30y
Z ’//u(')
When the expansion is substituted into the integral which defines the matrix clement.
the A; are determined as the matrix clements {iu(r)(). Substituting (30) into {rju(r)|0).
we obtain

o> = [, 3 ﬁ

Since the wave functions are orthonormal, only onc term of the summation remains

Yor ¢ (31

|0y = 4 ’ Witpr® dr

or
= {ijdm)0>. (32)

As in the polynomial expansion. one coefficient in the dipole-moment expansion is
determined for each experimental measurement. In the polynomial case. the relationship
between the M; and the measured matrix elements is somewhat obscure, since it occurs
through a set of linear equations. With the wave-function expansion, the relationship is
the most straightforward possible- an identity.

The substitution of the wave-function cxpansion for the dipole moment gives the
following expression for any other transition.

=1y, R0 "— 2 dr (33
[‘ Z l//n

where the notation R*" = (o'judr)|e> is used. When the summation is removed from under
the integral. we have
W dr (34

Rz".z‘ — Z Ri,(l “ w,-' l//i
i J vy

The sum should be over the bound states of the molecule and should include an integral
(scc CasHION?®)) to account for possible transitions to unbound states. For diatomic
molccules in the ground state, transitions to unbound states are highly unlikely. so that
integral contribution is assumed to be zero. In addition, the overtone matrix clements
generally decrease quite rapidly as the upper state increases: therefore, Trischka and
Salwen suggest that a reasonable approximation is to assume the unknown R“° be taken
as zero.

In 1963, CasHioN?® extended the work of Trischka and Salwen in an attempt (o deter-
mine all matrix elements involving the ¢ = 0 level as a function of only one experimentally
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determined matrix element. The treatment is well documented, and therefore. it will not
be reviewed here. Since intensity data are now available through the second overtone
band for HF, the Cashion extension has been used here only for 4, for which i > 4.

In this paper, when the dipole-moment expressions are compared, the truncated poly-
nomial form will be written u(np), where n is the degree included (e.g. the linear approxima-
tion is written u(1p)). The wave-function expansion will similarly be written g(nw)., where »
is the number of experimental bands included.

3.3 The HF dipole moment

In principle, the dipole-moment function of a molecule is well defined by the electronic
structure of the molecule and can be calculated without reference to band-intensity measure-
ments. The only assumption necessary is the separability of the electronic motion from the
vibrational and rotational motion, the Born-Oppenheimer approximation, which is almost
always assumed in any analytic treatment. The calculation of the dipole moment requires
the calculation of the electronic molecular eigenfunctions and an appropriate averaging
of these eigenfunctions at a number of internuclear separations. Such a calculation for the
HF molecule has been done by NEesBeT'?” who used an approximate Hartree Fock
method.

In that paper, Nesbet reports two types of calculations, a low precision calculation
for three values of the internuclear separation near the equilibrium separation and a
higher precision calculation for the internuclear distance approximately equal to the
equilibrium distance. A comparison of the values of the dipole moment and its derivatives
at the equilibrium internuclear distance obtained by Nesbet and from our measurements
is given in Table 2. From that table, it can be seen that the higher precision Hartree- Fock
calculation gives excellent agreement with the measured dipole moment : however, since
the high precision calculation was only performed for the one internuclear distance, the
derivatives cannot be evaluated. Using Nesbet’s lower precision calculation, we can com-
pare the derivatives of the dipole moment which are of primary concern in determining
infrared band intensities. The first derivative at the equilibrium separation is approximately
25 per cent larger than the value inferred from band-intensity measurements.* That small
a difference is quite reasonable for this type of calculation: however, it is still much larger
than the approximately 3 per cent error in the value derived from the intensity measure-
ment. The second derivative, however, does not agree with the value obtained from intensity

TABLE 2. COMPARISON OF THE HF DIPOLE MOMENT AND ITS DERIVATIVES

Present Calculation ab initio Calculation 27|
Calculation 1 Calculation II
n D 1.819 1,9614 1.827
di .
Sk /
ir D/Bohr 0.805 1.029 N/A
dzx 2
f¢2 D/Bohr -0.076 0.260 N/A
dR

* In his paper, Nesbet reports somewhat better agreement between the first derivative obtained in his cal-
culation and that obtained from band intensity measurements. [t appears that that agreement was caused by a
numerical error made by Nesbet.
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measurement and. in fact. differs in sign. In view of the excellent agreement obtained lor
the dipole moment by the high precision calculation, it is unfortunaie that this type of
calculation was not carried out over a range of internuclear distances.

In addition to the information about the dipole-moment function near the equilibrium
separation provided by ub initio calculation. the general form of the function for large and
small r can also be determined. Nesbet concluded that at the imit of large internuclear
separation. the molecule becomes two neutral atoms. and in this limit, the dipole moment
must approach zero. In the limit ¥ — 0, James er «l*® conclude that the dipole moment
must approach zero as the third power of the internuclear separation. However. the very
strong nuclear repulsive forces prevent molecular oscillations in this region. and. therefore.
intensity measurcments can provide little information about this section of the dipole-
moment {unction. In Fig. 11 glp). @(2p) and 1 3p) are shown. Nonce of these polynomial
approximations fulfill the necessary condition discussed above., However, d3p) man
represent a reasonable approximation for caleulation. If it is extrapolated to larger radius.
it may be scen that p(3p) would equal zero at approximately 4.5 Bohr radn. This is some-
what smaller than the expected zero at about 4.95 Bohr radii. which is the classical turning
point for the highest observed vibrational state22" For small separations. u(3p) clearly
does not approach the origin, but, that is of little significance. since the mechanical motion
is constrained by the potential to be in the region with a separation of greater thun 1.15 Bohrs
in cven the highest obscerved vibrational state. Figure 12 shows the approximate dipole
moment calculated when we use the permanent moment and three overtone matriy
elements with the wave-function expansion. Inspection of Fig. 12 shows that this approxima-
tion doces not fulfill the necessary conditions for a realistic dipole moment, since it increases
exponentially at Targe radi. When we add more terms to the wave-tunction expansion
and use Cashion’s values for the overtone matrix elements (Fig. 13) we have a much more
realistic dipole-moment curve over a wider range of internuclear distance: but there
15 still a rapid and unreasonable increase at large . probably accounting for the very large
Ar =1 matrix clements calculated for higher vibrational transitions when this tvpe ol
expansion is used (Section 3.4). In fact, both the wave-function and the polynomial expan-
stons are constrained by the forms of their respective functions to approach positive or
negative infinity for large r. The exponential increase characteristic of the wave-function
expansion generally dominates the dipole-moment function at a smaller radius than does
the incerease of the highest degree term retaimed in the polyvnomial expansion. Therefore,
the wave-function expansion scems o extrapolute less reasonably to intermediate radin
I'his probably accounts for the erratic behavior of the matrix elements as a function ol
with the wave-function approximation (calculated in Section 3.4).

34 Dependence of the rotationless matrix elements on the dipole-moment function

Precise detinition of the dipole-moment function is the most important ingredient in
the caleulation of matrix clements. The significance of this function is illustrated by Fig. 14,
which compares 1(2p)- and p(3p)-overtone matrix elements for the RKR potential.
Significantly. differences occur, though pu(r) 1s nearly identical ncar » = r, and diverges
only near the turning points {see Figs. 11-13). The RKR calculations made with the third-
degree polynomial dipole moment can be compared with similar calculations made with
the three-coethicient wave-function expansion of Trischka and Salwen and with Cashion’s
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theory (Figs. 15-17). As Figs. 15 and 16 show, for the Ar = 1 and Av = 2 calculations,
the polynomial and the wave-function expansion give very similar results for the lower
vibrational transitions; however, the results diverge quite quickly for higher vibrational
transitions and in the case of {9|u(r)|10> matrix element, differ by an order of magnitude.
The rapid increase of these matrix elements calculated with the wave-function approxima-
tions seems unreasonable at large v. Some explanation for this unexpected behavior was
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suggested in Section 3.3. In Fig. 17, the overtone matrix elements predicted with the use
of the u(3p) dipole moment can be compared with those arrived at by Cashion. The signs
in the respective symbols represent the signs of the matrix elements represented. It can be
seen from Fig. 17 that a correspondence between these two methods seems to hold through
the fourth overtone {(5|u(#)|0)> matrix element. For large overtone matrix elements, differ-
ences in both sign and magnitude are considerable. The corresponding overtone elements
from Trischka and Salwen’s wave-function approximation are the same as the first three
overtone elements in the third-degree polynomial approximation represented in Fig. 17.
since both approximations are fit to experimental data : the higher overtone matrix elements
for the wave-function expansion are. by definition, zero and therefore are not plotted.
A complete tabulation of the rotationless matrix clements and Einstein coefficients cal-
culated with the w(3p) approximation are tabulated in Appendix 2.

3.5 Rotational dependence of the matrix elements when the polynomial dipole moment is used

The F-factors which represent the rotational dependence of the matrix elements are
also affected by the choice of the dipole-moment function. Figures 18 22 show what effect
the addition of the third-degree term to the polynomial dipole-moment function has on the
HF F-factors. The fundamental band #-factor has not been included. since in this case, both
polynomial functions give identical results which agree quite well with experiment (sce
Ref. 2). Figure 18 compares the calculated and measured F-factors in the first overtone.
For m > 0 corresponding to R-branch transitions, the third-degree polynomial calculation
gives slightly better results; for m < 0, the second-degree polynomial calculation agrees
more closely with the measured values. However. definite conclusions cannot be drawn
from the comparison because of error in the measurement. Figure 19 will give an additional
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comparison of the F-factors when the 0 — 3, large J line strength measurement (now in
progress) is completed. Figures 20 and 21 show two Av = 1 F-factors calculated with the
different polynomial dipole moment for high vibrational transitions. Significantly, the
additional term does have some effect, although approximate analytic theories'*®-13)
predict that the F-factors for Av = 1 transitions should be dependent only on the coefficient
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of the linear dipole-moment approximation term. Clearly, those theories do not hold for
higher © and J transitions, as shown in Fig. 22, a comparison of Meredith’s extension of
the Herman--Wallis theory with the F-factor calculated numerically for the 3 — 4 band.

4. ERROR ANALYSIS FOR THE VIBRATIONAL MATRIX ELEMENTS

In addition to the minor errors incurred by inaccuracies of the potential function and
by numerical crror in the calculation, there are two other sources of error in the present
calculations. These two remaining sources of error will be designated approximation
error and measurement-induced error. By approximation error, we mean the error intro-
duced into the calculated matrix elements because the form of the chosen dipole-moment

]

Fimy)
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0.6

0.4 L
-20 -10 0 10 20
m
F1G. 19. Vibration rotation interaction for the v = 0 «» ¢ = 3 band of HF when RKR potential
is used.
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3.0

F(m)

m

F1G. 20. Vibration-rotation interaction factor for the © = 4 «» v == 5 band of HF when the RKR
potential is used.

approximation does not correctly represent the real dipole moment of the molecule. For
example, in the case of the polynomial approximation, we are assured that if enough
terms are retained, we can adequately represent any reasonable dipole-moment function.
However, lack of experimental overtone information limits the number of terms which
can be added to the polynomial approximation. Moreover, it is not possible to check the
reliability of the approximate solution, since little is known about the actual form of the
dipole moment.

The measurement-induced error present in the calculated matrix elements is easier
to handle. We define measurement-induced error as error in the calculated matrix elements

o | | \ =
-20 -10 0 10 20
m
F1G. 21. Vibration-rotation interaction factor for the v = 8 «» v = 9 band of HF when the RKR
potential is used.
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caused by inaccurate measurements of the overtone matrix elements used to determine
the dipole moment coefficients when the chosen dipole-moment approximation is adequate.
For example, consider the third-degree polynomial approximation. If we assume that the
dipole moment of the molecule is well represented by a third-degree polynomial, then we
could find the correct polynomial by using the uniqueness theorem for polynomials, by
solving the set equations in Section 3.1 using the correct matrix elements through {3|u(r)j0 .
However, for the overtone matrix clements, we must use measured values which may con-
tain some errors; therefore, generally, the coeflicients of p(3p) will be in error. In turn,
these errors introduce other errors into matrix clements calculated with that particular
polynomial dipole-moment approximation. A representation of the magnitude of those
induced errors is the aim of this section.

4.1 Derivation of the measurement-induced crror expression

For clarity. matrix notation will be used in the derivation of the measurement-induced
crror expression. For u(np). the coefficient M, are solutions of the following set of n+ |
equations:

S, [ o dr = O
=1 '15,
Y M, f Wopiy rt dr = eju(nl0d forr = 1,2 ..n
[
where
Fer

g =

Since we are not presently interested in the purce rotation transitions and M, appears
only in the first equation of (35), we may restrict our attention to the last n equations of (35).
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Those equations may be written in matrix notation as:
AM = R°

where A is a matrix which has elements, A4,;:

Avi = j lpopil//vrz dr

where M is a 1 x n matrix which has elements, M;. The elements of R® are the measured
overtone matrix elements

R? = ilu(r)|0).
If A7 " exists, M may be found:
M= A"'R°

Any matrix elements can be calculated for u(np):

et Aelptr> = 3 M, [ o o (36)
ji=1

If the following definitions are assumed for the matrices B*" and R*®
BIL?JV = J lpk/)jll/k+Aur2 dr

R = (k+Avlunlky
then equation (36) can be written
RY = B¥M. (37)
If we substitute for the M above:
R = B*4 'R (38)
Equation (38) is particularly important because it gives the matrix element desired as a

linear combination of the input matrix elements, as can be seen if equation (38) is written
explicitly in terms of the elements of the matrices:

Ck+ Av|p(r)k> = [Z (Z Bé}'Aﬁf) <v|u(r)|0>]

v=1

= S Culur0

v=1

J

¥ B‘,?]»”‘Ajv‘). (39)

The linearity of (39), coupled with the assumption of the independence of the measure-
ments, allows us to write the variance of the computed matrix elements, 67 ; 4 4, in terms
of the variances of the overtone measurements 6§ ,,:

n
2 . 2 Av 4 — 1
Okk+av = Z Go,u(ZBijjv )

v=1 J
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or. as standard deviations:

/ "

/ >

Okt Av = \//’ Z Th .
(R

Ar 1
Y By, ) : (40)
i -

The above provides the desired result, a relationship between the measurement crror
and the measurement-induced error in the calculated matrix elements.

4.2 Results for caleulated Av = 1 matrix elements

Equation (40) provided a general relation for the measurement-induced error for any
calculated matrix element, but here we consider only Ar = 1 transitions. The clements
of the matrices 4 and B* ' have been calculated numerically and are given in Tables 3
and 4 for the case of n = 3. when the RKR potential function is used. The matrix C¥ 7'

defined by
(‘\1‘ =1 = B.\t'f 11 i

for n = 3.1s given in Table 5. For calculation purposes. we have taken the standard crror
for the overtone bands mcasured as 3 per cent. This 3 per cent corresponds to approximately
6 per cent error in the values of the measured quantitics, the line strengths. We chosc
3 per cent to represent an upper bound on the probable error. For comparison. we did
a lcast-square fit of the measured r = 0 — 2 overtone strengths'® 1o a sccond-degree
polynomial. A standard deviation of less than 2 per cent was obtained. That value corre-
sponds to a standard error of less than 1 per cent in the v = 0 — 2 matrix element ; however.
systematic error may remain undetected.

TABLE 3. THE COLFFICIENT MATRIX. A,
COMPUTED WHEN THE RKR POTENTIAL IS USED

T.31450kR-2 T.LH2001-3 17368013
-4,21549K-3 0.6L3THE -3 1.15300k-3
1.63503k-3 -1.81860F-3 6.,00283F-4

TaBii 4. THE BY ' MATRIX AS DEFINED IN FHE TEXI

T.31450F-2 71312083 1.73680F 3
1.0425648-1 1.62909F-2 o638 -3
1.291885-1 278701 2 1.12978F-2
1.505461-1 1.21418E-2 LLOT613E-2
1.69914F-1 5.50033E-2 3.13040F-2
1.87917E-1 T.82314F -2 463318 k-2

2.05006E-~1 1.00373k-1 G.5T6T3E-2
2.21212E-1 1.25546k-1 904876 k-2
2.37177E-1 1.54434E-1 1.219641-1
2.02712E-1 1.87152k-1 1.61008E 1
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TABLE 5. THE C*"=! MATRIX WHICH CONTAINS THE
COEFFICIENTS WHICH RELATE THE MEASURED OVERTONE MATRIX
ELEMENTS TO THE DESIRED At = | MATRIX ELEMENT

1.0000E0 0.0 0.0

1.5325E0 1.3598E0 2.0373E0
2.0398E0 3.6219E0 5.9566E0
2.5616 EO 6.9137E0 1.2219E1
3.1191E0 1.1335E1 2.1336E1
3.7203E0 1.6975E1 3.3790E1
4.3856 E0 2.4137E1 5.0473E1
5.1238E0 3.3085E1 7.2318E1
5.9641E0 4.4289E1 1.0079E2
6.9163E0 5.8133E1 1.3728E2

Using the assumed 3 per cent standard error, we have computed the Ar = | matrix
elements and the standard deviation of each and plotted these values in Figs. 23 and 24.
We calculated Fig. 23 using u(3p) with the RKR potential function. Figure 24 represents
the Av = 1 matrix elements, which we calculated using a fourth-degree polynomial expan-
sion with the value of the third overtone (v = 0 — 4) matrix element taken from Cashion’s
treatment. The wider error bars on that curve represent the present situation, where we
have assumed the standard error associated with the v = 0 — 4 matrix element to be
50 per cent. The narrower error bars on that curve were calculated under the assumption
that the v = 0 — 4 matrix element was known to 3 per cent. Thus, the narrower error bars
show the improvement in our knowledge of the Ar = 1 matrix elements which might be ob-
tained if we make a measurement of the <0|u(r)|4> matrix element assuming that the fourth-
degree polynomial adequately represents the dipole-moment function of the HF molecule.

3 j 3 1

2
© R B3
SR R R A PR R
. I ’
z 1 Loy 2 3
- I +
=z 4 i 3
= e L
S 15— < 1 %
N v i
0 . 1 | [ 0 | | L0
0 2 4 6 8 10 0 2 4 6 8 10
v v
FiG. 23. Measurement-induced error in FiG. 24. Measurement-induced error in
Av = 1 matrix elements when u (3p) is used. Av = 1 matrix elements when u (4p) is used.

Error bounds are explained in text.
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S, CONCLUSION

This investigation has :hown that the most important factor is the calculation of
vibration -rotation matrix elements in the dipole moment approximation used. The
influence of the mechanical model as defined by the use of a Morse or RKR potential
function is much less significant and effects only transitions from the higher vibrational
and rotational quantum states. Since at present ab initio theories are inadequate for accurate
determinations of dipole moment parameters, the calculation of matrix clements for
intermediate and large vibrational and rotational transitions 1s heavily dependent on the
number of infrared intensity measurements available for a molecule. The primary con-
clusion infers that analytic theories which retain only linear or quadratic terms in the
dipole moment approximation are not adequate for higher vibrational and rotational
matrix clement calculations. This conclusion was also explicitly confirmed in the paper.
The explicit calculations also suggest that the truncated wave-function approximation
to gdr) 1s not appropriate for matrix element calculations involving large or intermediate
vibrational states.

It 1s not possible to determine the absolute error in most calculated matrix elements
since little experimental data is available. However, an expression has been derived for
the determination of error induced into the calculated matrix clements by the experimental
crrors in the measured band intensities.

A complete tabulation of the numerically calculated vibration rotation matrix clements
using the p(3p) dipole moment approximation for Hydrogen Fluoride has recently been
published."" The calculations include Ar’s through 5 for r’s less than 10 and J values
to 335,

APPENDIX I.
RKR POTENTIAL FOR 7'E° STATEL OF HYDROGEN FILUORIDET

Potential Function
The tabulated RKR potential which follows was used for the calculation, but with additional points at
intermediate r-values to provide a more accurate function.

RKR POTENTIAL FOR X‘f STATE OF HYDROGEN FLUQRIDE |

Energy “rvin "

vV em A tA)

0 2047.049 0.8343456 1.0203310
1 6008.695 0.7846222 1.1129460
2 9798.297 0.7549256 1.1867330
3 13420.380 1.7332200 1.2538800
4 16878.720 0.7160859 1.3179500
5 20176.520 0.7019794 1.3806320
6 23316.520 0.6900074 1.4450680
T 26301.030 0.6797299 1.5057470
8 29131.830 0.6707330 1.5693750
4 31809.960 0 £628389 1.6345320
10 34335.430 (.6558151 1.7018600
11 36706.820 0.6495619 1.7721520
12 38920.790 0.6439867 1.8465430
13 40971.450 0.6390724 1.9263940
14 42849.960 0.6347828 2.0140000
15 44542.330 0.6311092 2.1128150
16 46031.260 0.6280546 2.2284110
17 47292.370 0.6255178 2.3712500
18 48294.480 0.6232452 2.5624320
19 48998.130 0.6201019 2

8587490

+ This potential was computed with a program written by ZARE.'*" Spectroscopic constants determined by
JoHNS and BARROW'*? were used as input data.
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