The Crystal Structure of Boleite—A Mineral Containing Silver Atom Clusters

ROLAND C. ROUSE

Department of Geology and Mineralogy,* The University of Michigan, Ann Arbor, Michigan 48104

Received March 10, 1972

The mineral boleite, $Pb_{26}Ag_9Cu_{24}Cl_{62}(OH)_{48}$, is cubic, space group Pm3m, with a=15.29 Å. Lead and silver atoms form a distorted body-centered array leading to octahedral groupings of these atoms. The silver atoms and their coordinating chlorines form $Ag_6Cl_8Cl_6$ groups similar to those in the metal cluster compounds $MoCl_2$ and WCl_2 . Lead and copper atoms are in distorted square antiprismatic and tetragonal bipyramidal coordination, respectively.

Introduction

Boleite is a lead copper oxychloride mineral which occurs as deep blue crystals of cubic form. These cubes are zoned and consist of an optically isotropic or quasi-isotropic core and a birefringent outer rim of complex structure. The cube faces are sometimes occupied by epitaxial overgrowths of the related species pseudoboleite and cumengite. Boleite has been studied in detail by Mallard and Cumenge (1), Friedel (2), and Hocart (3). They all considered the birefringent material to be tetragonal and untwinned and the isotropic core to be pseudocubic due to twinning. Hadding (4) and Gossner (5), however, concluded that boleite was truly cubic. Ito (6) proposed a tetragonal structure based upon twinning of cubic units at the unit cell level. The tetragonal twinned cell has a "twinned space group" I4/mmm and parameters a = 15.27 and c = 60.94 Å. It consists of four cubic cells stacked along [001] and related by mirror planes at $z = \frac{1}{4}$ and $\frac{3}{4}$ and by a glide plane at $z = \frac{1}{4}$.

In a restudy of the boleite group Winchell (7) concluded that the outer rim of boleite is either an intergrowth of two species (perhaps boleite and pseudoboleite) or consists of boleite lamellae having different orientations. He also performed heating stage experiments on boleite between 25 and 265°C where crystal decomposition began. Between 80 and 180°C the color changed

* Contribution No. 306, The Mineralogical Laboratory.

gradually from blue to green, while the birefringent rim and the quasi-isotropic core merged into an apparently homogeneous, isotropic phase. Upon cooling, the blue color returned but the isotropy persisted. From these and other observations Winchell proposed that boleite undergoes an inversion from a pseudocubic form to a cubic one with increasing temperature.

Symmetry and Composition

To determine the true symmetry of boleite, isotropic cleavage fragments were examined by the author using the Weissenberg and precession methods and $CuK\alpha$ and $MoK\alpha$ radiation. As reported by (4) and (5), isotropic boleite is cubic, space group Pm3m, with no evidence of twinning. The unit cell parameter, as determined from Bradley-Jay extrapolations of single-crystal diffractometer data, is a=15.29 Å. Unit cell contents calculated from the chemical analysis of isotropic boleite reported in (2) are

A qualitative chemical analysis with the electron microprobe showed Pb, Ag, Cu, and Cl as the only elements present. Oxygen was not determined due to instrumental limitations. The above results accord well with the formula Pb₂₆Ag₉-Cu₂₄Cl₆₂(OH)₄₈ determined by crystal structure analysis. The observed and calculated densities are 5.054 and 5.062 g/cm³, respectively.

STRUCTURE OF BOLEITE TABLE I

OBSERVED AND CALCULATED STRUCTURE FACTORS⁴

h	$F_{ m obsd}$	$F_{ m cald}$	h	$F_{ m obsd}$	Fcald	h	$F_{ m obsd}$	Fcald	h	Fobsd	Fcald	h	$F_{ m obsd}$	Fcald
(0, 0)			(4, 0)			(1, 1)			(5, 1)			(3, 2)-	-(contin	ued)
3	748	683	4	2388	2392	2	161	90	5	855	655	7	111	89
4	2295	2413	5	1001	929	3	356	246	6	283	244	8	506	471
5	1762	1707	6	1082	947	4	280	233	7	100	21	9	97	15
6	1606	1639	7	102	29	5	117	42	8	540	538	10	370	457
7	837	800	8	730	724	6	567	474	9	598	596	11	399	423
8	1935	2046	9	109	188	7	338	275	10	82	34	12	526	566
9	287	333	10	931	964	8	254	252	11	281	294	13	314	370
10	1967	2062	11	217	152	9	805	794	12	72	54	(4, 2)		
11	211	251	12	1143	1185	10	70	49	13	946	1023		1111	1010
12	975	1078	13	119	76	11	552	536	(6.4)			4	1144	1010
13	192	200				12	218	157	(6, 1)			5	219	202
			(5, 0)			13	383	424	6	714	623	6	564	471
(1, 0)			5	773	732				7	432	365	7	242	226
2	178	207	6	187	43	(2, 1)			9	94	70	8	523	469
3	444	406	7	642	597	2	648	604	10	291	223	9	638	554
4	112	28	8	110	61	3	285	231	11	241	278	10	648	694
5	104	52	9	235	217	4	459	353	12	159	132	11	86	116
6	114	54	10	604	637	5	367	261				12	80	87
7	80	16	11	255	251	6	994	828	(7, 1)			13	324	336
8	314	323	12	81	124	7	568	502	7	983	916	(5, 2)		
9	430	402	13	529	586	8	202	188	8	258	265	5	1067	981
10	452	441				9	167	132	9	107	142	6	298	282
11	234	228	(6, 0)			10	459	421	10	102	88	7	707	661
12	325	320	6	1604	1616	11	79	55	11	640	649	8	340	315
13	349	381	7	607	579	12	75	16	12	419	438	9	438	404
			8	105	111	13	171	207				10	325	348
(2, 0)			9	107	103	14	237	211	(8, 1)			11	79	30
3	570	430	10	838	810				8	112	78	12	79	24
4	405	409	11	277	285	(3, 1)								
5	1044	954	12	80	34	3	998	934	(9, 1)			(6, 2)		
6	114	26	13	248	263	4	491	403	9	876	924	6	1642	1491
7	91	81	13	240	203	5	919	776	10	180	184	7	398	348
8	959	938	(7, 0)			6	107	5				8	125	148
9	104	47		ccc	505	7	1101	969	(2, 2)			9	328	266
10	710	646	7	666	595	8	99	58	2	1806	2094	10	859	890
11	152	141	8	335	301	9	94	24	3	682	681	11	636	704
12	143	111	9	205	219	10	257	268	4	1079	1057	12	220	255
13	398	421	10	700	689	11	470	473	5	631	495	(7, 2)		
14	470	390	11	81	19	12	180	171	6	1458	1285	7	379	319
			12	154	173	13	256	228	7	901	787	8	824	843
(3, 0)			13	333	354				8	1439	1371	9	105	44
3	733	568	(8, 0)			(4, 1)			9	163	54	10	222	274
4	120	161				4	582	495	10	228	274	11	480	504
5	920	846	8	1961	2110	5	637	512	11	376	410	12	527	595
6	594	540	9	103	173	6	221	190	12	990	1057	13	172	206
7	468	456	10	177	162	7	98	105	13	435	575		1/2	200
8	886	807	11	261	260	8	118	51				(8, 2)		
9	388	421	12	792	858	9	467	459	(3, 2)			8	297	214
10	576	633	46 5:			10	518	516	3	205	222	9	385	371
11	81	102	(9, 0)			11	146	70	4	214	178	10	103	103
12	210	205	9	457	464	12	80	30	5	583	549	11	84	108
13	307	311	10	311	284	13	341	351	6	252	257	12	489	522

88 ROUSE

TABLE I-continued

h	$F_{ m obsd}$	$F_{ m cald}$	h	$F_{ m obsd}$	$F_{ m cald}$	h	F_{obsd}	$F_{ m cald}$	h	$F_{ m obsd}$	$F_{ m cald}$	h	$F_{ m obsd}$	Fcald
(9, 2)			(5, 3)—(continued)			(4, 4)—(continued)			(9, 4)	(9, 4) (6, 6)—(con			-(conti	nued)
9	114	137	12	266	238	8	1167	1028	9	432	438	10	364	363
			13	225	158	9	569	565	10	543	529	11	491	550
(3, 3)			(6, 3)			10	1203	1284	(5, 5)					
3	1312	1343		/73	(10	11	149	200	5	507	400	(7, 6)		
4	188	150	6	673	610	12	312	376	6	394		7	856	723
5	1447	1424	7	480	434 28	(5, 4)			7	954	341 859	8	276	263
6	415	387	8	121			460		8	846	816	9	120	35
7	836	784	9	125	179	5	460	421				10	371	351
8	295	285	10	394	439	6	211	146	9 10	1171 96	1117 142	11	263	276
9	311	270	11	197	177	7	373	330						
10	404	400	12	84	152	8	441	366	11 12	510	481	(8, 6)		
11	1310	1456	13	188	205	9	563	506		332	370	8	257	254
12	327	350	(7, 3)			10	394	365	(6, 5)			9	120	9
13	169	106	7	954	861	11	211	271	6	117	102	10	354	354
			8	331	332	12	152	147	7	120	101	·\		
(4, 3)			9	438	427	13	401	404	8	478	442	(7, 7)		
4	647	581	10	455	452	(6, 4)			9	126	182	7	1038	931
5	721	670	11	1026	1075	6	388	300	10	309	320	8	124	102
6	348	318	12	124	97	7	448	406	11	410	485	9	320	353
7	115	7	(8, 3)			8	368	313	12	470	472	10	599	582
8	483	441		100	0.5	ğ	230	186	(8, 5)			11	1034	1090
9	383	360	8 9	108 163	95 60	10	102	60		010	0.03	(0.7)		
10	91	22	10	440	507	11	91	64	8	919	863	(8, 7)		
11	197	199	11	227	335				9	471	442	8	418	406
12	88	94	12			(7, 4)			10	406	426	10	105	116
13	74	133		307	372	7	309	274	11	301	305	(0.5)		
13	/4	133	(9, 3)			8	342	288	(9, 5)			(9, 7)		
(5, 3)			9	113	228	9	176	97	9	614	684	9	285	344
			10	175	221	10	200	148	10	122	201	(0, 0)		
5	1011	926	11	227	250	11	88	5	11	190	200	(8, 8)		
6	108	62	(4, 4)			(8, 4)			(6, 6)			8	474	482
7	825	690			540							9	355	341
8	416	393	4	671	560	8	439	409	6	885	811	10	846	853
9	668	667	5	931	814	9	257	251	7	606	591	(9, 8)		
10	655	726	6	824	698	10	364	363	8	120	46			
11	266	240	7	521	473	11	243	206	9	283	236	9	336	335

^a The indices for (k, l) are given in parentheses above each grouping.

Structure Determination

Using an isotropic cleavage fragment of dimensions $0.08 \times 0.14 \times 0.40$ mm and equinclination Weissenberg geometry, a total of 1560 intensities were measured on an automated single-crystal diffractometer. Graphite flat-crystal mono-chromated Cu $K\alpha$ radiation and pulse height analysis were employed. The data were corrected for Lorentz, polarization, and absorption effects. Symmetrically equivalent reflections were then averaged to obtain the final set of 360 $|F|_{\rm obsd}$ values.

The data were then used to calculate the Patterson function of boleite. Interatomic vectors were also calculated from the atomic positions in Ito's untwinned cubic structure. Comparison of the two vector sets showed that two of the five cation sites in Ito's structure were occupied by heavy atoms. Starting with these two atoms, the rest were located by means of successive electron density syntheses.

Refinement of the structure was carried out by the method of least-squares using the IBM 360 program SFLSQ5 written by C. T. Prewitt.

 $B(Å^2)$ Atom y 1.4(2) Pb(1) 0.2269(5)0.3030 1.0(1)0.3030(2)0.3030 Pb(2) 1.4(1) Pb(3) 0.2734(3)O 1/2 0.1561(10) 0 2.2(3)Ag(1)0 0 0 3.2(5)Ag(2)ł 0.0925(7) 0.7(2)0.2563(5)0.2563 Cu Cl(1) 0.1233(16) 0.1233 0.1233 2.4(8)CI(2) 0.3864(10) 0.3864 0.1218(15) 2.0(4)2.0(9) Cl(3) 0.3354(32) 0 0.1311(14) 0.1311 1.9(7)Cl(4) 0.3282 1.9(6) Cl(5) 0.3282(14)0.2(10)OH(1) 0.3218(30) 0.2060(30)0.3300(43)3.3(14)0.1831(28) 0.1831 OH(2)

Scattering factors for Pb⁺ and Ag^{+1/2} were obtained from Cromer and Waber (8), Cu⁺ and Cl^{-1/2} from Doyle and Turner (9), and O⁻ from the "International Tables for X-ray Crystallography" (10). Anomalous dispersion corrections for Pb, Ag, Cu, and Cl were taken from Cromer (11). Refinement was carried out using isotropic atomic temperature factors. All reflections, excluding $F_{\rm obsd} < F_{\rm min}$, were equally weighted. The final R value is 10.5% for all reflections or 8.9% if the unobserved reflections are excluded. Table I contains a list of structure factors and Table II, the refined atomic parameters. Interatomic distances and their standard errors (Table III) were calculated with the program ORFFE of Busing, Martin, and Levy (12) using the variance-covariance matrix for atomic coordinates.

Structure and Bonding

Although the unit cell of boleite corresponds to that found by Ito, his proposed crystal structure is quite different from the one described here. Before giving a detailed description of this complex structure, it is desirable to provide a brief overview.

The structure of boleite is based upon a distorted body-centered framework of lead and silver atoms. Only the three Ag(2) atoms are not part of the body-centered array. Since an octahedron may be inscribed within a pair of body-

TABLE III

Interatomic Distances^a (in Å)

Pb(1)-4 Cl(2)	2.94(2)	Cl(1)-3 OH(2)	3.41(8)
4 Cl(5)	3.05(1)	3 Cl(1)	3.77(5)
Pb(2)-3 OH(2)	2.63(6)	6 OH(1)	3.79(4)
3 Cl(5)	3.06(1)	Cl(2)-2 OH(2)	3.36(4)
3 Cl(2)	3.31(2)	2 OH(1)	3.47(4)
Pb(3)-2 OH(1)	2.91(5)	2 Cl(2)	3.47(3)
2 Cl(4)	2.96(1)	2 Cl(5)	3.71(2)
4 Cl(2)	3.08(1)	Cl(2)	3.72(5)
2 Pb(3)	4.900(7)	Cl(3)-4 OH(1)	3.16(5)
2 Pb(1)	4.903(6)	4 Cl(4)	3.79(4)
Ag(1)-4 Cl(1)	2.71(3)	4 OH(2)	3.96(6)
Cl(3)	2.74(5)	Cl(4)-2 OH(2)	2.83(6)
4 Ag(1)	3.38(2)	4 OH(1)	3.57(4)
Ag(2)-2 Cl(3)	2.52(5)	2 Cl(4)	4.01(4)
4 Cl(4)	2.83(3)	Cl(5)-4 Cl(5)	3.71(3)
Cu-2 OH(1)	1.90(3)	OH(1)-OH(1)	2.50(9)
2 OH(2)	2.11(4)	2 OH(2)	2.82(4)
Cl(2)	2.85(2)	OH(2)-2 OH(2)	3.18(11)
Cl(1)	2.91(3)		
Cu	2.83(2)		
Pb(2)	3.37(1)		
2 Cu	3.54(2)		

[&]quot; Standard errors in parentheses.

centered cubic cells, this arrangement leads to octahedral groupings of lead and silver atoms in boleite. Coordinated to the faces and vertices of the metal polyhedra are chlorine atoms. These chlorines are shared with Ag(2)Cl₆ and Cu(OH)₄Cl₂ distorted octahedra such that the anion polyhedra form bridges between the metal polyhedra. Individual lead atoms are coordinated by distorted square antiprisms of chlorine and hydroxyl ions. These antiprisms are linked in a complex fashion by shared faces and vertices. The octahedra around the copper atoms are likewise linked by shared edges.

Looking at the structure in detail, the Ag(1) atoms form a regular octahedron centered at the unit-cell origin. Eight Cl(1) atoms are located above the faces of the octahedron and six Cl(3) atoms lie adjacent to the six octahedral vertices (Fig. 1). This is the same configuration found in the well-known metal cluster compounds NbI_{1.83}, MoCl₂, WCl₂, and their derivatives (13). By analogy, boleite is a metal cluster compound, the first reported involving silver and a halogen. Silver(I) dipropyldithiocarbamate contains a distorted Ag₆ octahedron (14), but the silveranion arrangement is unrelated to that in boleite.

a Standard errors to the least significant digit are shown in parentheses.

90 ROUSE

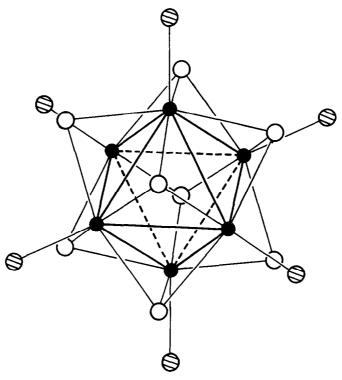


Fig. 1. The Ag₆Cl₈Cl₆ group in boleite.

Within the Ag₆ octahedron of boleite the Ag-Ag distance is 3.38 Å. This is longer than in silver metal (2.89 Å) and no claim is made here for the existence of metal-metal bonds in boleite. The Ag(1) octahedron, which is centered at 000, shares Cl(3) atoms with three Ag(2)Cl₆ tetragonal bipyramids. The latter are centered at \(\frac{1}{2}00\) and equivalent positions. Along the unit cell edges the sequence of polyhedra is therefore Ag₆ octahedron—AgCl₆ bipyramid—Ag₆ octahedron. Ag(1) is coordinated by four chlorine atoms at 2.71 Å and one more at 2.74 Å. These Ag-Cl distances are comparable to that in AgCl (2.77 Å) and to the sum of the covalent radii, 2.78 Å (15). Ag(2) is coordinated by two chlorine atoms at 2.52 Å and another four at 2.83 Å. Analogously, in Cs₂AgAuCl₆ (16), there are distorted AgCl₆ octahedra which have two Ag-Cl distances of 2.36 Å and four more of 2.92 Å. The two short bonds result from the tendency of AgI to form pairs of linear covalent bonds.

Also of interest are the nearly regular Pb_6 octahedra centered at $\frac{1}{2}\frac{1}{2}0$ and equivalent positions. Here the Pb-Pb distances are 4.900 and 4.903 Å, which are much greater than in lead metal (3.50 Å). Above each octahedron face is a Cl(2) atom, but there are no anions adjacent

to the vertex metal atoms as in the silver octahedron.

Pb(1), Pb(2), and Pb(3) are coordinated by distorted square antiprisms of chlorine and/or hydroxylions much as in diaboleite, Pb₂Cu(OH)₄Cl₂ (17). The antiprism around Pb(2) is grossly distorted and includes a ninth ligand. Pb-OH distances in these polyhedra are 2.63 and 2.91 Å, and Pb-Cl distances range from 2.94 to 3.31 Å. These are typical of distances in ionic lead oxychlorides (17). The Pb(1) and Pb(2) antiprisms share faces to form an eight-membered ring, and the Pb(3) antiprisms share edges to form a separate four-membered ring. Both rings are centered around the axis $\frac{1}{22}z$ and are joined by shared vertices.

Copper atoms are coordinated by two OH groups at 1.90 Å, another two at 2.11 Å, and two chlorine atoms at 2.85 and 2.91 Å. Together they form a distorted tetragonal bipyramid around the Cu⁺² ion. Each Cu(OH)₄Cl₂ bipyramid shares edges and a common vertex (A in Fig. 2) with two others to form a trimer around the [111] axis. Next, each trimer shares edges (BC and DE) with two other trimers. These two then share edges with a fourth to form a four-membered ring of trimers around the axis

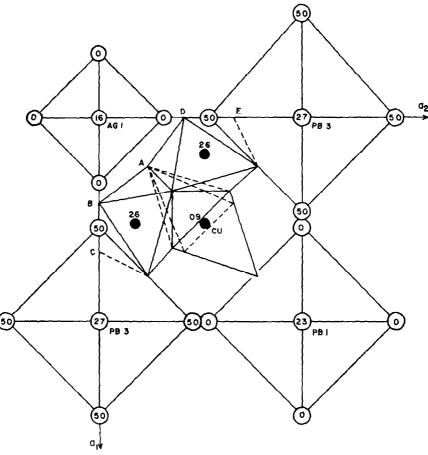


Fig. 2. Projection on (001) of $\frac{1}{8}$ of the unit cell. Some atoms are omitted for clarity. The Ag₆ and Pb₆ octahedra are shown along with a trimer of Cu coordination polyhedra. Numerals are heights of atoms in $z \times 100$.

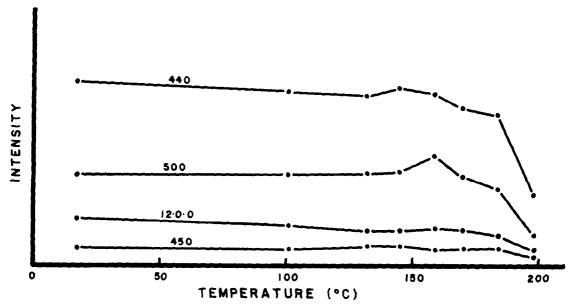


Fig. 3. Plot of integrated intensity vs temperature for several reflections.

92 ROUSE

00z. Since the basal plane of the unit cell is a mirror plane, the ring is duplicated by reflection in the next unit-cell down. Thus, there are two rings, each composed of four trimers. These two rings are also joined by shared edges. Cu-Cu distances across these shared edges are very short (2.83 Å) compared to those within an individual trimer (3.54 Å). The very short OH(1)-OH(1) separation of 2.50 Å is the edge shared between trimers. To the author's knowledge, this configuration of copper coordination polyhedra is unique.

High Temperature Study

In order to check the conclusions of (7) with respect to polymorphism in boleite, a cleavage fragment was mounted in a high temperature furnace attached to a single-crystal diffractometer. The intensities of four reflections were monitored (Fig. 3) as the crystal was slowly heated from 17 to 251°C. The average heating rate was about 9°C/hr. No significant change occurred until ~160°C when the intensities of all reflections began to decrease noticeably. When the crystal was examined by eye at 198°C, its color had changed from blue to black. After heating to 251°C and cooling, an X-ray powder photograph of the crystal was obtained. It showed only lines due to PbCl₂, AgCl, and CuO. In summary, no evidence was found for an inversion in boleite. The intensity change above 160°C is due to crystal decomposition, the black coating being CuO. It should be noted that the heating rate in (7) was between 1° and 4°C/min, hence equilibrium was probably not attained. The blue to green color change may have been due simply to small changes in bond lengths within the coordination polyhedron producing changes in the crystal field splittings. The attainment of complete isotropy probably resulted from the relief of strain in a cubic crystal.

Acknowledgments

The author wishes to thank Dr. Donald R. Peacor and Dr. Billy J. Evans for reading the manuscript and making helpful criticisms.

References

- E. MALLARD AND E. CUMENGE, Bull. Soc. Fr. Mineral. 14, 283 (1891).
- G. FRIEDEL, Bull. Soc. Fr. Mineral. 29, 14 (1906);
 Z. Kristallogr. 73, 147 (1930).
- 3. R. HOCART, Z. Kristallogr. 74, 20 (1930); Bull. Soc. Fr. Mineral. 57, 5 (1934).
- 4. A. HADDING, Geol. Foeren. Stockholm Foerh. 41, 175 (1919).
- B. Gossner and M. Arm. Z. Kristallogr. 72, 202 (1929); B. Gossner, Z. Kristallogr. 75, 365 (1930).
- 6. Tei-ichi Ito, "X-ray Studies on Polymorphism," pp. 70-92. Maruzen, Tokyo (1950).
- 7. R. E. WINCHELL, Thesis, Ohio State University, 1963.
- D. T. CROMER AND J. T. WABER, Acta Crystallogr. 18, 104 (1965).
- P. A. Doyle and P. S. Turner, Acta Crystallogr. Sect. A 24, 390 (1968).
- "International Tables for X-ray Crystallography,"
 Vol. III, p. 202. Kynoch Press, Birmingham, England (1962).
- 11. D. T. CROMER, Acta Crystallogr. 18, 17 (1965).
- W. R. Busing, K. O. Martin, and H. A. Levy, Oak Ridge National Laboratory Report TM306. (1969).
- 13. M. C. BAIRD, Prog. Inorg. Chem. 9, 1 (1968).
- R. HESSE AND L. NILSON, Acta Chem. Scand. 23, 825 (1969).
- J. A. VAN VECHTEN AND J. C. PHILLIPS, *Phys. Rev. B* 2, 2160 (1970).
- N. ELLIOT AND L. PAULING, J. Amer. Chem. Soc. 60, 1846 (1938).
- 17. R. C. Rouse, Z. Kristallogr. 134, 69 (1971).