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A simple mathematical model can represent competition between two 
hominid populations which includes elements of both trophic pre- 
emption and killing. The ultimate outcome of such competition can 
bc determined if certain parameters are estimated. Various values of 
these parameters can represent various types of competition which 
occur between hominid groups. The model is used to argue that the 
two-species explanation of Australopithecine fossils is unrealktic and 
that a one-species view is more compatible with the facts. This model 
lends itself to first-order approximation of many situations of interest 
to anthropologists. The form of the equations for several situations is 
given, as is a solution for the ultimate equilibrium population densities 
of the two competing groups. 

Mathematical models for competition between two animal populations have generally 
dealt heretofore either with predation of one on the other or with indirect trophic com- 
petition between them; these are discussed in Slobodkin (1961) or Watt (1968). The 
various forms of such models do not consider a more generalized competition including 
elements of both direct and indirect competition. This is necessary to analyze interactions 
between competing hominid or human groups, for they compete both trophically and 
physically. A simple generalized model will be shown here, and followed by an example 
illustrating its use in problems of human ecology and evolution. 

By combining aspects of existing models, we can form equations for generalized com- 
petition as 

dNr -= 
dt 
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4 
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dN2 
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where : 

N,, N, = actual population densities, 
K,, K, = maximum population densities in absence of competitors (carrying capacity), 

tr, r2 = population growth rates, 
b, a = per capita trophic pre-empting competition coefficient, 

D, C = per capita killing competition coefficient. 

All values except the N’s are constants (long-term averages). On the right side of these 
equations the first term represents the intrinsic biological rate of increase of the population 
in isolation minus the self-damping factor which slows growth as carrying capacity is 
neared and the damping factor due to the trophic pre-emption of its members by members 
of the other population. The second term is the loss of members due to their being hilled 
by the other group, or the gain in members due to the food gained by eating prey from the 

competing population. 
These equations use the simplest and most tractible form of the killing term. Other 

forms have been suggested, but the mathematical complexity thus introduced is not 
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worth the small extra information made available when analyzing the very general 
problems of central interest to anthropologists. A discussion of the more complex forms of 
the killing term may be found in Watt (1968) or see Keyfitz (1968). 

To determine the outcome of competition following the form of the model suggested 
here, one must analyze the isoclines for each population (those values of Nr and Na for 
which each population does not change) given by dN,/dt = 0 and dN.Jdt = 0. These 
isoclines are linear, and therefore the result of competition can be determined by the 
relative values of the Nr and N, intercepts. This procedure is outlined by Slobodkin 
(1961). We need to evaluate the relative magnitudes of 

GG 
r,a + CK, 

compared to K, 

and 

r-24 
r,b + DK, 

compared to Kl, (4) 

There are four possible outcomes. These are shown in Table 1 along with the ultimate 

Table 1 Outcome of competition 

Case No. If And if Result of the competition will be* 

(1) 

(2) 

(3) 

(4) 

rJ1 
> KS f&S 

rla + CK, rsb + DKs 
> KI 

rJ* > KS r&S 
r,a + CK, rsb + DKs 

< KI 

GG 
r,a + CK, 

< KS r&S >K 
r,b + OKI ’ 

rlKl 
< K. 

rsKs 
rla + CK, r,b i- DK, 

< KI 

Stable coexistence at 

rdK&~a + CKJ - r&l 
*I = (r,a + CK,)(r,,b + OK,) - r,r, 

N = rJKkb + DKA - $51 
* (r+ + CK,)(r& + D&J - rlra 

Only N1 survives: 
N1 = K, 
N, = 0 

Only Ns survives: 
NL = 0 
Ns = KS 

Unstable at same values as Case 1; eventual 
elimination of one species, depending on the 
initial concentrations (result in either Case 2 or 
Case 3). 

* The Case 1 and Case 4 results will always be mathematically defined 
under the given conditions. 

equilibrium population sizes and the stability of that equilibrium. Since these are ex- 
pressed in terms of the constants in the original equations, solutions to actual problems 
will rest on evaluating these constants. 

Regardless of the outcome of competition, there are, for specific kinds of population 
interactions, general forms which can be predicted for several of the constants in the 
equations [(I), (2)]. A f ew of these specific types of interactions are: 

(1) Pure trophic competition 

If both groups compete only by eating each other’s potential food supply, then there will 
be no killing term and the values of C and D will be zero (0). The equations then reduce to 
the standard Gaussian competition equations. 
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(2) Pure predation 

If Nz preys on Ni and derives added food thereby, then we can interpret C as the per- 
predator predation rate. The value of D will be a measure of the rate at which N, 
increases for each prey captured. If there are CN,N, prey captured, and they are con- 
verted to members of group N, at a rate, g, then D will be a negative loss equal to the 
product ofg and the prey; that is, D = -gC. In a case of pure predation, there will be no 
trophic competition, and so a and b will be zero (0). The resulting model differs from the 
classic Lotka-Volterra system in that it puts a limit on the sustaining ability of the 
environment for both Ni and N,, and also that it expresses the fact that omnivores, even 
when acting as predators, derive food from more than just their prey. The omnivore’s 
population will thus be regulated by more than just the supply of prey. 

(3) Warfare 

In a case of steady killing of members of both groups by members of the other, but without 
cannibalism, the values of C and D represent the “combat efficiencies” of each member of 
each group. Both will be positive constants since the killing detracts from both popula- 
tions. The trophic competition will be absent, so a and b will be zero (0). If there is trophic 
competition along with warfare, the original equations [(I), (2)] express the form the 
relationship will take. 

Table 2 summarizes these and other types of competition between two hominid groups 
and the general form the constants will take. The equations can obviously be modified for 
variants of these situations. For example, in every case shown above, a 5arefaction”term 
might be included if both species or groups were exposed to a non-selective hazard 
imposed from without (such as another predator). This could be done by inserting a 
coefficient of (1 - x/Y~) in the first and (1 - x/rJ in the second equations before the first 

Table 2 Form of competition equations for some sped& situations 

Situation dN,/dt = dN,/dt = 

Pure trophic competition r,N, (K1 - N, - UN,) 
K 

1 

r N Fe - N, - W) 
a e 

& 

Pure predation of N, on Nl r,N, (K1 - N1) - GN N 
4 

1 2 r,N, (K’ - Np) + gCN N 
KS 

1 f 

One way attacks of N, on Nl ,. N (K1 - N1) _ CN N 
1 l--Yy-- 

1 2 
7 N K - NJ 
e a-Ty- 

Steady warfare s,N, (K1 - N1) - CN N 
Kl 

1 2 

Mixed trophic and predation 
Competition 

r N K - Nl - aNA _ CN N 
1 1 

Kl 
1 * 

rN (Ka-%---bN,)+gCNN 
a I 

K* 
II 

Mixed trophic and warfare 
Competition 

r,N, WI - NI - aN4 _ CN N r N 6, - Ns - bNJ 

Kl 
18 es 

K, 
- DN,N, 

Mixed trophic and warfare 
Competition with “rarefaction” 

I N ((1 - 4GG - 4 - 4) 
1 1 

KI 
- CN,N, - ONIN 
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term in the parentheses. The rarefaction factor, x, is the death rate from the hazard. 
The form for the competition analysis in this case is shown in the Appendix. 

The equations of competition can now be used to analyze specific problems. Following 
is one such case in the analysis of hominid evolution. 

Example: the Number of Early Hominid Species 

There is considerable disagreement as to whether the fossil record from the early 
Pleistocene provides evidence for two lines of evolution, Australopithecus afticanus and 
Paranthrojw robustus and their descendents, or whether it shows only one line, Homo 
africanus. The common view that there were two also holds that they were sympatric 
over millions of years and over a wide geographical area including most of the tropical 
Old World (Robinson, 1967). The afticanus line is said to have persisted and the robustus 
line to have become extinct. Opinion varies as to the extent to which the two competed, 
but surely there must have been some trophic competition and combat is often considered 
to have occurred also. Some would see predation of afticarus on robustus as well. 

Rob&u is thought to have been strictly herbivorous and af7icanu.r omnivorous. 
Masticatory anatomy is used to discriminate these dietary adaptations (Robinson, 1963), 
and Schaffer (1968) has discussed these differences in terms of character displacement 
which, he feels, has made strictly sympatric finds more different from each other than 
finds of one species only. Even with dietary specializations, however, one can expect 
trophic competition at least to the extent that the africanus could have eaten some of the 
plants edible by robustus, and the latter would have been as able as chimpanzees and 
baboons to scavenge occasional meat kills which would also be available to africanus. 

Could competition between such long-term sympatric populations explain the ex- 
tinction of one of them ? We can look at this extinction from the point of view of equations 
[(I), (2)]. If robustus is the population represented by iV,, then from Table 1, the con- 
ditions for extinction are 

and 

or, from (5) and (6), 

YlKl 
yla + CK, 

< 4 (5) 

r&s 

rab f DK, 
> K1 (6) 

ha + CK,)h 
W + WJ/ya > (7) 

The numerator and denominator on the left might be called the total competitive effect 
(TCE) of population Ns on Ni in the first case and Ni on N, in the second. The outcome 
of the competition is thus dependent on the ratio of the TCE values to that of the carrying 
capacities for the two species squared. To evaluate whether extinction is reasonable one 
must therefore estimate the likely carrying capacities for the early hominids. 

The highest density that early hominid omnivores would be expected to have attained 
would presumably be close to that of modern hunter-gatherers who have been so adapted 
for millions of years of evolution. Their densities are on the order of 0.1 per square mile. 
Primate herbivores, on the other hand, in areas similar to those inhabited by early hom- 
inids range in density from about 213 per square mile for thepatas monkey to over 13 per 
square mile for some chimpanzees and baboons. Most are well over 1 per square mile. 
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Thus we can be conservative and estimate that the herbivore densities were about a factor 
of 10 greater than those for the omnivore: the omnivorous niche allows specialization on 
another food source, but costs a factor of 10 in density. That is, we have Kl = lOK,. 

With this density estimate, the right side of equation (7) becomes 

and thus, that for the alleged extinction to have occurred the TCE of the omnivore 
would have had to have become more than 100 times that of the herbivore. Evaluating 
the specific constants in (7) is difficult when warfare or predation are included, but in the 
particular case where there is no such competition, we have, from (7) and (8), 

a > 100b. (9) 

Such exaggerated trophic competition between similar animals is unlikely to say the least. 
And even with killing, the competitive disparity still must be over 100 to 1 between the two. 

Both forms are assumed to have lived stably and sympatrically over a wide area and for 
a long time, both had similar brains, both were anatomically upright, bipedal, and 
hand-using, and both had a rudimentary culture. It is therefore difficult to accept a 
competitive disparity of over 100 to 1 between two species with such similar ecologies and 
morphologies. What could have caused it ? It cannot be argued that the stable condition 
which persisted for millions of years found a nearly 100 to 1 disparity and that the 
extinction represented merely a slight advancement of africanus over robustus, for were that 
the case then for the long time in which they were coexisting the africanus was badly 
exploiting robustus, and in such a case the marked anatomical specializations would not 
have been called for. If afticanus was taking that much food from robustus, he would not 
need strong adaptations for meat-eating. 

The explanation cannot rest heavily on predation either. It is taken as axiomatic by 
biologists that predators do not exterminate their prey. The competitive ability of the 
United States against North Vietnam in a very uneven war is far from 100 to 1. Human 
groups have rarely, if ever, completely exterminated other human groups through 
warfare, and certainly never on the scale that would have been required here. 

Hence the two-species view of early hominid evolution is not compatible with this 
model of population ecology, for it fails to give sufficient evidence to explain the extinction 
of robustus. On the other hand, dental and anatomical evidence discussed by Brace (1971) 
and Wolpoff (1970, 1971) seems to support a simpler single-species view. This is more 
reasonable from the point of view of population ecology. 

Conclusion 

The equations for generalized competition between hominid groups are simple ones and 
easy to apply if certain real parameters can be estimated. While they are approximate and 
would fail to give an accurate description of the expectable approaches to equilibrium, 
they can give general results and a figure for the eventual sizes of the two competing 
populations. This can be of use in many cases of interaction of interest to anthropologists. 
Cases which come to mind include the Neanderthal extinction problem, relations between 
competing tribal or linguistic populations, and colony-colonizer relationships. 

With modification the equations could be applied to situations as diverse as restricted 
warfare between nations (as in medieval Europe), all-out war, resource exploitation of one 
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population by another, and an estimate of the relative competitive merits of juxtaposed 
different cultural forms. Eventually it should be possible to develop N differential 
equations for competition between N populations (nations), and with the aid of computer 
techniques to solve for equilibrium densities and so forth. Finally, more complex models 
(e.g. for the killing term) might be compared to the simple one to determine the usefulness 
of the finer approximations; with the use of computers such models might be worth the 
effort required to solve the equations. 

The assistance of Professors F. B. Livingstone and C. L. Brace during the development of 
this paper is gratefully acknowledged. 
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Appendix 

With rarefraction at a rate ‘2 on both populations, the equations (3) and (4) would 
be: 

(5 - 44 
y,a + CK, 

compared to (1 - x/ra) K2 

(y?d - x)K2 

y,b + DK, 
compared to (1 - X/S,) Kl . 

These values would replace those in Table 1 to establish the four cases. 
The resulting equilibrium values for NI and Ns would be as follows : 

Case 2 : Nl = (1 - x/r,)K, 

Na = 0 

Case 3 : Nl = 0 

N, = (1 - x/Y.J K, 


