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Two detection cum latency models are constructed by combining sets of plausible 
assumptions about latency with, in the first instance, the model of the Theory of 
Signal Detection and, in the second instance, a general threshold model. The aim of this 
paper is to show that latency statistics can be used to provide sharp tests for distinguish- 
ing between the two models. The two statistics studied are the reaction time operating 
characteristic (RT-ROC) and the plot of average reaction time against response 
probability (RT-probability curve). It is shown that, under the first detection model, 
the RT-ROC lies below the ROC derived from detection rates except at the “yes-no” 
point, and the RT-probability curve is decreasing whereas, under the second model, 
the RT-ROC coincides with portions of the latter ROC, and decreasing RT-prob- 
ability curves do not arise naturally, 

The effect of criterion variability on the ROC is discussed in detail and conditions 
are given under which the RT-ROC is equivalent to a ROC generated by variable 
criteria. 

Theories of signal detection have been almost exclusively concerned with choice 
proportions and ratings and, with rare exceptions, only those data have been collected. 
Only a very few investigators have publicly taken cognizance of the fact that responses 
require time for their execution. Much of that limited body of work shares the view 
that detection response times (RT) can be incorporated within the framework of 
the Theory of Signal Detection (Swets, Tanner, and Birdsail, 1961) or of the closely 
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related strength theory of Wickelgren (1968); the assumption has generally been 
that RT decreases monotonically with distance from the cut-off (Bindra, Williams, 
and Wise, 1965; Bindra, Donderi, and Nishato, 1968; Norman and Wickelgren, 1969; 
Smith, 1968; Wickelgren, 1968). Other models have been considered by Carterette 
Friedman, and Cosmides (1965), Sekuler (1965), and Nickerson (1969). Only 
Nickerson, working with an extension of McGill’s counter mcdel (1963), has derived 
a detailed set of predictions. Consequently, we have limited knowledge of the 
implications of either the Theory of Signal Detection or threshold models (e.g., 
Lute, 1963; Krantz, 1969) for RT data. 

On the other hand, for those models in which the decision variable, which 
determines what response is made, is regarded as the outcome of a temporal process 
(e.g., Carterette, 1966; Green and Lute, 1967; Laming, 1969), choice proportions and 
RT are related naturally and the implications for both sets of data can be derived, 
in principle. 

In this paper, we wdl consider two classes of detection models and derive results 
for RT measures obtainable in “yes-no” experiments. One class consists of those 
models which view sensory experience as continuous. Within this class, most of 
our conclusions will apply to both the detection theory of Swets, Tanner, and 
Birdsall (1961), in which the decision variable is viewed as a likelihood ratio, and 
to the strength theory of Wickelgren (1968), . m which the decision variable is viewed 
as a psychological construct. We will also show that our results hold under assumptions 
about the distribution of the decision variable which are more general than the usual 
normality assumption. The second class is of those models which assume that 
sensory experience consists of a set of orderable discrete states. Lute’s two-state 
low threshold theory (1963) and Krantz’s three-state low-high threshold theory 
(1969) are two examples of the general class of models with which we will be 
concerned. 

It is clear from Krantz’s discussion (1969) that it will be generally quite difficult, 
if not impossible, to discriminate between continuous models and a threshold model 
having at least three states on the basis of response measures usually analyzed in 
“yes-no” experiments- Receiver Operating Characteristic curves based on choice 
proportions or on confidence ratings, or posterior probabilities of stimuli given 
ratings. This difficulty in deciding between the two classes of models has in large 
part motivated our theoretical investigation of latencies. We will show that under 
quite general conditions, Receiver Operating Characteristics based on RT data 
will differ for continuous and certain threshold models. We will consider alternative 
assumptions about the relationship between RT and the decision variable for both 
classes of models and, in each specific case, we will derive parameter-free predictions 
about average RT as a function of experimental manipulations typical of much 
research in detection. Before presenting our derivations, we will briefly review the 
two classes of models. 
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A MODEL OF CONTINUOUS SENSORY EXPERIENCE 

Assumptions 

The following assumptions have much in common with the Theory of Signal 
Detection (Swets, Tanner, and Birdsall, 1961) and with unidimensional strength 
theory (Wickelgren, 1968): 

(i) The subject’s sensory experience on each trial is represented by a con- 
tinuous random variable X, which takes on values along a psychological dimension x. 
In almost all of what follows, the x-axis will be presumed to be the decision axis. 
The special case in which X is regarded as a likelihood ratio will be considered only 
briefly. 

(ii) The probability density function (p.d.f.) of X given noise (n) and signal 
plus noise (~71) will be denoted byi, andf,(x), respectively. For much of this paper 
it will be assumed that 

f&4 = f(4 
f&4 = m - cl), 

(14 
(lb) 

although some consideration will be given to the unequal variance cases, where 

and where,f,(x) is the convolution offa and the p.d.f. of a positive random variable. 

(iii) For much of this paper, the only relevant property off(x) will be whether 
or not f(x) belongs to a class 3, of distributions, where f~ 3 if and only if 
-d2 logf(x)/dx2 > 0 for all x. 2 contains the normal, logistic, and gamma distribu- 
tions (the exponential is the limiting case where the second derivative of logf(x) 
is zero) but does not contain “high-tailed” distributions such as the Cauchy, lognormal, 
and Pareto. 

(iv) There exists a criterion C, such that in a yes-no experiment the subject 
responds yes if X > C and 1zo otherwise. For the most part, it will be assumed that 
C has a fixed value c, throughout the experimental session, although some consideration 
will be given to the effects of trial-to-trial variation in C. 

Letting R(x) = Jrf(y) dy, etc., the response probabilities in a yes-no experiment 
with c fixed are 

PH = R,(c) 
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and 

J-‘FA = R,(c), 

where H and FA refer to hits and false alarms, respectively; CR and M will refer 
to correct rejections and misses. 

RECEIVER OPERATING CHARACTERISTICS (ROC) 

Fixed Criterion (FC) 

It is assumed here thatf,(x) andf,(x) are given by Eqs. (la) and (lb), respectively, 
and that c is fixed within an experimental condition. Then the fixed criterion ROC 
based on yes-no data (FC-ROC) is the plot of R(c - CL) against R(c) as c is varied 
over experimental conditions with t.~ held constant. Since t.~ 3 0, R(c - CL) > R(c) 
so that the FC-ROC lies above the positive diagonal and extends from (0,O) to (1, 1). 
The slope of the curve is f(c - p)lf(c) and ‘t . 1 is not hard to prove the following 
important result. 

THEOREM 1 (Lehmann, 1959, p. 330). The slope of the ROC curve is monotonically 
decreasing if and only if f E 8. 

If X, defined in assumption (i) above, is a likelihood ratio, then c, the likelihood 
ratio at the criterion, equals the slope of the ROC at the operating point generated 
by c. Therefore, the ROC slope is monotonic in c, so that f (x) is automatically in 2. 

We now consider the case where the signal distribution is the convolution of the 
noise distribution with the distribution of a positive random variable. In this case, 

f&l = s,“f @ - y> g(y) dy> s 
00 

where o g(y) dY = 1. 

The ROC slope when the criterion is c is 

fs(c)= 
s 

m f(c -Y) 
fn(c) o f@) g(y) dY- 

Since y > 0, the integrand is monotonic in c iff f E 2 (Theorem 1). Therefore, 
the ROC slope is monotonic if f E 2’. (This condition is sufficient but not necessary 
in this case.) It should be noted that in the normal-unequal variance model the signal 
distribution is the convolution of the noise distribution and another normal distribu- 
tion, so that the condition for the above result is not satisfied. In fact, it is well known 
that for this model the ROC slope is nonmonotonic. 
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Variable Criterion 

Consider an operating point (P, , PH), generated by a criterion C which varies 
over trials; thus, for example, 

PFA = j:, 44 j: f(x) dx dc = E[R(C)], 

where e(c) is a nondegenerate probability density function with finite mean and 
variance and “E” denotes “mathematical expectation.” Assuming that both X and C 
are normally distributed, Wickelgren (1968) concludes that (a) the operating point 
will lie below the ROC generated by fixed criteria (FC-ROC) and (b) the degree 
of such depression will directly reflect the variance in the criterion generating the 
operating point. In one respect, Wickelgren’s conclusions can be generalized. We 
will show that normality in the distribution of neither X nor C is necessary in order 
for the operating point to be depressed. The operating point will lie at or below 
the FC-ROC if (i) fS(x) = f(x - CL), (ii) f~ 2, and (iii) the cut-off generating the 
operating point has a nondegenerate p.d.f. 

In another respect, Wickelgren’s conclusions must be qualified. In his discussion 
of criterion variability, he states that if “. . . the different methods do not differentially 
affect the strength distributions, then a different d’ value tells us the lower operating 
characteristic has a greater criterion variance . . .” (1968, p. 110). The notion that 
increased variability causes decreased sensitivity is intuitively appealing and, in fact, 
will hold under many conditions. Nevertheless, it is important to realize that the 
conclusion is not necessarily true. We will show that there is at least one f in 2 
for which depression of operating points is not monotonically related to the variability 
of criteria generating those points. Furthermore, even if X is normally distributed, 
it does not necessarily follow that the amount of depression at a given point on the 
ROC is monotonically related to the amount of criterion variability generating that 
point. 

We first consider the general question of the effect of criterion variability upon 
the position of the ROC. It is not difficult to assess the result of variability if we 
make the simplifying assumption that the criterion randomly takes on two values 
over trials. Let El , E, ,... denote points on the ROC generated with no criterion 
variability and corresponding to criterion values of c1 , cg ,..., respectively. Now 
consider a single experimental condition such that the criterion varies between 
cr and c2 over trials. Then the operating point (P, , PH) obtained under this condition 
will lie on the straight line &;E, . Therefore, this point will always lie at or below 
the ROC joining El and E, if and only if the ROC is concave, that is, if and only 
if f E 2. The situation is depicted in the leftmost panel of Fig. 1. 

The above heuristic argument can be generalized to the case where the criterion C 
has a nondegenerate p.d.f., e(c), with finite mean and variance and .fS(x) = f(x -- p). 
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FIG. 1. ROCs of different curvature, each showing an effect of criterion variability 
on operating points. 

We now prove the following theorem, which is a special case of a result on convex 
functions: 

THEOREM 2. For a given sensory model [f(x),f(x - p)], every variable criterion 
ROC lies uniformly at or below the FC-ROC isf -logf(x) is convex. 

Proof. For ease of notation, let us make the substitutions 

u = R(c), U = R(C), 

v = R(c - /A), I/’ = R(C - p). 

Then the FC-ROC is the plot of v against u and can be written as 

v = L(u), 

and, by Theorem 1, L”(u) < 0 iff -1ogf is convex. 
Any point on a variable criterion ROC can be denoted by [E(U), E(V)], where 

the expectation is with respect to the p.d.f. of C. If L”(u) < 0, 

L(u) < L’(u*)(u - u*) + L(u*) 

for fixed u*, so that 

E(V) = E[L(U)] < E[L’(u*)(U - u*> + L(u*)]. 

When u* = E(U), this reduces to 

-w’) ~w(U)I, 

which, since {E(U), L[E( U)]) 1 ies on the FC-ROC, implies that the variable criterion 
ROC lies at or below the FC-ROC. 
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If L(u) is not concave, there exist two operating points [ur , L(u,)] and [us , L(u,)] 
such that the straight line joining them lies above the FC-ROC. Choose e(c) to be the 
discrete distribution with its mass located at c = R-l(u,) and c = R-l(u,). Then 
the operating point generated under this choice of e(c) lies above the FC-ROC. 
This completes the proof. Q.E.D. 

The remaining two panels of Fig. 1 depict cases in which the degree of depression 
of the operating point generated by a varying criterion is not monotonically related 
to the degree of variability. The center panel depicts an ROC obtained when X 
is distributed normally; however, the signal distribution has greater variance. Because 
the first derivative does not decrease monotonically with PFA , it is possible to obtain 
operating points generated by variable criteria which lie &owe the FC-ROC. In the 
rightmost panel, we have an FC-ROC derived from 

fn(x) = &e-IQ and is(x) = $e-js-uI, -co<x<a3. 

Then, for 0 < p < c and for c < 0 the ROC is linear with slopes eu, and e-mu, 
respectively; for 0 < c < ~1 it is concave. Therefore, criterion variability will produce 
no depression in the ROC as long as C < 0 or C >, t.~, but there will be a depression 
if 0 < C < p. In other words, greater depression for central criteria does not 
necessarily imply that these criteria are more variable than other criteria. 

In summary, if fs(x) = f(~ - CL), operating points generated by variable criteria 
lie uniformly at or below the FC-ROC iff f E dtp. Furthermore, the degree of 
depression depends not only upon the degree of criterion variability but also upon 
the curvature of the FC-ROC. 

AN T-STATE MODEL 

Several threshold models appear in the signal detection literature. Lute (1963) 
has suggested that r, the number of sensory states, equals 2; the stimulus either 
surpasses a single threshold or does not. To this sensory model Lute has added a 
decision mechanism. There are two possible states of bias: (i) negutme Z&Z.V, in which 
some detections result in no responses and (ii) positive bias, in which some failures 
to detect result in yes responses. Certain variables (e.g., signal probability, payoffs) 
determine the type and degree of bias, and varying these generates an ROC consisting 
of two linear segments. Krantz has proposed a model with three sensory states: 
nondetections, weak detections, and strong detections. He also assumes two types 
of bias (i) negative bias, in which some weak detections are converted into no responses 
and (ii) positive bias, in which some nondetections are converted into yes responses. 
The resulting ROC curve again consists of two limbs. 

Still a third model might be considered, a three-state model with three states 
of bias, if we permit some strong detections to lead occasionally to no responses. 
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Then the resulting ROC would have three limbs. All three models that we have 
mentioned may be considered as a subset of a very general class of threshold models 
in which there are Y states of sensory activation, including a nondetection state 
(cf. the neural quantum model of Norman (1964)), and Y' states of bias, Y' < Y. In 
this section we will present a general formulation of the r-state model. In later sections, 
we will develop implications for response times. 

We denote the activation states by A, ,..., A,-, , and let qi = P(Ai 1 n), 
pi = P(A, I sn), i = o,..., Y - 1. The Ai are thought of as being ordered on a 
sensory dimension such that the subject’s sensory impression is greatest when he 
is in A,-, , and he has no sensory information when he is in A, . Thus it is reasonable 
to suppose that the likelihood ratio for sn over n given Ai increases with i, i.e., 
PO/% < ... < pr-l/qT--l . It is also assumed that there are Y' “types” of bias B, ,..., B,,-, 
such that for a given set of bias conditions, e.g., payoff and signal probability, the 
subject is in exactly one B, . The response probabilities are then given by 

=o i<j 

P(yes 1 Ai, BJ = z i=j. (2) 
zzz 1 i>j 

The bias state in an experimental condition is then characterized by the pair (Bj , 2). 
We adopt the convention that Bj does not exist if P(yes ( Aj) = 1 or 0 over all 
experimental conditions. 

Given Eq. (2), we can readily derive expressions for hit and false alarm proba- 
bilities, conditional on the bias state (Bj , z): 

T-1 

P(H I Bj , z) = p:‘(z) = pjz + C pi , 
i=j+1 

T-l 

P(FA I B, , rz) = p:i(x) = qjx + c qi . 
i=j+1 

(34 

(3b) 

As x varies for fixed Bj , we have a linear segment of the yes-no (YN) ROC, given 
by [cf. Norman, 1964, Eq. (6)] 

Note that the YN-ROC consists of as many limbs as there are “types” of bias states. 
Thus the number of such limbs will be less than or equal to Y. Krantz’s model is 
an example in which the number of limbs are less than Y because x always equals 
one when A,-, is activated. 

The variable criterion case discussed under the continuous model has an analog 
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under threshold models. An operating point will lie below the YN-ROC if the Izj 
generating the point varies and the likelihood ratio pi/qi increases monotonically 
with i. The condition on the likelihood ratio is equivalent to the condition that f E LP 
in the continuous case and serves the same function of guaranteeing a nonincreasing 
slope for the ROC curve. The conditions under which confidence ratings ROCs 
lie below YN-ROCs, discussed by Broadbent (1966) and Krantz (1969) are equivalent 
to assuming variable Bj and the general method of proof presented by Broadbent 
is the same as that used to demonstrate that variable Bj ROCs lie at or below 
YN-ROCs for any threshold model in which the likelihood ratio condition is met. 

RT-ROC CURVES 

Constructing the RT-ROC 

Several investigators (Norman and Wickelgren, 1969; Moss, Myers and Fillmore, 
1970; Yager and Duncan, 1971) have constructed ROCs from RT data for a yes-no 
experiment. The procedure involves separating RT for sn and 11 trials. These sets 
of RTs are then ordered from the fastest yes response to the fastest 1zo response. 
In brief, the latencies are ordered as if they represented an underlying continuum 
from strong yes to strong no. Next, a series of cut-points are selected along the RT 
dimension. This results in a series of ordered categories for each of the two stimuli. 
Category 1 would contain the fastest yes response, e.g., O-200 msec.; category m, say, 
would contain the slowest yes response, e.g., those longer than 2000 msec.; category 
m + 1 would contain the slowest 710 responses, and categories with higher indices 
would contain faster 710 responses. An RT-ROC curve is obtained by plotting the 
points (xlc , ylc) where xk and ylc are the proportions of RTs in the first k categories 
given n and sn, respectively. Note that ym is the proportion of all RTs that are yes 
RTs and is therefore equal to PH ; similarly, x, equals P, . Thus, the RT-ROC 
and YN-ROC curves must intersect at one point at least. 

Continuous Models 

Criterion variability and the RT-ROC. In what follows we assume that the 
latency data are obtained under a single, fixed decision cutoff c. Within the context 
of the continuous model, part of the variation in RT may be attributed to variation 
in X - c, the distance of the sampled observation from the cutoff, In addition, 
for any fixed distance x - c, we assume that RT is a random variable with a non- 
degenerate distribution function GI r--G 1 (t) and p.d.f. glz--Cl(t). It is implied, therefore, 
that this conditional distribution of RT does not depend upon the nature of the 
stimulus, and, for different values of c (induced, for example, by variations in payoffs 
or signal probabilities) but equal values of x: - c, gl,-ci(t) will be invariant. 
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The equation of the RT-ROC is given by 

and 

xk = 
s 

; f(x) G-c(tk) dx, (54 

(5b) 

where t, is the upper bound of the latencies in category k (< m, the Eqs. for k > m 
being similar). The two first derivatives of G are 

gx,(t) = 2 G,(t), 
and (6) 

On integrating Eqs. (5a) and (5b) by parts, and replacing x - c by x, we have 

Xk = 
s 

m Y&k) R(” + C> dx, (74 
0 

Yk = s,y Y&k) % + c - Cc) dx. (7b) 

It has been argued, e.g., by Wickelgren (1968) and Norman and Wickelgren (1969) 
that the RT-ROC lies below the FC-ROC as a logical consequence of the analogy 
between the RT-ROC and an ROC generated by variable criteria. We will review 
this argument in an attempt to show that the analogy is misleading unless certain 
conditions are placed on the latency distribution function. 

In the confidence rating experiment the subject is asked to maintain two or more 
criteria simultaneously. When the ROCs obtained from this experiment are found 
to lie below the FC-ROC it is argued that the cause of this depression is criterion 
variability, which, in turn, is presumed to be a consequence of the demands of 
maintaining two or more criteria. We note that given X, there exists a nondegenerate 
distribution of ratings (response) if and only if the criteria are variable. In a similar 
manner with respect to the RT-ROC, the p.d.f. glz+l(t) induces a conditional 
distribution of observed latency (response) given X. However, while there are two 
or more latency criteria, these criteria (unlike rating criteria) are fixed by the 
experimenter and, therefore, cannot be variable. For this reason the analogy between 
the RT-ROC and variable criterion ROCs can be misleading, 

The possibility remains, nevertheless, that there exist conditions under which the 
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RT-ROC is, in some sense, equivalent to a variable criterion ROC. In order to 
explore this possibility it is helpful to have a formal definition of a variable criterion 
ROC. It seems natural to have at least two conditions which a variable criterion 
model should satisfy. The first is the obvious one that two distinct points on the 
same variable criterion ROC are generated by taking expectations of two distinct 
criterion distributions under the same pair of sensory p.d.f.s. The second, consistent 
with the notion that bias and sensitivity are independent, is that the criterion 
distribution is independent of the signal and noise distributions. Because of this 
second restriction, the formal definition of a variable criterion model involves the 
consideration of two or more signal distributions. 

Let us consider any two ROCs, R and R’, generated under signals s and s’, 
respectively, and noise n. Let (ur , zlJ and (z+ , ~a) denote two distinct points on R, 
and let (ui , zlr’) denote the point on R’ having the same abscissa value as (ur , I). 

DEFINITION. R and R’ are variable criterion (VC)-ROCs iff there exist distinct 
p.d.f.s e,(x) and e,(x) such that 

7: (i) U, = 
s 

Q(X) R,(x) dx i= I,2 

(ii) zli = 
J 

ix ei(x) R,(x) dx i= 1,2, 
-m 

and 

‘Cc (iii) vr’ = 
J 

ei(x) R,,(x) dx. 
-m 

Now considering the RT-ROC, let (xk , yJ and (x~ , ylc’) be points on two 
RT-ROCs generated under the same (fixed) value of c but different signals s and s’, 
respectively. According to the above definition, to assert that these two OCs are 
VC-ROCs is to assert that there exists a p.d.f. e(x) such that 

Xb = jrn yZ(tk) R,(x + 4 dx = (l’ e(x) R,(x) dx, 
0 1; 

yr = jr r&) Rdx + 4 dx = j=- e(x) R,(x) dx, (8’3) --cc 
and 

ok’ = 1, yX(tk.) K,(x + c) = jm e(x) R,,(x) dx. 034 
--a 

Letting 

R,,(x) = 1; X<Y 
x >y’ 
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(8~) reduces to 

from which it follows that 

\YZ--C(tk) 
44 = \o 

x>c 
x < c’ 

Therefore, yzpc(tk) 3 0 and limZ+a, GzeC(tk) = 1. 
If yzpc(t) > 0 and lim,,, G,-,(t) = 1, then, clearly, the RT-ROC is a VC-ROC. 

This proves the following: 

THEOREM 3. The RT-ROC is a VC-ROC ;If latency decreases stochastically to 
zero as / x - c 1 increases. 

From Theorems 2 and 3 we derive the following: 

THEOREM 4. If G,,(t) = 0, limm+m G,-,(t) = 1 and raec(t) 3 0, the RT-ROC 
lies t&form& at or below the FC-ROC iff -1ogf is convex. 

The last part of our characterization of the RT-ROC is to link the condition 
y=(t) > 0 to a desirable property of the RT-ROC, viz., that it should lie above 
the diagonal v = U, the line which describes chance performance. This property 
is desirable for if the RT-ROC for a subject does not lie wholly above the diagonal 
but his FC-ROC does, this would suggest that latency is an inappropriate measure 
of sensitivity for that subject. 

We prove the following: 

THEOREM 5. The RT-ROCs for all sensory models [f(x), f (x - p)] and all criterion 
values c lie above the diagonal v = u ~$7 y%(t) > 0. 

Proof. Since 1p(x + c - p) 3 Z?(x + ) c , using Eq. (8), y,(t) > 0 implies that 

Yk 2 xk - 

Now suppose that yz(tk) < 0 for a < x < b. We show that there exists a sensory 
model and a criterion value for which yk < X~ . Choose 

S<b-a G&k) - G&J 
2 

and 
’ < 1 + G&k) - Gb,(tk) ’ 

where 

a’=a+S and b’ = b - 6. 
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Let p = b - a - 6, and 

Then 

f(x + 4 = (1 - l )/S, 
= f(x + c), 

a < x < a’, 
otherwise. 

From Eq. (8) 

f(x + c - P) = (1 - c)/S, b’ < x :< b, 

= f(x + c - p), otherwise. 

and 

yk < [(l - <)/S] 6G,(t,) + E = (1 ~ l ) Gb(tk) + E. 

Therefore yk - xk < 0, which proves the theorem. Q.E.D. 

With regard to the ROCs of a subject, Theorems 4 and 5 together assert that, 
assuming -1ogf is convex, if all his RT-ROCs lie above the diagonal then they 
lie below the FC-ROC. However, it is possible that, for a given sensory model, 
we have both rz(t) < 0 for some x and the RT-ROC lying above the diagonal. In 
such a case, RT-ROC is not equivalent to VC-ROC. Nevertheless, under this more 
general condition, we can still prove that RT-ROC lies at or below FC-ROC as 
long as f~ 2. In short, even if latency does not decrease stochastically to zero as 
/ x - c j increases, RT-ROC lies beneath FC-ROC. We will now prove this. 

Rdation of the RT-ROC to the FC-ROC. In this section we will show that, 
for any nondegenerate distribution function G,-,(t), the RT-ROC lies at or below 
the FC-ROC if fn(x) and fs(x) are given by Eqs. (1 a) and (1 b), where f E 2. Consider 
the point (xk , yk) on the RT-ROC, and let us choose a point on the FC-ROC such 
that xk = PFA , where 

Note that if P, = xk , c’ > c unless k = m (tk = m); in that case, G&t,) == 1 
for all x - c, and c’ = c. This is merely a restatement of the fact that the RT and 
FC-ROC curves meet at the “yes-no” point. 

We wish to prove that 

PH = 
s ;.ftx-Pw 2Yr:. 

We approach the problem by assuming that Gzpc(tk-) varies in discrete steps as x ~- c 
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increases; the values of x at which GzVC(tk) changes value are cr , cs ,..., ci ,..., c, . 
Let the cutoff, previously referred to as c, be ca . The constant value of GzJtk) 
between ci and Q+~ is designated Gi ; then xk and yk are given by 

xk = “c’ Gi(tk) jci+‘f(x) dx + G,(t,) jm f(x) dx 
i=O ci %a 

(104 

and 

n-1 

ok = C Wc) 
s 

-;'f(x) dx + G,(tr) jm f(x) dx. (lob) 
i=O I G,-LL 

There exists a set of values, cir (i = 0, I,..., n) such that 

j:+)(x) dx = G&J jci”f(x) dx, i<n (114 
ci 

and 

j,&, dx = G&J jm f(x) dx. Ulb) % 
Since Gn(tk) < 1, from Eq. (1 lb) we have c n’ > c, . Putting i = n - 1 in Eq. (1 la) 
and adding to Eq. (11 b), we get 

j:;-lf(x, dx + j)(x) dx = '%-l(h) j;/s) dx + Gn(tk) j;f(x) dx. 
n 

Therefore, 

that is, 

j;/(r) dx G jm f(x) dx, 
n G-1 

Similarly, we can show that 

cir > ci for all i. 

Note that on summing Eq. (11) over i, we get 
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from which, using (9), we observe that c,,’ = c’. Therefore, 

(12) 

Now consider the quantity 

s 
ci +1-u 
ci-p f@) dx 

Q= a - P) - w,, - P> 
G&J [““‘-“j(x) dx = G(MWi - P> - %,+I - ~11 ’ 

where Q is the ratio of the (i + 1)-th term in Eq. (12) to the (; + 1)-th term in 
Eq. (lob). In order to prove that PH 3 yK , it suffices to show that Q 2 1 for all i. 
Accordingly, note that Q = 1 if TV = 0. Thus, if dQ/dp > 0, Q 3 1 for p > 0. 
Differentiating, 

$ = F%W’ [R(ci - CL) - %+l - P)I-” 

x {Wi’ - PCL) -f(4+1 - Pw+i - CL) - %+I - CL)1 

- [f(G - CL) - f(Ci+1 - PWG - P) - &:+I - Y)lI 
>0 iff 

f(Ci’ - CL) -.fcca+1 - P) > f(Ci - CL) -f&+1 - CL) 
R(Ci’ - PI - WC;,, - PI R(Ci - CL) - %+I - CL) . (13) 

It can be shown (Thomas, 1971) that 

Lfw - fc4l/[Jw - +41 

increases with xi and x2 . Therefore, since ci’ 3 ci , Eq. (13) holds and dQ/dp > 0 
iffEP. 

We can prove in a similar manner that 

Since each component of PH (the ordinate of the yes-no point) is greater than or 
equal to the corresponding component of yk , PH > yk (the ordinate of the RT-ROC 
point) where the two ROC points have the same abscissa value. 

480/9/3-z 
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If the K-th interval on the RT scale contains no responses (i.e., K > m), we redefine 
xlc and ylc : 

Xk = PF‘4 + s ;zfO[l - G&d1 dx, 

Yk = PH + s ymf(x - CL)[~ - GE-dG1 dx. 

The proof then follows as before. 
The proof has been carried out for an arbitrary discrete function G,(t). As n, 

the number of values of G,(t), approaches infinity and the distance between ci and 
ci+i approaches zero, G,(t) is, in the limit, continuous. This completes the proof 
of the following: 

THEOREM 6. The RT-ROC Zies at or below the FC-ROC ;f f E 2’. 

The proof suggests a corollary prediction. Since Q - 1 increases with CL, so does 
prf-Yki thus the continuous model makes the stated prediction that the depression 
of the RT-ROC relative to the FC-ROC should be more pronounced for higher 
values of p. Data presented by Moss et al. (1970) and Norman and Wickelgren (1969) 
appear to be consistent with this prediction. In both cases, RT-ROC plotted on 
normal-normal paper exhibited more pronounced peaking at the yes-no point when 
p was larger. 

Norman and Wickelgren (1969) have commented on the apparent “peak” of the 
RT-ROC at the yes-no point. Such a cusp may be due to the fact that they plotted 
their RT-ROC on normal-normal paper, for we can prove the following: 

THEOREM 7. The slopes of the RT-ROC and the FC-ROC are equal at the yes-no 
point. 

Proof. On differentiating Eqs. (8a) and (8b), we have 

dyk k&c So” Yz(hJf (x + c - d dx -= -= 
4 dx,ldc J-7 Y&d f 6 + 4 dx ’ (14) 

As li -+ m, t, + co and yz(tlc) + 0 for fixed X, subject to sr y,(t,) dx = 1. In other 
words, yZ(tk) tends to the degenerate distribution having all its mass at x = 0, from 
which it follows that 

slope of the FC-ROC at the yes-no point. Q.E.D. 

Therefore, the meeting of the RT-ROC and the FC-ROC is not the sharp peak 
which is observed when the points are plotted on normal-normal paper. 
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Threshold Models 

For this class of models we assume that the distribution of times to make a particular 
response depends on: 

(i) the activation state Ai, which generated the response, but not on the 
signal energy that produced Ai ; in particular, it is assumed that response time is 
independent of the stimulus parameters {p,} and {qJ; 

(ii) the bias state (Bi , z); this dependence will not be explicit when we 
consider the RT-ROC, but will be when we consider mean response times. 

(iii) whether the response is yes or no; however, this dependence can be 
omitted without losing any generality. 

Let us introduce the following notation: 

p,,(k < m) = probability that a yes response occurs in category R, 
given state Ai . 

&.(k > m) = probability that a no response occurs in category k, 
given state Ai . 

k > m. 

From these definitions it can be seen that under bias state (B+ , z) 

P,, = 0, i <j, 

Pjm = z, 

Pi, = 1, i>j. 

THEOREM 8. The RT-ROC lies at or below the YN-ROC if pi/q* increases with i. 

Proof. Case 1. k < m. 
Let us assume that the subject is in bias state (I$ , 2). Then the coordinates of the 

RT-ROC are 
r-1 

4’ = ; qip,, , 

T-l 

yp = c p,P,, . 
i=j 

(15b) 
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Let us choose a point on the YN-ROC such that Pan = xIcj), for some 1 and z’. 
Since k < m, Pg’ < $’ (= Px), so that I 3 j, and from Eqs. (4) and (15) we 
obtain after some simplification, 

p$‘(z’) _ y’d = P, 
k 

41 

Since pi/qi increases with i, all the terms on the right hand side of (16) are positive. 

Case 2. k > m. 

For bias state (I+ , z) the RT-ROC coordinates are 

$’ = xf + i QiPi’, , (174 
i=O 

yp = y,i’ + i pip;, . 
i=O 

(17b) 

Choosing a point on the YN-ROC such that Pg$z’) = xk, we have 1 <j and 
from Eqs. (2) and (4) we obtain after some simplification, 

Pj.j’(z’) - yf’ = p, /go (5 - $) pil, + F (+ - J&) (1 - piR) 
i=z+1 

+ (5 - 5) (1 - z - Pik)\. (18) 

Since Pik < 1 - x the right-hand side of (18) is positive. This proves that the 
RT-ROC lies at or below the YN-ROC. Q.E.D. 

THEOREM 9. (i) If the subject is in state (B, , z) the RT-ROC coincides with the 
YN-ROC above the yes-no point. 

(ii) If the subject is in state (B,-, , z) the RT-ROC coincides with the YN-ROC 
below the yes-no point. 

Proof. (i) When j = 0, k > m implies I = 0. Putting j = I = 0 in (18) 

P$‘(z’) - y!’ = 0. 
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(ii) Whenj=r-l,k<mimphesZ=r-l.Puttingj=Z=r-lin(16), 

p$-lyz') -rt-" = () 

The implications of Theorems 8 and 9 may best be understood by considering 
three cases. First, we may have a model with a subthreshold state A, and a large 
number of states above A,, each with very small or infinitesimal probability of 
activation. Under a liberal criterion such that a “no” response implies B, , a straight 
line segment is generated between the points (I - q,, , 1 - p,) and (1, 1). With p, 
substantially greater than zero, prediction (i) applies. 

Second, we may have a model with a subthreshold state A,, and a small number 
of superthreshold states. Under experimental conditions such that the subject is in 
bias state B,.-, , a linear segment connects (0,O) to (qT-i , pr-,). If there is a moderate 
probability that noise alone can activate the highest threshold state, A,-, (i.e., 
qrpl > 0), prediction (ii), as well as (i), applies. Lute’s (1963) low-threshold theory 
is a case in point. 

Third, we may have a model in which the highest superthreshold state is not 
activated in the presence of noise alone (qr-i = 0). Prediction (i) still applies. 
However, it is doubtful that the subject would enter B,-, since it needlessly lowers 
the hit rate when the false alarm rate is already zero. Thus, prediction (ii) would 
not apply. Krantz’s three-state Low-High threshold model (1969) is a case in point. 
Note that if B,-, does exist, the lowest limb of the ROC is vertical, coincident with 
the ordinate. 

As Krantz has pointed out, it is unreasonable to conceive of a threshold model 
in which the signal never falls below the lowest threshold and, certainly, noise must 
frequently do so, i.e., p, > 0 and qO > 0. Since, in addition, it should be possible 
to establish conditions under which the subject adopts a liberal criterion, part (i) 
of Theorem 9 states an important prediction of threshold models. This prediction 
is quite opposed to that of continuous models which require the RT-ROC to lie 
strictly below the FC-ROC under the conditions stated earlier. 

RESPONSE TIMES UNDER THE CONTINUOUS MODEL 

Invariance qf Response Probabilities 

Consider a set of experimental conditions (combinations of signal-to-noise ratios 
and signal probabilities) such that Px does not vary significantly over the set. Assume 
that the sn distributions are all of the same form and have the same variances across 
all conditions. Then they can all be mapped onto a single distributionf(x), all having 
the same value of c. Under our assumption that the RT varies only as a function 
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of x - c, it follows that the distributions of RT, (reaction times of hits) should 
not vary significantly over experimental conditions. 

Suppose that the distributions have different variances: specifically, for one 
experimental condition 

PFA = s ; f(x) dx 
and, for a second condition, 

Pav = ;j;f(T)dx, (0 # 1); 

and P, = PH . Then 

PF,=PH= ‘a3 
J (CLU),(lf Cx) dx 

and, therefore, 

cf -p 
c=-. 

u 

Now, the mean hit RT is given by 

s m T,-,,fs(x) dx, m PHRTH = where 73c = 
c’ s @z(t) dt 

0 

1 m 
=-.i u CO+!2 

Ts-(co+,.)f (+) dx 

-1 

co 
w-c)f (r> dy, 

c i 
Y= 

X-P 
u 1 

s 
cc 5 Tg-ef (y) dy = PFARTFA 
e 

if (T 2 1 and 7r is a monotone decreasing function of x. Thus, given two equal 
response probabilities, the one based on the distribution having the larger variance 
will be associated with the smaller mean RT if ra: decreases as x increases. If variances 
are equal, the RTs should be equal. 

The range of comparisons based on invariant probabilities may be further extended 
over both yes and no responses if we assume that f(x) is symmetric. For example, 
if we have two equal response probabilities, P,, and P, , possibly obtained under 
different experimental conditions, their associated RT distributions will be the same 
if we assume that fS(x) is given by (lb), f( x is symmetric, and the RT-distance ) 
function is symmetric about the cutoff, i.e., 7 varies with the absolute value of x - C. 
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RT-Probability Curves 

We next consider the plot of RT as a function of response probability which we 
will refer to as the RT-probability curve. If it is assumed that fs(x) is given by (1 b), 
then the RT-probability curve for false alarm responses would be the same as that 
for hit responses. We will omit subscripts H and FA in the proof of the following 
theorem. 

THEOREM 10. The RT-probability curve is decreasing iff E 9 and ifrz is a decreasing 
function of x. 

Proof. Given c, the average false alarm RT is given by 

RT, = 
J 
‘OC fcx) A 72-C dx, 
e R(c) 

if the integral converges. For simplicity, we assume that 7z is bounded. Then on 
integrating by parts, 

RT, = 70 + j,’ % “(;(; ‘) dx. (19) 

Now 

d Rb + 4 = Rb + 4 
[ 
f (4 fk + 4 

dc R(c) 
___- 

R(c) R(c) R(x + c) 1 
< () for x>O 

if f E 8 (Thomas, 1971, Theorem 2.4). Therefore, since dT,/dx < 0, 

dRTc - s 3o dTz d -- 
dc dx dc [ 

R(x + c) dx > o 1 R(c) ’ 
if fE9. Q.E.D. 

,, 

If fs(x) is given by(lc (J varies with CL, inferences may still be drawn. Suppose 
that for two experimental conditions (denoted by primes), P’ > P and cr’ > cr. 
Consider a third condition which is such that P” = P’ and U” = o. Then from the - - 
above theorem, RT” < RT, and from the discussion of probability invariance - - - 
RT’ < RT”, from which it follows that RT’ < RT. When P and u relationships 
are in conflict, the situation is ambiguous. 

Extension to Percentiles of the RT Distribution 

Because of the nature of observed distributions of latencies, investigators frequently 
use the median, rather than the mean, as the basic measure, and results consistent 
with those derived for R!? can be derived for median RT (or for any other percentile). 
If we assume that G,,,(t) decreases as 1 x 1 increases, we can show that T, , the RT 
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equal to or greater than lOOor percent of the RTs, increases as response probability 
decreases or as the cutoff c increases. Let 

By comparison with Eq. (19), it can be seen that if f~ 8, 

Therefore, the solution, T, , of 01 = HC(t), increases as c increases. 

Interactions 

We briefly consider here the effects of shifts in bias upon the quantities R?cR - RT, - 
and RT, - RT,, . This interaction of bias and latency measures is of interest 
because, as we will see later in this paper, a somewhat different prediction will hold 
for threshold models than for continuous models. To view the problem within the 
context of the continuous model, it is helpful to map both the sn and n distributions 
onto the same curve f(x). If the two distributions have equal variances, we may 
conceive of a single distribution with two cutoffs, x = c and x = c - p. Assume 
two RT functions, 7Z--G and T~-(~-~) differing only in their points of origin. As bias 
is varied (e.g., through the manipulation of signal probability of payoffs), c and 
c - p are shifted by equal amounts. The question of whether, for example, - 
RTcR - RT, varies with this shift in cutoffs is really the question of whether 
d2RT/dc2 = 0. From Eq. (19) it is clear that the second derivative will not be zero; 
there will be an interaction between the measure and the bias variable. We are unable 
to specify the nature of the interaction since it appears to depend upon f(x), TV, 
and the placement of c. 

We next consider a second possible interaction, that between signal-to-noise 
ratio and bias parameters. In this instance, we will assume that fixed bias implies 
a fixed likelihood ratio /I. When RT is monotonically related to response probability, 
it will suffice to consider changes in response probability as p varies for various 
values of Jixed /?. 

THEOREM 11. If f=(x) and fS(x) are given by (la) and (lb), where f E 9, and a 
subject maintains a constant likelihood ratio criterion, /I, over changes in signal/noise 
ratio p, and over changes in cut08 c, then 

where the x-scale is chosen so that the modal value of X is 0. 
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Proof. For simplicity, it is assumed that f'(0) = 0. Also note that p > 0 and, 
therefore, f(p) <f(O). 

P = f(c - P)/f(4 (20) 

and 

dPF.ddcL = W'dWcldtL) = -f(4(WcL). 

Now, since p is fixed, 

dc am+ f(C)f'(C - P) -=-= 
4 appc f(C)f'(C - P) -f'(C)f(C - P) ' 

(21) 

where f ‘(x) = (d/dx)f(x). We observe that since f E 2, (d/dx)[ f '(x)/f (x)] is negative 
which implies that the denominator of the RHS of (21) is positive. Therefore, the 
sign of dPFR/dp is the same as that of -,f’(c - p). Since f '(0) = 0, dc/dp > 0 if 
and only if c < TV from Eq. (21). Since f E 3, /3 is a monotonic function of c, so that 
c < P implies ,b <f(O)/f(cl) [p u in c = 1~ in Eq. (20)]. Therefore, tt g 

dPFA < o 

T$F' if f(p) Gf(O)/P 

>o if f(p) >f(O)iP Pb) 
Q.E.D. 

If p < 1, the condition in Eq. (22b) implies that f (p) > f (0), which is impossible 
since f (0) is the modal density; therefore, dPFA/dp < 0 for all ,R < 1. For /3 ;:: 1, 
dPFA/dp is positive for small p and negative for large p. When RT varies inversely 
with response probability, if the subject maintains a likelihood ratio criterion which 
is less than 1, RT,, increases with increasing signal-to-noise ratio (increasing p); 
if the criterion exceeds 1, the plot of RT, at first decreases and then increases as 
signal-to-noise ratio increases. The inequalities in Eqs. (22a) and (22b) are reversed 
for RT, (since dPcR/dp = -dPFA/dp). Using the preceding method of derivation 
we can also show that the plot of RT, (RT,) against signal-to-noise ratio is decreasing 
(increasing) for fi > 1 and is increasing (decreasing) for /3 < 1. 

Alternative Assumptions about RT 

In the preceding discussion of RT-probability functions, we assumed that the 
expected RT decreases monotonically as a function of distance from the cutoff. 
Although this is the position generally held (Bindra et al., 1968; Norman and 
Wickelgren, 1969; Smith, 1968), other assumptions are at least superficially plausible. 
One natural assumption is that 7 decreases as a function of x. Then for fixed CL, as 
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c increases, slower RTs will be excluded from the computation of the expected value 
of “yes” RT; that is, RT, and RT,, will decrease as PH and P, decrease. Mathe- 
matically, 

by Thomas (1971, Lemma 2.3) since T= is a decreasing function of x. The prediction 
is contradicted by results from Carterette, Friedman, and Cosmides (1965) and 
Sekuler (1965) and, indeed, by numerous observations of the effect of bias upon 
choice RT. 

We could make the somewhat counterintuitive assumption that r increases with 
increasing x. Then “yes” RTs would increase with c. However, “no” RTs would 
also increase in contradiction to available data; with increasing c, larger values of 
7z would be included in the average RT. This problem can be remedied by assuming 
that r depends on x and the response, that 7 increases with x for “yes” responses 
but decreases for “no” responses. Aside from the fact that such an assumption jars 
out intuition, there is still another problem. Under high signal-to-noise ratios (CL large), 
RTH will be high since the response is based primarily on values of 7 associated 
with large x. The prediction that more discriminable stimuli result in longer response 
times when responded to correctly is unpalatable. Thus, simple “strength” assump- 
tions appear unreasonable. It is possible that some combination of “distance from 
cutoff” and “strength” assumptions might work; it is not clear, at this point, that 
such a departure from parsimony will be required of the data. 

RESPONSE TIMES UNDER THRESHOLD MODELS 

Basic Equations 

In this section, we take the r-state model, presented formerly, as our model of 
detection. We assume that the observed average reaction time is the sum of a decision 
time component p, which depends on Ai and (Bi , z), as stated earlier, and another 
component which includes both activation and motor times. It is assumed that this 
latter component is independent of A, and (Bj , z) and it will be omitted from the 
analysis. 

Thus, we may write 

RT(yes 1 Ai , Bi , z) = 
I , 
Ii-1 i = j, 

i#j. (23) 

If we assume that bias varies continuously, then the bias states (B, , 1) and (Bjel , 0) 
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are equivalent and we can write RT(yes j Aj , Bj , 1) = RT(yes ) Aj , Bjpl, O), i.e., 

uj,l = Pj,j-1 * (24) 

The RTs for hits and correct rejections under Bj are given by 

RTjj’(z) = [P;“(z)]-’ ;pjzoj,i + ‘c’ pfprij, (25) 
i=, +1 

j-1 

RT$z) = [P$’ @l - s) u,,~-~ + c pipi,& 
i=O 

(26) 

where 

r-1 

and 

p2'(z) = pjz + C pi (27) 
i=j+l 

j-1 
P(g(z) = qj(l - z) + c qi . 

i=O 

(28) 

From (27) and (28) it can be seen that 

Pi’(Z) - Pkl)(Z’) = PjZ + pj+,(l - Z’) > 0, 

and 

P&“(Z’) - P!;(Z) = qj.2 + qj+i(l - Z’) >, 0. 
(29) 

Therefore, the sequences {P$‘(z,)} and {P$(zj)}, 0 < sj < 1 andj = 0, l,..., Y --- 1 
are decreasing and increasing, respectively. 

Invariance of Response Probabilities 

We earlier remarked on a rather fundamental property of continuous models: 
If response probabilities obtained under different experimental conditions are equal, 
rather strong predictions about the associated mean RT follow. This is not generally 
true of the discrete-state models because there are many parameter-value-combinations 
which will yield a particular response probability but will yield different response 
times. For example, consider two sensory bias combinations, which give rise to 
the same hit probability. For simplicity, we work with Krantz’s three-state model, 
and assume that both values of PH lie on the lower limb of their respective yes-no 
curves. Then 
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and 

RTW) = pg)(,‘) --L iPl’Z’Ul,d + P2P2,ll’ 

Setting Pi’(z) = P$‘(.z’), that is, 

P,Z + P, = Pl’Z’ + P2’, 

there appears little that can be said about the relationship between the two RTs. 

RT-Probability Curves 

When discussing the model of Signal Detection Theory, we found that, under 
the assumption that f E A? and that RT is inversely related to distance from the 
cut-off, the RT-probability curve is decreasing, consistent with studies by Carterette 
et al. (1965) and Sekuler (1965). W e will show in this section that, under differing 
assumptions about p, decreasing RT-probability curves are not derived naturally 
from the r-state model. 

Assumption I. pi,$ = pc is independent ofj. It follows from Eq. (24) that oj,r = pj . 
From (25), 

RT$‘( 1) = @‘p,]-’ [&pi]. 
i-j &j 

(30) 

It is clear that a necessary and sufficient condition for RTs’(l) to be an increasing 
function of j for all {p,} is 

PO 1 Pl \ < < ‘.’ <p,-l. (31) 

Putting z = 0 in Eq. (26), 

RT&(O) = [i ql]-l [i pipi]. 
i=l i=O 

Therefore, if the inequalities (31) are satisfied, RTg!$O) is also an increasing function 
of j. Similarly, it can be shown that if RT,!$O) is a decreasing function of j, then 
so is RT$‘(l). This proves the following: 

THEOREM 12. Under Assumption I, the latency-probability curve for hits and that 
for correct rejections cannot both be decreasing. 

Assumption II. pi,j = pl+l , is a decreasing function of 1 i - j I. It follows that 
Ud,l = Pr * 
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This assumption is analogous to the one, made when we were considering the 
continuous model, that latency is inversely related to distance from the cut-off. 
We will show that the latency-probability curve is not monotonically decreasing 
by using the following contradiction: 

THEOREM 13. If the latency-probability curve is decreasing for all {p,}, then 

(4 aj,z is a decreasing function of z 

(b) lim,,, .~a~,~ = 0. 

THEOREM 14. If aj,z is a decreasing function of z and if lim,,, Zaj,z = 0, then either 

(a) ‘J~,~ = lim,,, Uj,. is infinite, lim,,, d/dz(zaj,,) is infinite and iim,,, z2uj,, = 0, 
or 

(b) oj,a is finite and lim,,, a~:,~ = 0 = lim,,, ,z~u:,~ . 

THEOREM 15. Whether ojSO is jinite or infinite, 

lim d@‘(4 > o 

z-to dP;)(z) ’ ’ 

The conclusion of Theorem 15 contradicts the assumption of Theorem 13. 

Proof of Theorem 13. (a) Put p, = 0, i > j + 1. 
Then from (25), 

RT$‘(z) = CJ~,~ . 

Therefore, CJ~,~ is a decreasing function. Q.E.D. 

(b) Let sj = lim,,, zaj,* . If the latency-probability curve is decreasing 

RT$“(O) < RTj+‘)(l). 

r-1-j T-l-j 

.*. ,F; Pj+lPi + Pjsj G C Pj+lPi-l, 
i=l 

where PO 

. . . y P,+1 
- (Pi-1 - Pi) > sj . 

i=l Pj 

If sj > 0, we can choose {pi} such that (pj+Jpj) < (sj/pl - p3) and pi 
Then (32) would be violated. Therefore, 

sj = 0. 

Pl . (32) 

0, i > j i 3. 

(33) 
Q.E.D. 
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Proof of Theorem 14. 

LEMMA (l’H6spital). If lima&(x) and lim z+og(x) are both 0 OY both 00 and f’(x) 
and g’(x) never vanish for the same x, then 

(34) 

whenever the second limit exists. 

(a) If u,, is infinite (omitting the subscript j), putting f (z) = oz and g(z) = l/z 
in (34) and using (33), 

0 = liiy za, = -1im .z2uz’ d 
?30 i ‘=- u z- dz uz * 1 

Next, putting f (z) = 20, and g(z) = z in (34), 

is injkite if o0 is infinite. 

(b) If cro is finite, then 

and, therefore, lim,,, xuz’ = 0 = lim,,, z2u2’. Q.E.D. 

Proof of Theorem 15. 

lim dRT&) 
z+o dP,(z) = [,i&r2 1 

If a0 is infinite, from Theorem 14, 

lim d’T~‘(z) = 

z+o dPjj’(z) 
+co 

, 

and, if a0 is finite, 

lim dRT$‘(z) 
z+o dPz)(z) 

Q.E.D. 

(35) 

Since ujsz is decreasing, 

"j,o > uj.1 = Pl . 

Therefore, since p1 > p2 > ... > prel , by assumption, the RHS of (35) is positive. 
Q.E.D. 
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This completes the proof that the assumption that the latency-probability curve 
is monotonically decreasing leads to the contradictory conclusion that the curve is 
increasing when the bias states are “close to” (Bj , 0) for all i. 

The above results merit restatement. We examined the consequences of two 
alternative assumptions about p: (i) p depends on the activation state and not on Bj , 
and (ii) given A, and Bj (i # j), p is a decreasing function of / i - j 1. Under (i) it 
was shown that the latency-probability curves cannot be decreasing for both hits 
and correct rejections, and under (ii) it was shown that the curve for neither is 
decreasing. If it were possible to obtain experimentally points on the latency- 
probability curve that are close together, this result could then be used to distingursh 
the Threshold model from that of Signal Detection Theory. However, if the data 
points are not close together, it is possible that the empirical curves are decreasing, 
as is seen in the following theorem: 

THEOREM 16. Under Assumption II, 
CS~r:+, P,E::I; Pi> 

the sequence {RTg’( 1 )} is increasing if 
is a decreasing sequence in j (k fixed). 

Proof. Since p0 = p1 > pz > ... > prP1 , we can write 

Pj = p* -  i ak, 

P=O 

j = 0, 1 ,..., r - 1, 

where ak > 0. 

Now 

m-i 7-l-j T-l 

ak = c ak c PwL 

k=O m=j+k 

T-1-j 

= z. akRi+kF 

T-l 

where Rj+k = c P,~ . 
m=j+l. 

If {Rr+k/Rj} is a decreasing sequence inj (k fixed), 
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Therefore, since uk > 0, 

T 1-j r-2-j 

c 
Ri+lc 

k=O 
ak-j&-> ZO akws 

:. From (36), RT$‘(I) < RT$‘+l)(l). Q.E.D. 
In other words, if data points are obtained under bias states “close to” (Bi , l), 

and if Rj+,JRj decreases as j increases, then the empirical latency-probability curve 
is decreasing. The condition on {p,} is analogous to the earlier requirement that 
f(x) have an increasing hazard rate, so that this result is not surprising. 

TABLE I 

Summary of Results for the Two Models 

Statistic Discrete-state model” Continuous modeP 

RT-ROC Coincides with the YN-ROC above Lies below the FC-ROC, except 
the yes-no point if that point lies at the yes-no point. 
on the uppermost limb. 

Equal Response Cannot generally predict RTs identically distributed. 
Probabilities relationships among associated RT. In the unequal variance case, 

faster mean RT is associated 
with larger variance. 

Latency- 
Probability 
Curve 

(i) If decision latency depends on Ai , (i) The curve is decreasing for 
but not on Bi , this curve cannot be all classes of RT (hits, etc.) if 
decreasing for both hits and correct mean decision latency is a 
rejections. decreasing function of distance 

from the cutoff, 1 x - c I. 

(ii) If decision latency, given Ai , B, , (ii) If decision latency is a 
is a decreasing function of I i - j 1, monotonic function of x, the 
(a) the curve for neither hits nor curve is decreasing for some 
correct rejections is decreasing, but classes of RT and increasing for 
(b) if data points are obtained under others. 
bias states “close to” (Bj , l), then 
the empirical curve is decreasing if 
Cafe+, pJxi,f pi is a decreasing 
function of .i. 

Interactions If the yes-no points lie on the 
uppermost limb, RT, - RT~R is 
invariant under changes in bias 
and/or signal strength. 

RTM - RT~R, for example, is 
a function of both bias and 
signal strength. 

“It is assumed that pi/qi increases with i. 
b It is assumed, unless otherwise stated, that f,(x) = fn(x - p), where fn E 9, 
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Interactions 

The following discussion will be restricted to motivational conditions such that 
the bias state is (B, , x); that is, the yes-no point lies on the highest limb of the 
YN-ROC. Under these conditions, a no response will occur only when A, is activated. 
The mean reaction times of both misses and correct rejections will be, 

RT$(z) = ug,l-z = RT$z). 

The equality of these two RT measures in this bias state is sharply opposed to the 
prediction generated by the continuous model-that the response (presumably 
correct rejections since TV > 0) having the higher probability should be faster, and 
that the difference in RT should vary as bias varies. Note that even if we find grounds 
for assuming that activation and motor times differ for the two responses we still 
predict that the difference in RT is constant as z varies, provided we make the natural 
assumption that only the decision time component is affected by the degree of bias. 

SUMMARY OF PREDICTIONS 

We have covered much ground and it may help to summarize the main predictions 
generated by the two models for various aspects of RT data in Table I. 

DISCUSSION 

The preceding summary highlights one problem with discrete-state models; 
rather restrictive assumptions are required to obtain empirical latency-probability 
curves that are decreasing (see Theorem 16). It is difficult to go beyond this in 
evaluating the validity of the models. Very few experiments have been performed 
in which RT has been collected and analyzed in ways relevant to our predictions. 
Furthermore, these experiments have varied sufficiently in procedure to make it 
difficult to draw strong general conclusions. Carterette et aZ. (1965) worked with 
an auditory signal, Sekuler (1965) with a visual one, and Moss et al. (1970) with 
recognition memory for tones. In the first of these studies, the observers controlled 
the stimulus duration while the signal was available for only a brief duration in 
the other two studies. As noted earlier, both of the detection studies obtained 
decreasing latency-probability curves as signal probability was varied. Neither 
obtained an effect of signal strength upon RT which is surprising within the context 
of either model. However, it may be that the variation employed was slight relative 

4801913-3 
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to the variability in response times. A more disturbing result was one obtained by 
Moss et al. As the interval between standard and comparison tone decreased (generally 
viewed as a manipulation of signal strength by investigators of recognition memory), 
all subjects showed consistent decreases in all four RT measures, The continuous 
model would require that hits and correct rejections, which increased in probability, 
become faster while false alarms and misses become slower. Under the discrete- 
state model, we would expect the no responses to be invariant. 

It is hard to evaluate the results cited above. They rest on a handful of subjects 
and have not been replicated. There is a paucity of appropriate data on which to 
base an evaluation of the two models. We need two kinds of studies. One kind of 
study would involve a systematic and thorough manipulation of signal strength 
and probability, permitting us to look at RT-ROC corresponding to various limbs 
of the discrete model’s YN-ROC, and permitting an analysis of latency-probability 
curves and interactions of the sort indicated in the preceding summary. It would 
also be helpful if we had conditions which could be expected to yield different variances 
of the decision variable within the context of the continuous model. This model 
predicts that for two responses of different probabilities, the advantage in latency 
for the more probable response should become smaller as the variance of its theoretical 
distribution declines with respect to that of the less probable response. A second 
kind of study would attack the latency predictions made for that case when response 
probabilities are equal. These predictions would seem to reflect a basic property 
of the class of continuous models considered in this paper. Presumably, some pilot 
work would be needed to establish the appropriate experimental conditions, but 
the effort appears to be worthwhile. 

In closing, we would like to make clear that the predictions derived in this paper 
will not permit us to accept either type of model. Models that we have not considered 
-e.g., counter models such as those proposed by Laberge (1962) and McGill (1963),- 
may account for response times and probabilities as well as or better than the models 
that we have considered. The same may be said of models, within the classes con- 
sidered, under somewhat different assumptions about the latency mechanisms. 
However, the classes of models that we have considered are broad, plausible, and 
consistent with much of the theoretical work in detection. Thus, the failure of our 
predictions would permit the rejection of models that are clearly not trivial. 
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