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Which Linear Compartmental Systems Contain Traps?

DANIEL FIFE
University of Michigan Medical School, Ann Arbor, Michizan, 48104

Communicated by John Jacquez

This paper will prove the following result which was stated without
proofl by Dr. John Jacquez: A linear compartmental system has a trap if
and only if the associated system of differential equations has a zero eigen-
value. It will then use this result to prove an approximation theorem
which says roughly that a linear compartmental system has an approxi-
mate trap if and only if the associated system of differential equations has
an eigenvalue which is approximately zero.

Let S represent a lincar compartmental system consisting of compart-
ments Cy, C,, ... C, and g; be the amount of material in C;. Let f;,; be
the fractional exchange coefficient so that the rate of flow of material from

C;t0 C,is f;,;q;; and let £, g, be the rate of flow of material from C;tothe
envxronment The total outflow from C; is ( /o, + ;2,1 )9; Wthh we
will write as f; ,g;. This leads us to consnder the system of differential
equations,

G; = T — Fi95 Ji=1...n (1)

where we write L for X, ;. Equation (1) may be written
4 = Fg. (2)
where ¢ is the column vector whose entries are g, . . ., ¢, and Fis the matrix

given by

_ Ji if i+#j
Fi.j - {“"fj.j i i=j. (3)
4 is an eigenvalue of Eq. 2 just if det(F — A7) = 0. Thus A = 0 is an
gigenvalue just if det(F) = 0.

What do we mean by a trap? We mean a subsystem with no output (to
things outside itself). Suppose 7 < S and renumbering compartments
need be, I'= C,, ..., C,(m < ). Tis a trap if and only if i, = 0 for all
(4, j) such that j > m and i < m (including ; = 0).

In stating the above it was convenient to renumber the compartments
of 5. What does this do to the matrix F? Renumbering amounts to apply-
ing some permutation P to the subscripts of C,, . .., C,. The new matrix
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representing the new system is obtained by applying P to both the rows
and the columns of the old matrix [1]. This is easy to see in case P merely
switches the names of two compartments. Since any permutation can be
written as a series of switches the result follows.

THEOREM 1

S has a trap if and only if either:
(a) each column of F sums to zero or,
(b) There is a permutation which can be applied to the rows and columns

. 0 , :
of F 1o give a matrix of the form ) where O consists only of zeros, U

U
QR
and R are square and each column of R sums to zero.

L

a’ corresponds to the case T = § and b to the case T — S.

Proof

The following are all equivalent.

i. T = Sisatrap (and may be written T = C,, .. ., C,)

i, fi; = O0forall (, f)such that j =m, .. ,nand i =0,...,m — 1.
iii. F;; =0forall (i,/)suchthatj=m,... ,pandi=1..,m—1
and (Eq. 3plus /o ; = O) F; , = = Z;F;, J=m, ..., N

iv. Statement “b” if m > 1 or statement “a” if m = 1.

THEQREM 2
S has a trap if and only if zero is an eigenvalue of Eg. (2).

Proof

Recall that zero is an eigenvalue of Eq. 2 il and only if det(F) = 0.
Suppose S has a trap T. If T = S then {rom theorem 1 each column of F
sums to zero so det(F) = 0. IT T = § permute F to get it in the form men-
tioned in theorem | part b. Each column of R sums to zero so det(R) = 0.
Hence the columns of R are linearly dependent. So are the columns of #
which pass through R since 0 consists of zeros only. Hence det(F) = 0.

Suppose det(F) = 0. From Eq. 3 and the definition of f; ; we see that
I,F;; = 0just if [F, | = Zj|F;l. Finally, since f/;; = O, [Fy | = LilFl.
We will show that a matrix with the above three properties must satisfy
“4” or “b” of theorem 1 and this will complete the proof. The lemma is a
restatement of a result given by O. Tausky [2].

Let 4 = (a; ;) be an n x n real or complex malrix and A4; = Zilay -
Let x = (xy, . . ., x,). We will say |x;| is maximal if |x;| > |x;, all § # j.
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LEMMA
Suppose
(1) Det(4) =0 and
) la;, | = A; all j.
Then either
Ia, ;| = A, forall ior,

0 . .
I1. A can be transformed to the form ( ) by the same permutation of

U
R
its rows and columns where U and R are square matvices and O consisis
entirely of zeros. For those columns t which fall in R we also have |a, ;| = A,.
Recall that II is equivalent 1o b of theorem 1 because of the second

property mentioned above.

Proof of lemma
Since det(4) = O there is a nonzero X = (xy, .. ., x,) solving X4 = 0.
We may permute the rows of A (and the columns of A the same way) so
that |x,] < |x,] < ... < |x,|. Suppose all |x;| are maximal. From the ith
equation of X4 = 0 we have
— X = LiXdg 4
It lail < Zilxgl lag,ls (3)
and since all |x;| arc equal
layl < Z'lal = 4, (6)

With “*27 this gives |a, ;| = 4; (for all {).
The other possibility is that (at least) |x,| < |x,|. Let # be the lowest

index for which |x,| = Ix,|. If # = m we see as we did before that
[xd lazl < Zjlx,l (gl (M
Hence, la,,| < Zjla;,] (contradicting 2) unless all the a;, for which
Ix;| < |x,| are zero. Thus a,, = 0,7 =1,...,m — 1 and this is true for
all ¢+ = m, ..., n. This gives the required block of zeros.
If column ¢ falls in R (i.e. if £ = m) then Eq. 7 applies. The first n — 1
terms in the sum are zero. For the rest |x;| = |x,| so Z¥a;,| = |a,,| and

as before this gives A,=|a, .

We will now use the above theorem to prove an approximate result
which will say that under broad conditions det(F) is approximately zero if
and only if F has an eigenvalue which is approximately zcro and this
happens if and only i § has a subsystem which is approximately a trap. In
order to state and prove such a result we will need to introduce some
additional notation.

For a given set Cy, ..., C, we can consider &, the set of all compart-
mental systems on C,, ..., C,, and #, the set of all matrices of such
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systems. Since a choice of particular system S € & is equivalent to a choice
of a set of fractional transfer coefficients there is an obvious one to one
correspondence between & and #. In # we will say as usual that a
sequence of matrices F; converges to a given matrix F, (F; = Fy)ifand only
if each entry of F; converges to the corresponding entry of F,. The deter-
minant is then a contlnuous function from & to the real numbers R.

8 € & has an approximate trap if it has a subsystem whose total output
is small. More formally let 7 < {C,, ..., C,}. Without loss of generality
T={C,,...,C,}. Then for any S € & we define

LT(S) = Zf<m. i (8)
izm
50 that Ly is the sum of the fractional coefficients for transfer out of T.
We have the following picture
Kt

J‘-/V u\ det
Re¥ =25 >R,
Lr v

where u and v give the correspondence between % and % and K, = L,.v.
K is a continuous function from # to R for each T.
Let K(F) = mingK;(F) taking the minimum over all nonempty

T {C,... C,. Kisa continuous function from & to R. We have the
picture

&

MlTH

R« F R

K det

By Theorem 2, K(F) = 0 if an only if det(#) = 0.

THEOREM 3

Suppose {F;} is a sequence of mairices in & and F s — Fo. Then det(F})
- O if and only if K(F;) - 0.

Proof
det(F,) — det(F,) so det(F;) — 0 if and only if det(Fy) = 0. Similarly
K(Fj — 0if and only if K(F,} = 0. K(F,) = 0if and only if det(F,) = 0.
A set of matrices is said to be bounded if the set of all the entries in all
the matrices is a bounded set of numbers. It is a standard result that any
closed bounded set of 1 x n matrices is compact.

THEOREM 4
Suppose {F} is a bounded sequence of matrices in F. Then det(F;) — 0
if and only if K(F;) = 0.
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Proof

Suppose the contrary. By compactness we can choose a convergent
subsequence with the same property. This contradicts theorem 3.

Finally, we should point out that for F bounded, det(F) is approxi-
mately zero if and only if F has an eigenvalue which is approximately zero.
To see this let A; be the set of eigenvalues of £, The product of all the A's
in A; is det(F;) so at least one 2 in A; is no bigger than |det(F})[!/". On the
other hand if M is the bound on the entries of the matrices it is easy to sce
that each A in A; must satisfy [4] < aM. If 4 is in A; we have |det(£})] <
(nM)=~1). Thus det(#;} — 0 if and only if min{|4| such that 7 & A;} — 0.

This is the result we were after except for the requirement that the
sequence be hounded. The following example shows that the boundedness
condition cannot simply be dropped.

Let §; be given by
(= 1j
Fe(T3 230)

N
1y

C, = Cy 4

K(F;) = min(1/j. j) = 1/}, so K(F;) — 0.

On the other hand det(F;) = 1 for all j.

My attempts to construct an example in which K(F;) stayed away from
zero and det(F;) — 0 were frustrated. The core of the trouble was that
according to theorem 4 any such sequence must be unbounded. However,
if we notice that in evaluating det(F;) all terms have the same sign and if
we notice that K(F)) is a minimum of several sums of positive terms, it
becomes clear that any unbounded sequence in which K(F}) stays away
from zero and det(F,) — 0 can be replaced by a bounded sequence with
the same properties. (The terms which grow unboundedly can simply be
replaced by suitablec nonzero constants.) Thus no such example exists.
The reader who prefers ending on a positive note may restate this as a
theorem.
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