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Abstract-The transmission of pressure and flow pulse waves in human systemic arteries is 
modeled using one-dimensional, nonlinear transient analysis on a system of branching, non- 
uniform tubes. Nonlinearity results from the retention of the vessel cross-sectional area as 
a dependent variable and from an approximation to the convective acceleration terms. 

Coupling the momentum and continuity equations with a linear elastic membrane equation 
describing the vessel wall yields a system of quasi-linear, hyperbolic partial differential 
equations, solvable on a digital computer using the method of characteristics and finite diier- 
ence techniques. Appropriate boundary conditions enabling the application of the model to 
whole vascular beds are introduced. 

Using published data, a reference state for the human arterial system is defined in terms 
of vessel geometrical and physical parameters. Model behavior in this state is documented at 
14 locations correspondi to vascular regions most frequently investigated clinically. Pressure 
and flow waveforms, and impedances from the model show reasonable agreement with clinical 
data reported in the literature. 

The model is found to reproduce the mechanical behavior of the real system with greater 
fidelity than previous models. Comparison of the nonlinear model with a linearized, lumped 
parameter model shows significant differences in performance. These ditferences are attributed 
mainly to the nonlinear interac@on of vessel transverse and longitudinal impedance. It is 
concluded that the nonlinear effects of finite vessel wall displacements are of importance in 
determining arterial pulse propagation behavior, at least in the more distensible central vessels. 
Fluid friction and convective acceleration effects were found to be of lesser importance in 
determining overall pulse wave behavior. 

Ih’TRODUCTlON 

THE PURPOSE of this investigation was to 
develop and verify a rational mathematical 
model of arterial pulse wave transmission 
embodying certain nonlinearities of the 
system. The nonlinear effects of finite vessel 
wall displacements were of particular interest. 

Previous models of arterial systems have 
been based on linear pulsatile flow theory 
(Noordergmaf, 1963 ; de Pater, 1966; Snyder 
et al., 1968; Westerhof, 1968). Justification 
for linearization depends partly on whether 

or not variations of the vessel radius with 
transmural pressure are ‘small’ relative to 
the mean radius. In the stiffer peripheral 
vessels, this condition is very likely met. 
However, radial wall displacements on the 
order of 5-10 per cent of the mean radius can 
be expected in the human ascending aorta 
(Patel, 1966), so that the application of linear 
analysis is questionable. 

Two methods have been used in prior 
efforts to assess the importance of non- 
linearities in pulse wave transmission. 
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Womersley (1957) investigated convective 
acceleration and finite wall displacement 
effects using perturbation analysis on his 
linear model. Such effects were found to be 
small. Since the linearized boundary con- 
ditions were retained, his results can only give 
small order corrections to the form of the 
velocity profile. 

One-dimensional fluid mechanical analysis 
was used by Rockwell et al. (1969) to 
investigate the formation of shock waves and 
other nonlinear phenomena in a nonuniform, 
single tube model of the canine aorta. The 
nonlinearities were found to have a marked 
influence on model pressure and flow patterns. 
Skalak and Stathis (1967) applied linear and 
one-dimensional nonlinear analysis to a short 
segment of pulmonary artery. Substantially 
different results were obtained for the two 
cases. It was concluded that the differences 
were primarily due to the finite wall displace- 
ments allowed in the nonlinear model. 

These studies have served to establish the 
importance of nonlinear effects in short 
arterial segments. A goal of the present study 
was to expand the scope of the system 
analyzed to assess the overall importance of 
nonlinearities in an extensive model of the 
human arterial system. 

The derivation is based on the following 
assumptions (Schaaf, 197 1): 

(1) An artery can be described as a straight, 
distensible and slightly tapered tube 
with a circular cross-section. 

(2) Gravity forces can be ignored. 
(3) Blood can be considered to be incom- 

pressible and to have a linear stress-rate 
of strain relationship. 

(4) The vessel is totally constrained in the 
longitudinal direction. 

(5) There are no secondary flows. 
Under these conditions, conservation of 

fluid mass for the control volume of Fig. 1 is: 

ar+az &I aw)+q= () 

where A is the vessel cross-sectional area, 
V is the mean velocity, z is distance along 
the axial coordinate, t is time, and q is a term 
allowing for leakage of fluid through the vessel 
wall. Such outflow represents the removal 
of fluid from the primary vessel through small 
branches. Equation (1) represents the equi- 
valence of the time rate of change of volume 

4 

THE MODEL 

One dimensional equations 

The formulation of the model is based on 
one-dimensional fluid mechanical analysis. 
The applicability of this approach has been 
demonstrated in single tube models of arterial 
flow (Streeter et al., 1963). In using one- 
dimensional analysis, the local detail possible 
in a linear model (explicit derivation of the 
fluid velocity profile) is sacrificed in order to 
obtain a nonlinear description of the gross 
behavior of pressure and flow. Detailed 
derivations of the appropriate equations have 
been given by Streeter et al. (1966), Barnard 
et al. (1966) and Schaaf (197 1) and will not be 
repeated here. Fig. 1. Sketch of vessel control volume. 
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and the net rate of fluid influx per unit length 
of vessel. 

The momentum equation for the same 
control volume is given by 

zzz 0 (2) 
where D is the vessel diameter, H is the 
piezometric head, g is the acceleration due to 
gravity, y is the ratio of the density of mercury 
to the density of blood, p is the mass density 
of blood, 7. is the fluid shear stress evaluated 
at the vessel wall, and p is the one-dimensional 
momentum flux coefficient accounting for 
the difference between the square of the mean 
velocity and the mean value of the local 
velocity squared, taken over the vessel cross- 
section. The momentum flux coefficient arises 
as a consequence of one-dimensionalization. 
It is defined by 

where v, is the axial component of U. 
To obtain (2) it was further assumed that 

the specific momentum of the leakage outflow, 
4, is the same as that of the primary flow. 

Provided the small vessel taper and fluid 
constitutive assumptions are valid, the wall 
shear stress can be approximated by 

ah 
r” = -TG _*,2 

where p is the dynamic viscosity of blood and 
r is distance in the radial direction. 

In the derivation of (2) and throughout the 
remainder of this paper, pressures are 
expressed in units of mm of mercury rather 
than in absolute units in order to facilitate 
comparison of model predictions with data 
from the literature, most of which are in 
piezometric units. 

In reducing the equations of fluid motion 
to one-dimensional form, the details concem- 
ing the actual shape of the velocity profile 

are preserved in the parameters p and r,. 
Since theoretical determination of the para- 
meters would require the solution of the full 
three-dimensional problem, reasonable values 
must be approximated. One approach 
(Barnard, 1966) is to assume a specific 
formulation for v, and then compute the 
required parameters using (3) and (4). 
However, it is worth inquiring under what 
circumstances this method is likely to improve 
the model appreciably. We first note that in 
the limit of very stiff vessel walls, zero lateral 
outflow and very small taper, the momentum 
equation reduces to the form valid for a rigid, 
uniform tube: 

The monentum flux term a(pAVz)/az goes to 
zero while the remaining terms are largely 
unaffected in approaching this limiting con- 
dition. Furthermore, /3 itself cannot reason- 
ably be larger than l-33, the value for laminar 
flow. For conditions sufficiently close to the 
limiting state, it is reasonable to expect the 
contribution of the momentum flux term to be 
diminished. On this basis, the momentum flux 
term is assumed negligible in comparison with 
the remaining terms. This assumption will 
be checked later by computing the magnitudes 
of the individual terms in (2) from the model 
results. 

The contribution of the leakage momentum 
flux term /3qV will also be small, since it is 
used only to represent very small outflows 
from the primary vessels. The problem is 
therefore assumed insensitive to the precise 
value of /3 selected. For mathematical 
convenience, p is assumed to be 1-O in (2). 
Multiplying (1) by V, subtracting the result 
from (2) and dividing by A yields the modified 
momentum equation, 

(5) 

An expression for the wall shear stress is 
also required. In this case it cannot be argued 
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a priori that wall friction is uniformly un- 
important. Instead, an approximation derived 
from the steady-oscillatory flow solution for 
an infinite, rigid, uniform tube is adopted: 

Equation (6) relates the wall shear stress to 
the instantaneous mean tlow velocity and to 
the time rate of change of the velocity. The 
validity of (6) is restricted to low frequency 
variations in flow, however the shear stress is 
overestimated at higher frequencies so that 
incorporating this approximation will not 
deemphasize the relative importance of 
friction effects in the model. 

In (6), p is assumed equal to 4/3. This is 
an apparent contradiction to the value used 
in obtaining equation (5). It should be realized 
that /3 was selected there as a matter of 
mathematical convenience to obtain the 
simpler version of the momentum equation 
(5). This was possible because of the expected 
small contribution of the terms in which 
p appeared. 

Finally, an equation relating vessel cross- 
sectional area and pressure and an expression 
for the distributed outflow function must be 
adopted. Constitutive relations for arterial 
wall material and the consequent pressure 
area relationships have been extensively 
investigated. It has been shown that arterial 
walls are composed of a material that is to 
some degree nonlinear viscoelastic and 
anisotropic (Attinger, 1968). However, it is 
our opinion that the current state of knowledge 
of arterial viscoelastic properties is not 
complete enough to merit their inclusion in 
an arterial model at the present time. We 
anticipated that the inclusion of finite radial 
strains alone would produce significant effects 
on the wave propagation behavior of the 
model. The selection of a particular wall 
model was considered secondary to the 
admission of finite strains themselves. Under 
these circumstances, a linear-elastic, in- 

compressible membrane model of the vessel 
wall was assumed to be adequate. 

For an incompressible elastic wall material 
(Poisson’s ratio = 0.50) 

Dh = Doho (7) 

where Do and ho are the vessel diameter and 
vessel wall thickness at zero transmural 
pressure. Using (7) and the method of 
analysis for stresses within the walls of thin- 
walled vessels, the following area-pressure 
relationship is obtained (Streeter et al., 1966): 

(8) 

where A0 is the area of the vessel lumen at zero 
pressure, E is the effective elastic modulus, 
and a0 = (h&/pDo)0’5 is the wave speed. Note 
that ho, Do and E can vary with location in 
the system. 

A linear dependance on pressure is assumed 
for the distributed out-flow function, 

4= K(H-Ha). (9) 

K is a constant depending only on the location 
in the system and Hb is an assumed constant 
terminal bed pressure. 

Equations (1) and (9) are combined to get 

$+%$Q+K(H-H~) = 0 (lo) 

and (6) is substituted in (5) to get 

av av 
P,,+v~+~,,+ A 

aH ev=o. (11) 

Equations (7-l 1) then provide the complete 
one-dimensional system of equations nec- 
essary to solve for the dependent variables A, 
V, and H in terms of the independent variables 
t and z. The system of equations describes the 
relationship between pressure, flow and vessel 
area in a single, nonuniform tube. To obtain 
the solution for a complex system, appropriate 
conditions at vessel branches, terminations 
and the inlet to the system must be mtroduced. 



ARTERIAL PULSE WAVE TRANSMISSION: A NONLINEAR MODEL 349 

BOUNDARY CONDITIONS 

A left ventricular pressure-time function is 
provided at the inlet to the system. The 
ventricular pressure is transmitted to the aorta 
through an idealized aortic valve. The flow 
through the valve is given by 

Q=kC-A,l&? (12) 
A,, and the orifice 

coefficient, C, are assumed to be functions of 
the valve pressure gradient, AH. The sign in 
(12) is selected according to the sign of AH. 
Fig. 2 shows some typical A, - H relations. 

system, from a simple series continuation of 
two vessels (i.e. subclavian-axillary) to the 
branching of a single vessel into three vessels 
(i.e., 

H, = H2 = H3 = . . . = 

A” 

-l-l -------- 1 

I 
L --------a-- 

An 

Fig. 2. Aortic valve area functions. 

Since the model is an open system des- 
cribing only the systemic arteries, it is 
terminated in peripheral lumped parameter 
loads representing the combined effects of 
small arteries, arterioles, and capillaries. It is 
commonly assumed that the terminal loads are 
purely resistive since the small vessel dia- 
meters at this level cause the resistive 
character of the local impedance to dominate. 
For a resistive termination, the pressure flow 
relationship is simply 

N-Hb= RTQ (13) 

expressing the neglect of secondary flows and 

n+1 

x AiL’i = 0, (15) i=l 

since no fluid is stored in the junction. 
The system of equations (7-11) with the 

appropriate boundary conditions ( 12- 15) 
is nonlinear and cannot be solved by the usual 
analytical methods. Instead, it is solved by 
numerical means, using the method of 
characteristics and a digital computer (Abbott, 
1966; Streeter, 1966; Schaaf, 1971). 

MODEL PARAMETERS 

where Hb is an assumed terminal bed pressure The information fed to the computer 
and RT is the lumped resistive load impedance. consists of geometrical data describing the 

Several orders of branching of major vessel dimensions and configurations, physical 
arteries can be identified in the arterial properties of the vessels and the contained 
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fluid, initial conditions, driving function data, 
and program control parameters. 

The parameters describing the vessels in 
the model are the wall thickness, h,,, diameter, 
Do, the elastic modulus, E and the vessel 
length, L. A fully rational parameter model 
would use independently measured values for 
these parameters. In the present study, 
however, it has been found expedient to 
present them in the form of the zero-pressure 
wave speed, ao. As sources for these para- 
meters, the authors have drawn on the efforts 
of previous modelers, notably Noordergraaf 
(1963) and Westerhof (1968). 

Figure 3 is a schematic of the major arteries 
represented in the model. Although they are 
not shown in the figure, the arteries of the 
right arm and leg are also included. Symmetry 
is assumed for certain portions of the system. 

ternol <carotid 

xternal carolid 

man carotid 

Aortic arch 

Thoracic oorto- 

IntFrcOstals 

bdominat aorta 

External iliac 

----Poplitral 

-Anterior tibia1 

tibia1 

Fig. 3. Schematic of model arterial system showing major 
arteries included and reference output locations. 

Examples are the renal arteries and the 
arteries of the legs. The intercostals, shown as 
discrete vessels, are actually modeled as a 
distributed outflow from the thoracic aorta. 
Values of L, Do, and a0 for the proximal and 
distal ends of each of the arteries are given 
in Table 1. These quantities are assumed 
to vary linearly over the specified vessel 
segment. 

Initial conditions on pressure and velocity 
are supplied as input data for all locations in 
the modeled system. The initial conditions are 
those which would exist for a non-oscillatory 
flow equivalent to the expected cardiac 
output. The conditions in individual vessels 
are apportioned according to the individual 
terminal resistance parameters. Terminal 
resistances are calculated from the specified 
total peripheral resistance and the distribution 
of flow estimated from physiological data. 
Starting the computations from this steady 
flow condition, the solution converges to a 
steady-oscillatory state within three pulse 
cycles. 

Values of the terminal resistances were 
estimated on the basis of a total parallel 
combination of 1.04 mm Hg/ml/sec. Notice 
that this is not quite the normal total peripheral 
resistance (TPR = 100 mm Hg15000 ml/60 
set = 1.2 mm Hg/ml/sec) since it does not 
include the series frictional resistance in the 
vessels, which will vary with the flow con- 
ditions. The model terminal resistances used 
are given in Table 2. 

Additional specified parameters are: 
a heart rate of 75 beatslmin (fi = 1.25 c/s, 
T = 0.8 sec.), terminal and distributed outllow 
bed pressures of O*Omm Hg and an aortic 
valve area of 7.6 cm*. 

RESULTS 

The primary output from the simulation 
program consists of pressure and flow rate 
data at up to 14 locations in the model. The 
output locations are specified by an identifying 
number and distance from the aortic valve in 
Table 3 and are shown schematically in Fig. 3. 
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Table 1. Model parameters 

Vessel 
No. Description 

Diameter, D, wave speed, a,, 
Length, L (cm) (cm/se@ 

(cm) Proximal Distal Proximal Distal 

2 
3 
4 

6,36 
7,38 
8,39 
9,41 

IO,40 
11,37 
12 
13 
14,3.5 
15 
16 
17 
18 
19,34 
20,42 
21,43 
22,45 
23,44 
24.47 
25,46 
26,33 
27,32 
28,29,34 31 

Asc.-des. aorta 
Thoracic aorta 
Abdominal aorta 
Abdominal aorta 
Abdominal aorta 
Illiac-prox. femoral 
Femoral 
Popliteal 
Post. tibial 
Ant. tibial 
Deep femoral 
Inferior mesenteric 
Superior mesenteric 
Renal 
Celiac 
Splenic. 
H+@ic 
Gastric 
Anonymal 
Subclavian+axillary 
Brachial 
Radial 
Prox. ulnar 
Dist. ulnar 
Interosseous 
Vertebral 
Corn. carotid 
Extint. carotid 

6.3 
20.1 
5.2 

;:; 

21.0 
25.7 
17.9 
29.8 
32.6 
15.4 
5.9 
7.4 
3.0 
2.5 
7-4 
7.4 
7.4 
6.4 

19.9 
25.5 
24.5 
4.9 

20.4 
8.6 

17.8 
3.7 
5.4 

2.340 1.810 550 550 
1.810 0.938 550 575 
0.938 0.938 575 575 
0,938 0.923 575 577 
0.923 0.856 577 585 
0.604 0.424 678 717 
0.432 0.405 717 734 
0,416 0.321 977 1000 
0443 0.246 1275 1470 
0.239 0.246 1480 1480 
0.497 0.359 1200 1200 
0.284 0.284 700 700 
0.700 0.700 600 600 
0.448 0.448 700 700 
0.625 0.625 600 600 
0440 0440 600 600 
0.353 0.353 600 600 
0.289 0.289 600 600 
1.100 0.750 800 800 
0.750 0.541 800 800 
0.552 0.432 925 1065 
0.340 0.264 1065 1200 
0,405 0.394 1065 1174 
0.394 0.350 1174 1200 
0.171 0.171 1000 1000 
0.350 0.350 1000 1000 
0.581 0.620 575 600 
0.318 0.160 800 1050 

Table 2. Terminal resistances 
Table 3. Model output locations 

Terminal 
Vessel resistance 

No. Description (mm Hg/ml/sec) 

9.41 
10.41 
11.37 
12’ 
13 
14,35 
16 
17 
18 
22,45 
24,47 
25,46 
26,33 
28,29 
30,31 
2* 

Post. tibia1 35.85 
Ant. tibial 42+0 
Deep femoral 35.85 
Inf. mesenteric 51.74 
Sup. mesenteric 7.00 
Renal 8.55 
Splenic 17.47 
Hepatic 27.29 
Gastric 40.64 
Radial 39.70 
Ulnar 39.70 
Interosseous 633.6 
Vertebral 45.22 
Ext. carotid 104.3 
Int. carotid 104.3 
Intercostals 10.46 

*As distributed outtlow from thoracic aorta. 

Location* 
No. 

2 

4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

Distance 
from aortic 
valve (cm) Vessel 

0 Origin of asc. aorta 
8.5 Prox. thoracic aorta 

19.6 Dist. thoracic aorta 
32. I Dist. abdominal aorta 
44.2 Illiac 
56.1 Prox. femoral 
72.1 Dist. femoral 
89.4 Prox. popliteal 
16.3 Subclavian 
26.2 Axillary 
36.9 Prox. brachial 
49.5 Dist. brachial 
63.1 Prox. radial 
77.8 Dist. radial 

*See Fig. 3 for schematic of these output 
sites. 
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These particular output sites were selected to 
correspond to the segments of the vasculature 
most frequently investigated in clinical 
situations. 

Predicted aortic root flow and pressure for 
a ventricular pressure forcing function are 
shown in Fig. 4. The ventricular pulse was 
obtained from a clinical tracing (Wiggers, 
1952). The time axis in Fig. 4 has been 
normalized with respect to the period of the 
heart beat, T. Pressure and flow waveforms 
for all output locations are displayed in 
Figs. 5 and 6. 

The model ventricular flow ejection pulse 
in Fig. 4 conforms well with the pulse wave 
form measured by Spencer and Denison 
(1959) shown as the dashed line in the same 

H 
mm Hg 

/Aorta 

-1111111111 

I”“““’ I 

Fig. 4. Model response at root of aorta (Site 1) to ventri- 
cular pressure forcing function. Ventricular pressure 
pulse from Wiggers (1952). Clinical flow pulse from 

Spencer and Denison (I 959). 

140 

H 120 
mm Hg 

100 

60 

0 
ml/roe 

0 0.2 0.4 0.6 0.8 1.0 

7= r/r 

Fig. 5. Pressure and flow pulse waveforms in the model 
aorta-popliteal channel. Numbers refer to output 

locations. (See Table 3). 

figure. Peak systolic flows are the same (about 
500 ml/set) and the retrograde flow maximums 
coincide. The inflection in the descending 
limb of the measured pulse is less pronounced 
than that seen in the model pulse. Cardiac 
output in the model is 5-l Lfmin compared to 
5.3 l./min for the clinical pulse. 

Pressure pulse mappings from the model 
are replotted in Fig. 7 for the aorta-popliteal 
channel and Fig. 8 for the subclavian-radial 
channel along with clinically obtained 
measurements (Rroeker and Wood, 1955; 
O’Rourke et al., 1968). Behavior of the model 
pulses is similar to the clinical results. Those 
features and transformations of the pulse 
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H 120 
mm Hg 

60 

10’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ 
0 0.2 0.4 0.6 0.8 1.0 

r-t/r 

Fig. 6. Pressure and Row pulse waveforms in the model 
subclavian-radial channel. Numbers refer to output 

locations. (See Table 3). 

MEASURED 
/J \ MODEL 

usually observed are clearly evident in both 
sets of curves. 

Concise presentation of pressure-flow- 
frequency relationships in arterial flow can 
be made using the concept of impedance. 
Given the complex Fourier series for the 
pressure and flow pulses, 

and 

Q (0 = 00 + $, Qneumt-an) (16) 

H(t) = HO+ =j H,ei(wt-fln) (17) 
n=1 

where w is the fundamental angular frequency, 
n is the harmonic number, and (Y, and & are 
the relative phase angles of the individual 
components, the complex local impedance is 
defined by 

Z, = IHn/Qfilei@n (18) 

where & = /3,, -a,. It is customary to present 
plots of the impedance magnitude, H,/Q, and 
the phase angles, +,, as functions of fre- 
quency. The dominant nature of complicated 
systems can be inferred from such plots by 
comparison with the known form of impedance 
plots for simpler systems. 

Fig. 7. Comparison of model and clinically measured (O’Rouke el al., l%g) 
pressure pulse waveforms in aorta. Schematic locations are approximate, exact 

locations for model waveforms are given in Table 3. 
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MEASURED MODEL 

20 mm Hg 
I, 

0.1 ICC 

Fig. 8. Comparison of model and clinically measured (Kroeker et al., 1955) pressure pulse 
wavefonns in the subclavian-radial channel. Schematic locations are approximate, exact 

locations for model waveforms are given in Table 3. 

01 ” ” ” ” ” ’ ” 0 2 4 6 a 10 12 

: 
2 
go 
ii 

-100 0 2 4 6 8 10 12 

Fig. 9. Normalized input impedance at root of aorta (Site 1) for 
nonlinear model, a lumped parameter linear model and clinically 
obtained values in man. Total peripheral resistance for the 

models is 1.15 mm Hg/ml/sec. 
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Impedance measurements in man are 
available only for the ascending aorta and 
femoral arteries, sites commonly accessible 
during cardiovascular diagnostic and surgical 
procedures. Model and clinically obtained 
impedances (Gabe et al., 1964; Pate1 et al., 
1964; Pate1 et al., 1965) for these two 
locations are shown in Figs. 9 and 10. The 
model impedance plots are drawn as smooth 
functions of frequency; wh,ile Fourier analysis 
can actually only yield values of the imped- 
ance at discrete multiples of the fundamental 
frequency. Continuous curves were obtained 
by operating the model at many different 
fundamental frequencies and joining the 
closely spaced results with a smooth line. 
The impedance magnitudes were normalized 
by dividing by the local vascular resistance, 
Z, = HolQo. 

Each symbol in Figs. 9 and 10 represents 
measurements from a single individual, 
except the circles in Fig. 9 which are average 

values from three subjects (Pate1 et al., 1964). 
Both model and measured aortic impedance 
magnitudes are relatively independent of 
frequency. The magnitudes are in reasonable 
agreement. At low frequencies, the model 
aortic impedance phase angles are somewhat 
more negative than the clinical values. 
A general positive trend for the phase is seen 
in both the model and measured results. 

In the femoral artery, agreement of model 
and measurements is not so obvious at first 
glance because of the wide variations between 
the measurements on individuals. However, 
there are qualitative similarities between the 
model predictions and the experimental data. 
Each of the individual clinical curves shows 
a relative minimum between 2 and 4 c/s and 
a relative maximum between 4.5 and 7 c/s. A 
minimum at about 3.3 c/s and a relative maxi- 
mum at 5.75 c/s for the model can be accepted 
as reasonable agreement in this respect, 
particularly in view of the wide differences 

01 ” “1 1 ’ I” 1 ’ 1 0 2 4 6 8 10 12 

Frequency c/s 

Fig. 10. Normalized input impedance of femoral artery (Site 6) 
for nonlinear model, a linear, lumped parameter model and 
clinically obtained values in man. Vascular resistance for the 

models is 15.3 mm Hg/ml/sec. 
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displayed for the measured values. Variations 
in relative magnitudes with frequency for the 
model fall within the extremes exhibited by 
the measured curves. Phase angles measured 
clinically at this location do not behave in 
a discernibly regular way except for being 
uniformly negative below about 6 c/s, and thus 
are not adequate for testing the model. 

DISCUSSION 

In general, the nonlinear model predicts the 
pulse wave behavior of the real arterial system 
with reasonable fidelity. In particular, the 
dominant aspects of pulse wave distortion, 
such as pulse pressure amplification and the 
formation of a secondary wave as the pulse 
is transmitted distally, are well reproduced. 

In the model, the pulse pressure widens by 
about 70 per cent from the aortic arch to the 
illiac artery. The clinical results also show 
an amplification of around 70 per cent (Fig. 7). 
In the same clinical study (O’Rourke et al., 
1968), an average amplification of 55 per cent, 
with a range of about 30-90 per cent, was 
found for eleven subjects under age 15. With 
increasing age, a marked reduction of ampli- 
fication was indicated. Kroeker and Wood 

(1955) reported a smaller average aorta-illiac 
ampltication of 39 per cent for twelve 
healthy subjects with a range of 18-70 per 
cent. Amplification in the subclavian-radial 
channel is approximately 80 per cent for the 
clinical results shown in Fig. 8 and 50 per cent 
for the model, Measurements over the same 
region have been reported to range from 19- 
92 with an average of 46 per cent (Kroeker 
and Wood, 1955). 

An interesting similarity in the primary 
wave of the model and clinical pulses is shown 
both in the aorta and in the upper extremity 
vessels. A prominent biphasic peak develops 
in the distal thoracic aorta and proximally in 
the subclavian artery. Although this is seen 
in almost all extensive pulse mappings, it has 
not been remarked upon in discussions of 
the formation of the arterial pulse waveform. 

While the nonlinear model is successful in 
simulating human arterial pulse wave trans- 
mission, it is relevant to ask if this effort 
represents in some measure an improvement 
over already existing models. This question 
can be investigated through a direct com- 
parison of the nonlinear model results with 
the behavior of a linearized, lumped para- 
meter model. 

AORTA ARM 

Fig. 11. Pressure pulse mappings in the aorta and the subclavian-radial arteries for tbe linear, 
lumped parameter model. 
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Equations (10) and (11) can be linearized to 
obtain (Taylor, 1965) 

c!i$+gv~+WQ=O (19) 

and 

Gg+g+q=o 

where 2 is the inertiance per unit length of 
vessel, 4 is the compliance per unit length, 
w is the fluid resistance per unit length and q 
is the leakage per unit length. Values for these 
linear parameters are derived from the 
information in Table 1, assuming a mean 
arterial pressure of 100 mm Hg and using the 
definitions 

aA 
g = aH ff=& 

and 

(21) 

(22) 

where 2 is the area at the assumed mean 
pressure, Ho. 

Equations (6) for the wall shear stress and 
(9) for the distributed outflow are retained. 

The linear system thus defined can be 
solved using electric or hydraulic trans- 
mission line techniques in the frequency 
domain with a digital computer, but to provide 
a more direct comparison, the method of 
characteristics was used to obtain the solution. 
Vessel properties were lumped (held constant) 
over AZ reaches determined by the finite 
difference characteristic line equation for the 
linear system given by (Schaaf, 197 1). 

-=- (23) 

Segment lengths for a At of O-005 then range 
from about 2 cm-4.5 cm in the linear model. 

Pulse wave mappings from the linear model, 
driven by the ventricular pulse of Fig. 4, are 
shown in Fig. 11 for the aorta-femoral arteries 

and the arteries of the arm. The gross be- 
havior of the pulse as it propagates in this 
model conforms to that observed in the real 
system. Yet, comparison with pulse mappings 
from the nonlinear model displayed in Figs. 
7 and 8 shows that the two dynamic repre- 
sentations of the same physical parameters 
yield quite different results. An obviousdiffer- 
ence is in the response to higher frequency 
disturbances. The incisura in the nonlinear 
model, once formed, is quickly damped in 
transmission through the aorta. In the linear 
model, the events causing the incisura give 
rise to high frequency local vibrations which 
are then propagated throughout the model, 
apparently without attenuation. Lower fre- 
quency oscillations also occur in the linear 
model which are absent from the nonlinear 
model. In short, the linear representation, 
under the same conditions and solution 
method, is a good deal noisier. Careful 
examination of the analytical results re- 
ported by other investigators using linear 
models (Westerhof, 1968) also reveals the 
presence of more noise than in the nonlinear 
model. 

Linear model input impedances for the 
aorta and the femoral artery are shown in 
Figs. 9 and 10. Below about 4 c/s there is 
little difference between the two models. In 
the aorta, considerably more oscillation of 
the input impedance with frequency is seen 
with the linear model for the midrange 
frequencies. It can be said that, at this 
location, the impedance load given by the 
nonlinear model more nearly resembles the 
physiological measurements than does that 
given by the linear model. Results in the 
femoral artery do not allow this claim. Again, 
impedance values for both models are very 
nearly the same for frequencies below 4 c/s. 
The difference between the models at higher 
frequencies is not as severe as in the aorta. 
Furthermore, there is little reason to favor 
either model on the basis of femoral artery 
impedance comparisons with physiological 
measurements. 
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The unique features in the nonlinear model 
are the retention of vessel cross-sectional area 
as a dependent variable, the inclusion of 
an approximation to the convective acclera- 
tion effects (momentum flux terms) and the 
higher order of approximation to a continuous 
system. 

In deriving the one-dimension model 
equations, the momentum flux term in the 
momentum equation was assumed to be small. 
To test the validity of this assumption, the 
model pressure and flow results were used to 
compute the magnitudes of the individual 
terms of the momentum equation over one 
pulse cycle. Inertia, momentum flux, and 
pressure gradient terms from those computa- 
tions are shown in Figs. 12 and 13 for the 
proximal thoracic aorta (site 2) and for the 
proximal radial artery (site 13) respectively. 
At both locations the momentum flux term 
is indeed small compared to the others. 

Figure 14, a pulse mapping for the model 
with the momentum flux terms ignored, 

provides further confirmation of the un- 
importance of convective acceleration effects. 
There are only small differences in the pulse 
waveforms with or without the convective 
acceleration terms. In Figs. 15 and 16, the 
input impedances for the complete model and 
the model without the convective acceleration 
terms are compared for the aorta and the 
femoral artery. Again, the differences seen 
are small and it can be concluded that con- 
vective acceleration effects are relatively 
unimportant in determining the gross pulse 
propagation behavior of the model and 
therefore are unlikely to be of importance in 
the real system. This fundamental assumption, 
based on order of magnitude arguments, is 
common to all linear analyses of the arterial 
system. (Womersley, 1955; Noordergraaf, 
1968). It is clear that the assumption is valid 
and furthermore, that the convective accelera- 
tion terms cannot account for the differences 
between the nonlinear model and the linear, 
lumped parameter model. 

12,000 

n,ooo 

4mo 

n 

:: 

s 0 

5 

-4,wO 

- 8,ODO 

-12,000 

Fig. 12. Magnitudes of the inertia, momentum flux, and pressure gradient terms in 
the momentum equation (2) over one pulse cycle for the proximal thoracic aorta 

(Site 2). 
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Fig. 13. Magnitudes of the inertia, momentum flux, and pressure gradient terms in 
the momentum equation (2) over one pulse cycle for the proximal radial artery 

(Site 13). 

AORTA ARM 

Fig. 14. Pressure pulse mappings in the aorta and subclavian-radial arteries for the nonlinear 
model, ignoring the convective acceleration terms. 

Much attention has been given in the linear shear stress, is sought using oscillatory flow 
modeling of arterial beds to the interaction theory (Jager et al., 1966). In passive analogs, 
between fluid inertiance and the wall frictional the introduction of oscillatory flow theory 
resistance through the so-called ‘sleeve effect’. gives rise to ‘corrective’ networks for the 
Recognizing that the assumption of a quasi- longitudinal impedance elements, which are 
steady, laminar (parabolic) velocity profile is claimed to improve the performance of the 
not realistic, a more accurate representation passive analog model (Westerhof, 1968). 
of the velocity profile, and therefore, the wall In view of these efforts, it is of interest to 
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Fig. 15. Normalized input impedance of root of aorta (Site l), 
comparing the effects of ignoring unsteady fluid friction, all 
fluid friction effects (inviscid case) and convective acceleration. 

100 , I , 1 I , , , / I I I 

Fig. 16. Normalized input impedance of femoral artery (Site 6), 
comparing the effects of ignoriug unsteady fluid friction, all 

fluid friction, (inviscid case) and convective acceleration. 
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ARM 

AORTA 

Fig. 17. Pressure pulse mappings in the aorta and the subclavian-radial arteries for the nonlinear 
model, ignoring unsteady fluid friction. 

examine the effects of the frequency depen- 
dent friction term used in the nonlinear model. 

Setting /3 equal to 1-O in equation (6) is 
equivalent to assuming a quasi-steady, 
laminar, frequency independent fluid resist- 
ance. Pulse mappings for the model under this 
condition are shown in Fig. 17. Clearly, 
the elimination of frequency dependent 
friction from the model produces only small 
differences in the results. Comparison of 
the input impedance relations shown in 
Figs. 15 and 16 for the complete model and 
for the model without the unsteady friction 
term also confirms the relative insignificance 
of this factor in determining the overall 
behavior of the model. In fact, fluid energy 
dissipation of any kind is apparently of small 
consequence in the model. By keeping j3 equal 
to 1.0 and setting the fluid viscosity equal to 
zero, all fluid energy ,dissipation effects are 
removed except at the lumped vessel termina- 
tions. In this condition, it is implicitly assumed 
that the blood is inviscid and that all energy 
dissipation takes place in the terminal 
resistance beds. The resulting pulse wave- 
forms for this state are plotted in Fig. 18 and 
the corresponding impedances derived from 
the model are shown in Figs. 15 and 16. It can 

be concluded that since the total absence of 
local dissipative mechanisms in the model 
does not change its overall behavior apprec- 
iably, these same mechanisms are probably 
of secondary importance in determining the 
behavior of the real arterial system. 

It has been demonstrated that the distinctive 
behavior of the model is affected only slightly 
by vascular energy dissipation and convective 
acceleration effects. The mid-frequency 
disparity between the impedance and pulse 
waveform results from the linear and non- 
linear models can then only be attributed to 
the constraints imposed on the longitudinal 
impedance in the process of linearization. 
To arrive at a linear mathematical description 
of the pressure-flow relationship, boundary 
conditions at the fluid-vessel interface are 
linearized by the assumption that the wall 
displacements are sufiiciently small to allow 
their evaluation at the mean radial position 
of the wall. Consequently, the longitudinal 
impedance is rendered independent of vessel 
distensibility, and, in fact, is the same as that 
derived for a rigid tube. In contrast, by 
retaining the vessel cross-sectional area as 
an independent variable, the longitudinal 
impedance of the nonlinear model is coupled 

BM Vol. 5 No. 4-D 
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Fig. 18. Pressure pulse mappings in the aorta and the subclavian-radial arteries for the nonlinear 
model, ignoring fluid friction entirely, 

with the transverse impedance through the 
vessel distensibility. 

At very low frequencies, fluid inertiance is 
not a critical factor in the longitudinal im- 
pedance, so the linear and nonlinear model 
impedances correspond. At higher frequen- 
cies, fluid inertiance becomes important and 
this is where the models deviate. Over the 
frequency range examined in the impedance 
graphs of Figs. 9 and 10, larger differences 
between the models are seen in the more 
distensible aorta than in the femoral artery. 
Here the larger wall displacements are 
expected to produce greater fluctuations in 
longitudinal impedance, which is manifested 
in the more severe deviation between the 
models. At the femoral site, the vessel walls 
are less distensible and the interaction of 
longitudinal and transverse impedances is 
expected to be smaller. 

The source of the high frequency oscilla- 
tions initiated by the incisura in the linear 
model cannot be ascribed to the absence of 
distensibility effects in the fluid inertiance. 
A more probable explanation appears to 
involve the lumped parameter aspects of the 
linear model. The harmonic frequency 
associated with the incisura is in the neighbor- 

hood of 200 c/s, well in excess of the cutoff 
frequency of the linear model inlet section. 
The wave length of this disturbance, based on 
the true phase velocity, is then on the same 
order of magnitude as the lumped segment 
length. It is well known that the behavior of 
lumped electrical low-loss delay lines in the 
frequency range beyond the cutoff frequency 
(stop band) is highly reactive, with com- 
paratively small amounts of energy being 
transmitted. Most of the input energy is then 
locally oscillatory, and the behavior of the 
delay line is completely different from that of 
the continuous line at the same frequencies 
(Magnusson, 1965). By this analogy, it is 
likely that the unnatural high frequency 
oscillations in the linear model are due to 
these limitations of the lumping procedure. 

It would appear, on the basis of the work 
presented here, that consideration of the 
nonlinear effects of vessel wall displacements 
is important in the modeling of pulse wave 
transmission in the aorta and its immediate 
branches. In this region, the linear and 
nonlinear models yield significantly different 
results. The stiffer peripheral vessels, how- 
ever, are reasonably represented by linear 
models. 
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For the system as a whole, linear models Patel, D. J., Greenfield, J. C., Jr. and Fry, D. L. (1966) 

are capable of realistic prediction of pulse In uiuo pressure-length-radius relationship of certain 

wave transmission, since the characteristic 
blood vessels in man and dog, in Pulsafile Blood Flow, 

behavior of the propagated waves is exhibited 
(Edited by E. 0. Attinger), McGraw-Hill, New York. 

Pater, L. de, (1966) An electrical analogue of the human 

mainly by the lower frequency harmonic circulatory system, Thesis, Univ. Gronigen. 

components which are affected to a lesser 
Rockwell, R. L. and Anliker, M. (1969) Shock waves and 

extent by the non-linearities of the system. 
other nonlinear phenomena of wave propagation in 
blood vessels, Proc. 8th Intl. Conf. med. biol. Engng., 
Chicago. The nonlinear model does represent a 

definite improvement over the linear, lumped 
parameter version. Its behavior is more 
consistent with physiological measurements 
over a wider range of frequencies. 
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NOMENCLATURE 

cross-sectional area of vessel lumen at zero trans- 
mural pressure, cm” 

cross-sectional area of vessel lumen, cm” 
cross-sectional area of vessel lumen at mean arterial 

pressure, cm* 
aortic valve area, cm’ 
aortic valve discharge coefficient 
vessel diameter, cm 
modulus of elasticity, dynes/cm? 
piezometric pressure, mm Hg 
terminal bed pressure, mm Hg 
modulus of nth pressure harmonic, mm Hg 
mean arterial pressure, mm Hg 
lateral outtlow coefficient, ml/mm Hg/cm 
vessel length, cm 
volume flow rate, ml/set 
modulus of nth flow harmonic, ml 
mean arterial flow rate, ml 
terminal resistance, mm Hg/ml/sec 
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T period associated with heart rate, set 
V instantaneous fluid velocity averaged over vessel 

cross-section, cm/set 
Z, vascular resistance, mm Hg/ml/sec 
Z. modulus of nth component of impedance, mm 

aa 
fn 
h: 
4 

Hgldsec 
lumped arterial compliance/unit length, cm*/mm Hg 
lumped fluid inertiance/unit length, mm Hg * sec*/cm4 
lumped vascular resistance/unit length,- mm Hg . 

sec/cm4 
wave speed, cm/set 
harmonic frequency, cycles/set 
gravitational constant, 980 cm/se? 
vessel wall thickness at zero transmural pressure, cm 
vessel wall thickness, cm 
volume flow rate through vessel wall/unit length, 

ml/cm 

radial distance, cm 
time, set 
total fluid velocity vector, cm/set 
axial component of v, cm/set 
axial coordinate, cm 
phase of n” flow harmonic, degrees 
momentum flux coefficient 
phase of n* pressure harmonic, degrees 
ratio of mass density of mercury to the mass density 

of blood 
dynamic viscosity of blood, dyn-set/cm* 
kinematic viscosity of blood, cm*/sec 
mass density of blood, g/cm3 
dimensionless tune, t/T 
fluid shear stress at vessel wall, dyn/cm2 
phase of n* component of impedance, deg 
angular frequency of fundamental harmonic, rad/sec 


