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INTRODUCTION 

THE note deals with the early transient processes which 
occur in a fluid surrounding a thin horizontal wire which 
is suddenly heated by passing an electrical current through it. 
Observation of the resulting temperature field with a 
Mach-Zehnder interferometer shows that the isotherms in a 
plane normal to the wire are initially concentric circles. This 
indicates that heat transfer is by conduction only. After a 
period of time the isotherms become asymmetrical as those 
above the wire are convected upward while those below the 
wire remain nearly stationary. The upward transport 
accelerates until finally a heated “cap” breaks away and 
rises to form the familiar mushroom-shaped steady state 
plume. in this study attention is focused on the “delay time”, 
t*. between the application of current to the wire and the 
beginning of observable convection. It is hypothesized that 
the onset of convection is a manifestation of instability. at 

least in the senSe that it occurs at a specific critical value of an 
appropriately defined Rayleigh number. A simple quasi- 
steady analysis predicts the delay time as a function of the 
rate of energy dissipation in the wire and the transport 
properties of the fluid. The delay time was also determined 
experimentally for a wide range of heat transfer rates. The 
experimental data is in substantial agreement with the 
theoretical prediction. 

ANALYSES 
Experimental observation of the temperature field sur- 

rounding a suddenly-heated thin horizontal wire indicates 
that for small values of time there is no perceptible con- 
vection; hence, if the heat capacity of the wire is neglected, 
the temperature field fI(r, t) in the fluid is that due to 
conduction from a line source of strength q’ in an infinite 
medium which was initially isothermal at temperature 
0 = 0. The exact solution of this problem in terms of an 
exponential integral is classical [l] : however. for present 
purposes it is preferable to utilize a simple approximation 
to this solution, namely 

Here k is the thermal conductivity of the fluid and 6 is the 

instantaneous radial “penetration depth” at which the 
approximate temperature field and its first derivative 
vanish. Upon solving the unsteady conduction equation 
on an integral basis this penetration depth is found to be 

6 = ,/(6at). (2) 

where a is the thermal diffusivity. It is now hypothesized 
that the fluid directly above the wire becomes locally un- 
stable at some critical Rayleigh number, and that convective 
transport thereafter becomes signiticant. Since the medium 
is infinite and since the radially symmetric temperature 
field gives rise to density gradients normal to the gravity 
vector, the fluid is always globally unstable: however. 
disturbance growth rates may be quite small until some 
minimum temperature gradient is attained. If so, a local 
quasi-steady stability analysis of the tluid directly above 
the wire is appropriate. To pursue this argument it was 
assumed that the critical Rayleigh number might be assoc- 
iated with that of the classical Btnard problem of a nuid 

layer heated from below. This approach was taken 
because the initial motion of the isotherms was observed 
to be strongest directly above the wire. where the tempera- 
ture and density gradients are parallel to the gravity vector. 
The Rayleigh number. R = gy/W/av. was defined in terms 
of the gradient 

P=& (3) 

which corresponds to the linear temperature distribution 
whose integral from r = 0 to r = 6 is the same as that of the 
distribution (1). Here y is the thermal expansion coefficient. 
G( is the thermal diffusivity and v is the kinematic viscosity. 
The critical Rayleigh number was taken to be R = 1100. 
corresponding to the BCnard problem with rigid lower and 
“free” upper boundaries [2]. When equations (2) and (3) 
are substituted into the definition of R, which is.then equated 

to 1100, the resulting expression for the “delay time” at 

which significant convection is initiated is 

t* = 43(q’)_f . 

The argument used to derive the expression (4) for the 
delay time is similar to that used by Howard [3] to estimate 
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mean temperature profiles in high Rayleigh number con- 
vection in terms of an analogous delay time required for the 
formation and breakaway of thermals from the conductive 
sublayer. It is also interesting to note that two strictly 
empirical relations given by Ostroumov [4] [his equations 
(1) and (211 can be combined to suggest that t* = const. 
(q’)_O h. 

EXPERIMENT 

The transient temperature field in the fluid surroundmg a 
suddenly heated thin horizontal wire was observed using a 
precision Mach-Zehnder interferometer with a He-Ne 
laser light source. The test section in which the heated wire 
was housed was a steel chamber (48 cm x 43 cm x 38 cm) 
with optically-flat windows. The optics and test section were 
mounted on a massive platform supported by inflated inner 
tubes in order to isolate them from building vibrations. The 
0,203 mm dia. tungsten wire was mounted on a support such 
that its length and orientation could be varied. It was 
energized by two 12 V storage batteries connected in 
parallel. The applied voltage was adjusted by a bank of 
resistors and was measured with a calibrated storage 
oscilloscope. 

The wire was placed in the test section and carefully 
adjusted to be horizontal and in proper alignment with the 
optical axis of the interferometer. The entire system was 
left undisturbed for a few hours preceding each run so 
that the fluid in the test section became quiescent. Current 
was then applied to the wire and the resulting transient 
pattern ofisotherms (interference fringes) was recorded with 
a 16-mm movie camera at a speed of 32 or 64 frames/s. The 
time at which current was applied was marked by the firing 
of a flash lamp, and the camera speed was calibrated. 

Figure 1 shows a typical sequence of interferograms 
recorded after application of current to the wire. which was 
perpendicular to the plane of this figure. In Fig l(a) the 
temperature field is symmetric about the wire. i.e. heat 
transfer is essentially by conduction alone. Figure l(b) shows 
the asymmetry of the temperature field at a time slightly 
greater than t*. At still greater times convection is an im- 
portant mode of energy transport and the temperature field 
grows as shown in Figs. I(c) and l(d). The position of the 
outermost isotherm as a function of time was measured by 
using a projecting microscope to analyze the movie film from 
which the sequence of Fig. 1 was taken. Figure 2 is a plot of 
the position of the outer isotherm directly above and directly 
below the wire as a function of time. The early symmetrical 
growth followed by upward convection above the wire is 
evident. These two figures deal with experiments in water: 
those in air were qualitatively the same. 

The delay time. t*, was determined by examining the lilm 
frame-by-frame to locate the first time at which an appreci- 
able lack of symmetry in the outermost isotherm was 
observed. This determination was generally unambiguous 
to within about three frames. 28 acceptable runs were made 
using water with heat transfer rates varying from 4 to 530 
Btuihft. The observed delay times varied from 11.2 to 0.63 s. 
In air, 14 runs were made over a heat flux range of 9 to 
52 Btuihft, and observed delay times varied from 0.25 to 
0.094 s. This data is summarized in Fig. 3. The sohd tine in 
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FIG. 2. Growth of the distance from the wire to the 
outer isotherm directIy above and directly below the 
wire for q’ = 11 Btu/hft in water. Distance units are 

arbitrary. 
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FIG. 3. Delay times in air and water. 

this figure is a plot of the theoretical delay time given by 
equation (4). 

The experimentally determined values of delay time in 
water correlate reasonably well with those predicted by the 
approximate analysis presented above. The data for air. 
while following the genera1 trend of equation (4). falls 
consistently above the line. This may be explained in part by 
the neglect ofthe thermal capacity of the wire in the analysis. 

Observations were also made in water with the horizontal 
wire mounted perpendicular to the optical axis of the inter- 
ferometer. Convection cells were indeed observed above the 
wire during the rise of the layer of heated t&id. A clear 
indication of the existence of such convection cells in Freon 
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FIG. 1. Developing temperature fietd in water for q’ 7 1 I Btu/hft. 
(a) t = 3.91 s (b) t = 8,13 s 
(c) t = 9-31 s (d) t = 16.7 s 
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above a suddenly heated wire can be seen in the photo- 
graphs on p. 347 of [5]. These observations strengthen the 
assumption that R u 1100 at t*. The sensitivity of the 
interferometric meth-&l with the fluids used in the present 
study was insufficient to permit a detailed investigation of 
the structure of these cells. 

CONCLUSIONS 

Experimental measurements of the delay time during 
which heat transfer from a suddenly heated tine horizontal 
wire to a fluid is essentially by conduction agree rather well 
with those predicted by equation (4). This correlation sug- 
gests that the onset of significant convection above a 
heated horizontal wire is associated with a fluid instability 
in the sense that there is a critical value of an appropriately 
defined Rayleigh number below which disturbances grow 
slowly with respect to the characteristic thermal diftusion 
time of the fluid. Above this critical value disturbances grow 
rapidly and initiate significant convection. The expression 
(4) for the delay time may also be useful as a guide in the 
design of experiments to determine thermal diffusivities by 
transient response measurements, and for the interpretation 
of experimental data regarding onset of boiling and other 
heat-transfer phenomena near suddenly heated wires. 
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1. IT IS well known that a linear parabolic heat-conduction 

equation leads to the paradox of infinite velocity of propaga- 

tion of heat disturbances. All attempts to solve this paradox 

have revealed the necessity to consider a hyperbolic heat- 

transfer equation. A number of papers [l-5] are concerned 

with the derivation and substantiation of this equation. 

A. V. Luikov [l. 21 has found that an equation of the form 

dT I a2T 
c,~+~~=~.V~T+P (1) 

holds for capillary-porous systems. if a finite velocity of heat 

and mass propagation is assumed. In equation (1) ~‘is the 

heat propagation velocity w = ,/(1/c,r). 5 is the relaxation 

time, p is the heat source function. I is the thermal con- 

ductivity, cy is the volumetric heat capacity. 

In case of small cy and large mean free molecular path 

lengths the first term in the right hand side of equation (1) 

is small compared to the other terms and may therefore be 

omitted. The wave form of the heat-conduction equation is 

obtained as a result 

(2) 

At present some experimental works are available which 

confirm a wave nature of heat transfer [7]. 

A geometrical approach involving Riemannian manifolds 

to composition of differential equations, particularly those 


