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Some general physical models are described for the diffusional transport 
of drugs across membranes of cells in culture suspensions. The models 
provide a basis for the design and analysis of experiments that are 
aimed to describe (a) the nature of the principal transport barrier, (b) the 
kinds of drug species being transported, (c) whether, where and how 
much solute binding occurs, and (d) the influences of pH, partition co- 
efficient and numerous other factors. The cell is treated as a sphere with 
non-homogeneous phase compartments. Both rigorous and approximate 
mathematical expressions have been derived for the quasi-steady-state 
diffusion through the membrane followed by three cases accounting for 
the distribution of drug jn the heterogeneous cell interior, that is, (a) the 
non-steady-state situation, (b) establishment of instantaneous distribu- 
tion and (c) instantaneous distribution in the aqueous interior with slow 
permeation of drug into the cytoplasmic bodies and nucleus. 

1. Introduction 
Suspension cultures of mammalian cells provide a unique system for drug 
transport studies. There are in vitro studies that utilize monolayers (Miller, 
1968), lipid bilayers (Bangham, Standish & Watkins, 1965; Sessa & 
Weissmann, 1968; Bean, Shepperd & Chan, 1968; Finkelstein & Cass, 1968), 
interfacial films of oil/water emulsion droplets (Goldberg, Higuchi, Ho & 
Zografi, 1967; Goldberg, 1968; Bikhazi, 1970) and gelatin-oil coacervates 
(Ghanem, Higuchi & Simonelli, 1969, 1970) as model biological membranes. 
There are also numerous in situ investigations of drug transport across the 
gastric, intestinal, rectal, buccal and peritoneal and cutaneous walls of 
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animals (Kakemi, Arita & Muranishi, 1965; Kakemi, Sezaki, Muranishi & 
Tsujimura, 1969; Wagner, 1968; Beckett & Triggs, 1967; Beckett & Moffat, 
1968; Penzotti & Mattocks, 1968; Mattocks, 1969; Elfbaum & Laden, 1967, 
1968; Scheuplein, Blank, Brauner & MacFarlane, 1969). However, cell 
culture suspensions present membranes for transport studies and may 
uniquely provide the means to interrelate clinical and animal experiments 
on drug transport with physicochemical theories and model experiments. 
Although a cell culture suspension is an in vitro system and, therefore, subject 
to certain biological artifacts, intact cell lines in some state of metabolism 
place one closer to biological membranes with the distinct advantage of 
in vitro controls. For example, the Burkitt lymphoma cell system (Epstein, 
Achong & Barr, 1964) is presently employed as a model for the molecular 
mechanistic interpretation of the influences of various factors upon the 
transport of drugs across cell wall membranes (Plate I). 

Transport processes across membranes of bacterial and mammalian cells 
have become a topic of high interest. The amount of research is voluminous 
(Tuwiner, 1962; Christensen, 1962; Troshin, 1966; Stein, 1967). Likewise, 
descriptions of physicochemical models are abundant in the literature (Ling, 
1962; Zwolinski, Eyring & Reese, 1949; Lakshminarayanaiah, 1965; Curran 
& Schultz, 1968). Considerable emphasis has been placed on the transport 
of electrolytes, sugars, alcohols and amino acids into erythrocytes. The 
uptake and metabolism of cholesterol in tissue culture cells has been studied 
by Rothblat, Hartzell, Mialhe & Kritchevsky (1966) and Rothblat, Buchko 
& Kritchevsky (1968). 

The purpose of this paper is to describe some rather general physical models 
for the diffusional transport of drugs across membranes of cells in culture 
suspensions. The models are attuned to the laboratory situation providing 
the basis for the design and analysis of experiments to describe (a) the nature 
of the principal transport barrier, (b) the kinds of drug species being trans- 
ported, (c) whether, where and how much solute binding occurs, and (d) the 
influences of pH, partition coefficient and numerous other factors. 

2. General Description of the Models 

The physical models are formulated for the passive diffusion of drug 
through multi-phase spherical compartments. Only unionized drug species are 
assumed to transfer into the lipid environment. Ionic equilibria are governed 
by the conditions in the aqueous phase and the properties of the drug, i.e. 
whether it is amphoteric, neutral, acidic or basic. The [H’] in any one 
compartment is assumed to be constant, which implies the existence of a 
high buffer capacity. No immediate considerations are given to the release 



PLATE I. (a) Electron micrograph of a P,J Burkitt lymphoma cell. (b) An enlarged portion 
of the cell illustrating the nuclear membrane with pores. Each magnification marker 
represents 1 pm. 
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of acidic products from the cell to the bulk solution nor to the effects of 
osmotic pressure, electrical field and chemical reactions. Adsorption, how- 
ever, is considered. 

The boundary conditions for the uptake of drug in the bulk aqueous 
phase by the cells in suspension at zero time is 

y*rj = &Q(O), r > a, 

Ycell = 0 r < a, 

where YAo is the total drug concentration in the bulk aqueous phase, Ycell 
is the total concentration of drug within the cell taken as a sphere of radius a. 

In the models it is assumed that there is a quasi-steady-state flux of drug 
across the plasma membrane, an assumption which is justified by the thinness 
of this layer. The membrane is assumed to consist of lipids and aqueous 
pores. As soon as the drug permeates through the plasma membrane and 
enters the cell interior, the drug distribution in the interior may follow 
one of three principal models. 

Model 1. Non-steady-state distribution in the heterogeneous cell 
interior. 

Model 2. Rapid (instantaneous) equilibration in the heterogeneous 
cell interior. 

,Cytoplasmic matrix, 1 -ccc 

Cytoplasmic body, a, 

Plasma membrane: 
lipoid, q,, 
polar pores, 1 -o(, 

Nuclear membrane-’ 

FIG. 1. Schematic description of the mammalian cell used for the development of the 
theoretical diffusional drug transport models. 
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Model 3. Rapid (instantaneous) equilibration in aqueous environment 
with slow simultaneous permeation of drug into the cyto- 
plasmic bodies and nucleus. 

A schematic diagram of the cell used for these models is shown in Fig. 1. 

3. General Rate of Change of Each Drug Species in an 
Aqueous Environment 

In the aqueous environment of a composite compartment, such as the 
aqueous channels of the plasma and nuclear membrane and the aqueous 
interior of the cell, some drug species are free to diffuse and others are 
adsorbed to the walls of the channel and by protein molecules. The rate of 
change of the concentration of any one kind of drug species can be described 
by Fick’s second law for radial diffusion in a sphere. Similarly, after Liang & 
Tong (1969), 

a(Rw~R:)=~~(~2~)+g~(~z~), 

where R, is the concentration of neutral or ionic species in the aqueous 
solution, Rz is the concentration of adsorbed species, D, and 02 are the 
aqueous diffusion coefficient of the free and the adsorbed drug species. 

If the adsorbed species are immobile, i.e. 02 N 0, the second term on the 
right side of the equation is zero. It follows that 

or 

Assume that adsorption in the aqueous channels and by proteins in the 
aqueous cell interior is reversible through the Langmuir’s isotherm; thus, 

R*= :tk,:R,“x.(l-a), w (3) 

where kl is the adsorption coefficient, k2 is the maximum concentration of 
adsorption sites and (1 -a) is the volume fraction of aqueous environment 
where the adsorption is taking place in a composite compartment. Com- 
bining equations (2) and (3), one obtains 

EL- DW I a -~- . -._ __ 
at l+(l-a)klk2/(l+k,R,)2 r2 ar (4) 
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and the equation cannot be solved analytically. The term 

DW 
1+(l-cr)k,k,/(l+k,R,)2 
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makes the effective diffusion coefficient of the system concentration- 
dependent. When the amount adsorbed relative to the maximum amount 
that can be adsorbed is small, i.e. the region of linear adsorption, equation (4) 
becomes a linear differential equation, 

a& Dw i a 
at -~(1-a)klk2’~dr 

At the quasi-steady-state, aR,/at N 0 and 

G= 43%~~ ah 
E dr ’ (r G 4, 

(5) 

where G is the inward quasi-steady-state flux of a drug species across a 
spherical surface and E = 1 +(1 -cl&, k, 2 1. Here, perhaps contrary to 
custom, the inward flux is taken as positive in the direction of decreasing 
distances. 

4. General Description of a Drug and its Distribution in a 
Compartment 

In a previous paper (Suzuki, Higuchi & Ho, 1970) a drug was described in 
the following manner. 

Basic drug: R,f z$R~+H+. 
Acidic drug: Rz+R; +H”. 

k’, = CR:1 [H+I/@,fl, (7) 

K2 = I%1 [H+I/[R,OI. (8) 
For a basic drug the dissociation constant is K1 with K2 = 0. For an acidic 
drug the dissociation constant is K2 with Kl = co ; and for a neutral drug, 
Kl = co and K, = 0. 

In general, the total concentration of drug as a function of position and 
time in any spherical compartment is 

W-, 0 = QC?l + (1 - 4CW + lK?l + CRJ), (9) 
where Y(r, t) is the total drug concentration; CC is the volume fraction of 
lipids or cytoplasmic bodies; [RG], [R$] and [Rw] are the concentrations 
of cationic, neutral and anionic drug species; the subscripts 0 and w  represent 
the lipid and aqueous phases. It is assumed that only non-ionized drug 

T.B. 30 
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species can partition into the lipid phase; thus, the partition coefficient K is 

K = L-R,Ol/CR,OI- (10) 
After substituting equations (7), (8) and (10) into (9) and rearranging, we 
find that 

L@l = C$Y(r, 0, 
CRW’I = CZ Y(r, 0, 
[Rw”] = C,“Y(r, 0, 
[Kl = Gy(r, 0, (11) 

where 
C,o = K[H+IK,IP, 
C,+ = [H+l% 
C,o = CH+IK,/P, 
C, = K,K,IP, (12) 

p = CXKK~[H+]+(~-E)([H+]~+K~[H+]+K~K~), 

where Cg, C;, etc. represent the fraction of non-ionized, cationic species, 
etc. in the lipid and water phases, respectively. 

5. Rate of Change of Drug Concentration in the Plasma Membrane 

The quasi-steady-state flux of all drug species in the heterogeneous 
membrane can be expressed by 

aCD[R] 
GM = 4nNr2 ~__ 

ar 

=--4nNdCDeLR1, (a > r > b) 
a(llr> ’ ’ ’ (13) 

where GM is the flux in the plasma membrane, N is the number of cells and 
CD * [R] is the sum of the product of the diffusion coefficient and the con- 
centration of each respective drug species in the heterogeneous membrane. 
The thinness of the membrane permits the assumption of a linear concen- 
tration gradient across the region of diffusion, Utilizing equation (6) and 
taking the outer and inner radii of the cell to be a and b with (a-b) being 
the thickness of the membrane, we expand equation (13) as follows : 

-R;, J + ;$ CR:, a -R:, A + g (K, a-K, d I> * (14) 
M M 



DRUG TRANSPORT ACROSS CELL MEMBRANES 457 

Substituting equation (11) into (14) 

G _ 4nNab 
- - De, McyM, a - yM, b)t M (u-b) (15) 

where 

D e,M=g pco+(1-cr ) 
MO 0 M 

&++&o+D*c- 
E& w 1 Ez w E, w ’ (16) 

Thus, the effective diffusion coefficient (De,& in the membrane simul- 
taneously accounts for the intrinsic diffusivity of non-ionized drug species 
in the lipid phase and all species in the aqueous channels, including the 
modifying influence of linear equilibrium adsorption in the channels as 
described before. 

The effective partition coefficients at r = a and b are 

K, a = YM, .P’AQ~ (17) 
Ke, b = %I, blYM, b, (19 

where YAQ, YM,# and &N, b are the total drug concentrations in the bulk 
aqueous phase, membrane at r = a and interior of the cell at r = b, respec- 
tively. It is assumed that the equilibrium is established instantaneously 
at the interface. It follows immediately that equation (15) becomes 

GM= 4nNabD,, M 
K 

e, b 
(a _ b) tKe, a Ke, b YAQ - &N, bh (19 

whereupon the effective permeability coefficient (P,,,) of the membrane 
is a constant and is defined as 

P e, M = De, M&, ./(a - b). (20) 
The total rate of change of drug in the bulk aqueous phase is related to the 
total flux in the membrane; then 

dY,, GM=-VAQ-- 
dt ’ 

where VAa is the volume of the bulk aqueous phase. Accordingly, 

d&Q --z 4nNabP,, M 

dt vAQ 
(22) 

When d Y,,/dt = 0 at t = co, 

K, a&, b.= YIN(m)/YAQ(m). (23) 
Equation (22) is the primary equation for the steady-state flux of drug 

in the membrane. Now it is necessary to describe the’distribution of drug 
in the cell interior with time according to the three models previously 
indicated. 
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In this and other diffusion models to follow the membrane has been 
treated as a compartment in which the passage of drug molecules occurs by 
diffusion through real or statistical aqueous pores and by partitioning and 
solubilization in the lipoidal membrane. It is well known that transport of 
solutes across membranes cannot often be explained by diffusion alone. 
Thus, the detailed description of the effective permeability coefficient, P,, M, 
in these present models is admittedly a limiting one. Nevertheless, there 
will exist a P,, M so that equation (22) is generally applicable. 

6. Rate of Drug Transport into Cells using Model 1 

This model assumes non-steady-state diffusion within the cell composed 
of cytoplasmic bodies and the nucleus in an aqueous phase. 

8%~ &IN a 
__ = r2 ar at (24) 

where 

D e,IN = ~,,D,OC,O+(~--M,~) ;$ C; +% C,o +g C, 
4% 1 (25) 

IN IN 

in which the penetration of non-ionized species into the cytoplasmic bodies 
and nucleus, all being included in the volume fraction, aIN, and the modi- 
fication of the intrinsic diffusivity of all drug species by protein adsorption 
in the aqueous phase within the cell are taken into general account. 

After Crank (1956) the solution to equation (24) is 

The concentration Ym at Y = 0 is the limit of equation (26) as Y -+ 0. Thus, 

. (nn)2 5 exp (De*n$x2’) * d(n) dl. (27) 
0 

The surface concentration at r = b varies with time by the function 4(t). 
Once 4(t) is found the total rate of drug transport can be readily solved by 
numerical computation of the steady-state rate in the membrane by equa- 
tion (22) and the non-steady-state rate in the cell interior by (26). We note 
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that the variable surface concentration just inside the cell interior is related 
to the concentration in the membrane by the effective partition coefficient, 
K e, by in equation (18). Nevertheless, 4(t) is not generally known. 

The physical role of the heterophase cell interior that bears upon the 
movement of drug species needs some explanation (Higuchi & Higuchi, 
1960; Barrer, 1968; Hills, 1968). It is impossible to give an exact description 
of the influence of the dispersed phase (endoplasmic reticulum, ribosomes, 
mitochondria, nucleus, etc.) in this model as well as model 3 to follow due 
to : (a) geometric complexity arising from microirregularities of surfaces; 
(b) lack of knowledge of microscopic shapes, e.g. spheres, cylinders, ellipsoids, 
irregular shapes, etc., with respect to their concentration and concentration 
distribution, size and size distribution and orientation; (c) lack of knowledge 
of the composition and permeabilities of cellular organelles comprising the 
dispersed system; (d) complexity arising from the rigidity or elasticity and 
motility of the dispersed bodies. Cognizant of the difficulties in formulating 
exact expressions that will be experimentally impossible to evaluate, we 
have disregarded much of the physical details by simply expressing the 
cytoplasmic bodies and nucleus as (01~~) fraction of the cell interior. Therefore, 
the De, IN in equation (25) expresses the effective diffusivity of the hetero- 
geneous cell interior in which the cytoplasmic matrix is taken as a hypo- 
thetical aqueous compartment in parallel with the cell bodies and nucleus 
as a hypothetical lipoidal compartment. 

Thus far, the diffusional transport of drugs into cells has been described 
by expressions that can be solved without particular difficulty by conventional 
numerical methods. However, the problem lies in the assignment of proper 
values to the various constants. Further, the equations are not explicitly 
helpful in the immediate treatment and interpretation of experimental data. 
Therefore, we seek an approximate, but analytic, expression to replace 
equations (22) and (24), which will be useful in experimental situations. 

Hence, the decrease in the bulk aqueous concentration of drug is now 
given by 

log Y*Q = log I - gB PI2 + $ log (1 + BC2), 

where I is the initial bulk aqueous concentration and the coefficients are 

A = 4nNabP,, ,/V,,, 

BE- aPe, M 

bK, nKe, b 

The derivation is described in Appendix A. The YAa follows a non-linear 
dependent relationship with respect to the square root of time. However, 
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at initial rates, YAa follows a first order relationship with time; i.e. 

log YAa = log I - (A/2.303)t. (2% 
The K, =K,, b is readily found from the experiment by equation (23) and 

the permeability coefficient of the plasma membrane from the initial slope by 
equation (29). In turn, the constant B and, consequently, D,, ,N can be extracted 
by non-linear regression analysis of equation (28). Also, if one had infor- 
mation available on the membrane and cell interior with respect to pH, 
volume fraction of lipids and cytoplasmic bodies and adsorption, a further 
insight into the behavior of the membrane and cell interior to drug transport 
can be obtained, providing the model is the correct one. 

7. Rate of Drug Transport into Cells using Model 2 

Here, as soon as the drug permeates through the plasma membrane, the 
distribution of drug in the composite cell interior is instantaneously estab- 
lished. In other words, the permeability of the membrane is the rate-deter- 
mining factor for transport. 

Accordingly, YIN replaces I& b and equation (22) clearly becomes 

dy,, 4nNa bP, M Y -=- 
dt V yAQ - 

AQ K, .‘k, b > ’ 
(30) 

From Appendix B, the approximate solution is 

where 
log YAo = log I-(1/B,) log (1 +A,B, t), 

A2 = LtnNabP, JVAQ, 

B, = V,Q/NVINK,, a&, by 

(31) 

where VI, is the interior cell volume and the other terms have been previously 
defined. While the constant Bz is directly obtainable from the experimental 
data, the permeability coefficient can be calculated from the initial slope 
of the equation, 

log YAo = log I-(AJ2.303) t. (32) 

As the permeability of the membrane is expected to be independent of any 
physical model, it is also consistent that we find that the initial slope of A, 
of model 2 is identical to that of A from model 1. 

An alternative approach to the evaluation of this model is one that utilizes 
the equilibrium data of the experiment. Thus, 

B 

=-2.303t’ (33) 
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where &Q(eq) is the bulk aqueous concentration at equilibrium and 
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8. Rate of Drug Transport into Cells using Model 3 

In this model the rate-determining barriers to equilibrium drug distri- 
bution in the monodisperse cell suspension system are postulated to be the 
plasma membrane and the membranes of N’ number of cytoplasmic bodies 
within the cell. The drug distributes instantaneously in the aqueous interior 
but permeates slowly into the cytoplasmic bodies including the nucleus. 

Equation (30) is also applicable in this case. The mass balance of drug in 
the cell at any time is expressed by 

&N = @- %N) (Y,N, AQ + %, AQ) + aIN &'T, (34) 

where %N, AQ and Kg, AQ are the time-dependent concentrations of free and 
protein-adsorbed drug, respectively, in the aqueous cytoplasmic matrix and 
Y cYT is the concentration of drug in the cytoplasmic bodies of volume 
fraction c+. From Appendix C the quasi-steady-state solution of equation (30) 
is 

yAQ = YAQ(eq) + (I - y - YAQceq)) emAZt + y eepzt (35) 
in which 

N’SPe, CYT 
” = (~-~IN)V;N ( 

l-a,, 

’ ’ CGNK,CW > ’ 
Y  = ‘h(l- aIN)Kad yAQ, IN(q)/& -h)&, a& b 

and the terms are defined in Appendix C. When (YAQ- YAQcesJ is plotted 
semi-logarithmically against time, a bi-exponential curve results from which 
the rate and pre-exponential constants can be found. 

9. Conclusion 

Three physical models for the diffusion transport of drugs across mem- 
branes of viable mammalian cells in suspension have been mathematically 
described using both rigorous and approximate methods. This paper is 
not intended solely to be an exercise in mathematics since the present investi- 
gators intend to use the models as guidelines to the design of experiments 
and interpretation of data to obtain quantitative estimates of those physical 
parameters significant in transport phenomena and to evaluate the applica- 
bility of the models. Systematic modifications of the models to include such 
physical and chemical effects as osmotic pressure, electrical field, biochemical 
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reactions and others may become necessary as the evidence accumulates. 
Experimental studies are presently being conducted on drug transport 
using Burkitt lymphoma cell culture suspensions. 

We would like to acknowledge the electron microscopy work of Dr Booe 11 Ma, 
USPHS Special Fellow (F03-DE-42829-01) of The University of Michigan. This 
investigation was supported in part by United States Public Health Service grants 
l-P13-DE-02731 and GM-l 3368, National Institutes of Health, Bethesda, Maryland, 
U.S.A. 
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APPENDIX A 

Linear Approximation of the Rate of Drug Transport into Cells using Model 1 

To begin with, equations (19) to (21) are needed, then 

GM = 4xNabP,, M(YAQ- 3, JK, .K, A (Al) 

We want to express &N,b, the time-dependent drug concentration inside the 
cell and adjacent to the plasma membrane in terms of YAQ, the bulk aqueous 
concentration. The continuity of flow through r = b of the membrane is 
expressed by 

GM = -ND,, ,,4nb2 

and the linear solution is 

GM = ND,, Ii.&b2&, b/(r - b) (r < b), (A4) 
whereupon its substitution into equation (Al) for GM gives 

Y 
IN’ b = YAQ 

1 bD 1 e,IN. 
K,, II K,, b ’ aP,, M 1 (r-b) ’ 

(A5) 

Furthermore, on the simplifying assumption that GM per cell has not changed 
appreciably during the period needed to build up the concentration distri- 
bution in the composite interior of the cell, the total amount of drug trans- 
ported across unit area of membrane at r = b is equal to the amount of 
drug per unit area of spherical shell of the cell interior. Hence, 

j Gh dt = i I’& dr, 
0 

Gfntw-- ‘:‘(r-6) (r < b), c46) 
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and with Gh = G,/N4nb2 by equation (A4) 

(r - b) N J2D, Mt. (A7) 
The linear concentration-distance distribution is a justified approximation 
up to a period in which the concentration in the center of the cell is small. 

Together with equations (A2), (A5) and (A7) the rate expression of (Al) 
becomes 

dY,Q 4nNabP,, M aPe, M - =- 
dt V 

1+ 
K, a&, b 

‘AQ (A@ 
AQ 

and, after integration, we get 

log YAo = log I-(2A/2.303B)t1’“+(2A/B2) log (1 +Bt1’2), 

where Z is the initial bulk aqueous concentration and 
A = 4nNabP,, M/VAQ 

(-49) 

aPe, M 

B = bKe, a&, b 

For initial periods, equation (A9) reduces to a first-order expression, 

log YAo = log I-At/2.303. (AlO) 

APPENDIX B 

Linear Approximation of the Rate of Drug Transport into Cells using Model 2 

The expression for the flux in the plasma membrane for this model is 
shown again, 

GM = 4nNabP, M(YAQ- &N/K, aKe, tJ+ (JW 

We assume, as in Appendix A, that the flux has not changed appreciably to 
build up the drug concentration in the cell. Then the total amount of drug 
transported through the membrane is 

~GMdt=-4rtN~Y,,r2dr W9 

and, recalling that GM = - VAQ * dY&dt, 

'AQ YIN=-- d&Q 

NQ:, 
- t x-3 (B3) 

where V,, (= $cb3) is the volume of the cell interior and the other terms 
have been previously defined. It follows that the solution to equation (Bl) 
becomes 

log YAQ = log 1-(1/B,) log (1 + A,B, t), (B4) 
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AZ = 4nNabP, ,/V,,, 

B2 = V,,iNv,,Ke, aKe, b’ 
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For initial periods, all but the first term in the expansion of log (1 +A,B,t) 
can be neglected, so that 

log YAQ = log I-A, t/2.303. (B5) 
An alternative approach to the evaluation of transport data is as follows. 

Recognizing that mass balance requires that 

- G,$K&W = WddY,,/dO 
at quasi-steady-state and differentiating equation (Bl), in which case the 
combined result is 

d2 YAa 4xNabP,, M 
dt’ + VAQ 

1+ 
V 

N5~i:aKc, b 

C-., 
~ = 0; 

dt 
(B6) 

the initial and equilibrium boundary conditions resolves the above differen- 
tial equation. Thus, 

1% ‘AQ- YAQ(ed = P 

I - LQW 

t 
2.303 ’ (B7) 

where YAQ(eq) is the aqueous equilibrium concentration and 

8= 

4nNabP,, M 
v 

AQ 
l+Nv 2K ) .  

IN e, a e, b 

APPENDIX C 

Linear Approximation of the Rate of Drug Transport into Cells using Model 3 

Utilizing the following equation as before in the other models, 

dI”,Q 4nNabP,, M Y -=- 
dt KQ 

&Q - K I; 
e, a e, b > 

and differentiating with respect to time, we get 

d2& 
+ -42 “d’, 

AQ 4 d&v 
&2 ~ = 

&a&b dt ’ 

(Cl) 

G9 

where A, has already been defined in equation (B4). If we are able to 
express the right side of equation (C2) in terms of some function of time, 
the solution is simplified. 
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The distribution of drug within the aqueous cytoplasmic matrix and 
cytoplasmic bodies of each cell is accountable by 

&N = @- tcJN)( YAQ, IN + yzQ, IN> + OlIN yCYT* (C3) 

The concentration adsorbed, Yzo, tN, in the aqueous interior is assumed to 
be linear with respect to the Langmuir isotherm; thus, 

y,Q, IN = Kad YAQ, IN, (C4) 

where & is the linear adsorption constant. With equations (C3) and (C4) 
it follows that 

d&N 7 = (l-a,,)(l+K,,) d+ + MIN d+. (C5) 

The expressions for the rate of transfer of drug from the aqueous interior 
of each cell into the cytoplasmic bodies are given by 

and 
dx%yT i -(I -ctIN)KN d*T = cxINv,, --ztL. (C7) 

The above equations take into consideration: first, the contribution to the 
total rate of passive uptake by the ith kind of cytoplasmic bodies (mito- 
chondria, endoplasmic reticulum, etc., including the nucleus) in which there 
are N’ number of ith kind bodies with surface area Si possessing a charac- 
teristic effective permeability coefficient P,, cYT and partition coefficient K,, cYT ; 
second, the membrane of each kind of body being the rate-controlling 
barrier. Since it is extremely difficult to experimentally determine the 
particular physical parameters in equations (C6) and (C7), we proceed to 
assume an average effect from all the cytoplasmic bodies. Accordingly, 
after differentiating equation (C6) and then using (C7), the result is 

dzYAQ, IN 

dt2 +B27= 
dY,Q IN o 

and 
N’SP,, CYT 

” = (l --?N)r/N 

l-a,, 

’ + &NKe, CYT 

v-3 

whereupon, introducing the boundary conditions of YAo, ,N(0) = 0 and 
YAo, &co) = YAo, rNceqj, the solution is 

yAQ, IN = YAQ, IN&) . c1 + evp2’) P) 
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and, with equation (C7), the derivative becomes 

dy.,, m _ %N d&n --82t 
- dt (1 _ um) 7 = - LQ, IN(w) ’ b e * (ClO) 

Finally, by substituting equations (CIO) and (C5) for dY,,/dt of (C2) we 
have the following second-order, non-homogeneous differential equation, 
i.e. 

d2YAQ d&Q 
____ +A, 

dt* ~ + -j-j (l -uIN)Kad yAQ, rN(eq$% e-P2t = o 
dt e,a e,b 

cc1 l) 

and letting 
&cl- aIN)Kad yAQ, IN(eq) 

y = (&-PXe,.~e,b 

the integration from initial to equilibrium conditions yields 

YAQ = YAQceq) + (1-y - YAQ(eqJ e- A2f + y evPzf. w4 


