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Abstract-—Shallow shell theory is used to investigate the non-linear plane deformation of a circular cylindrical
panel elastically restrained against rotation at the supports. The critical or equilibrium configurations which
may exist at zero load are determined. By examining the local stability of the various configurations, the critical
rotational stiffness is obtained, above which the shell cannot exhibit dynamic snap-through under impulsive load.
Finally for the range of geometries and rotational stiffness for which snap-through may exist, a sufficient condition
for stability is given.

INTRODUCTION

IN A PREVIOUs paper [1] the authors used shallow shell theory to investigate the dynamic
stability of simply supported cylindrical panels subject to impulsive loading. The actual
impulse to produce snap-through was obtained by direct integration of the equations of
motion. The results implied that the critical impulse is strongly dependent upon the
spatial distribution of the loading. The values obtained were compared to the values
associated with a sufficient condition for stability. Although the sufficiency condition
may be conservative, it does provide a bound valid for all distributions.

The sufficiency condition was based on the theory introduced by Hsu [2]. For the
problem of impulsive loading of an initially undeformed shell, the condition is equivalent
to the statement that the total energy imparted to the shell is less than the potential energy
associated with the first non-trivial equilibrium configuration encountered in the phase
space by successive energy surfaces expanding about the undeformed state. It is necessarily
an unstable configuration.

Implied in the above statement is the assumption that at least one non-trivial cquilibrium
configuration exists which is locally stable. Dynamic snap-through instability cannot occur
if the only locally stable equilibrium state is the undeformed configuration. Hsu [3] showed
that simply supported sinusoidal and parabolic arches have for a range of geometries a
stable non-trivial equilibrium configuration, whereas the corresponding clamped arches
do not. Vahidi [4] also concluded that clamped shallow arches cannot exhibit snap-through.

Based on the formulation in [1], the present paper investigates a shallow cylindrical
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panel which is elastically restrained against rotation at the supports. From the above
discussion it is clear that a critical restraint stiffness must exist, above which dynamic
snap-through cannot occur. After obtaining the equilibrium configurations, this critical
stiffness is determined by examining the local stability of the various equilibrium states.
The sufficient condition for stability is then obtained for the range of geometries and
restraint stiffness for which dynamic snap-through can exist.

FORMULATION

The shell geometry is shown in Fig. 1. We consider plane motion of the shell. Before
deformation a mid-surface point P has polar coordinates (a. 0). The point in the deformed
shell is located by the displacement vector

5 = APyt + o). (1)

where a is the radius of the mid-surface, f§ is the semi-opening angle, and ¢ and n are the
unit tangent and normal vectors to the undeformed mid-surface. Thus ¢ and y are dimen-
sionless radial and tangential displacement components.
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F1G. 1. Shell geometry.

The membrane force N and bending moment M per unit length of cylinder are

Eh

_ T @2
1= vz)ﬁ n
_ Eh® —
T2 = vHa
where 4 is the shell thickness, E is Young’s modulus, v is Poisson’s ratio and
N=y ¢+ 1
A—/I — d)rr‘

in which the prime denotes ¢/0I” where
I =0/
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In (2) the quantity 2y is the mid-surface strain, and in (3) the quantity M/a is the change
in curvature.t

The equations governing the free plane motion are given in [1]. Consistent with the use
of (3), they are in the present notation

¢+ 27" —n—(1¢Y =0 (7a)
B —n =0 (7b)
in which
A2 = B/, a* = 15 (hja)*. (8)
The dot denotes ¢/t where
T = ct/a, ¢t =E/p(l —v?) 9)

in which ¢ is real time.

The boundary conditions considered in the present paper are

H(+ 1,1) =0 (10a)

Y(+ 1.7) =0 (10b)

M(+ 1.7) = + K¢'(+ 1,7), (10c)
in which

K =kBa/[ER/12(1 — v3)]. (11)

where k is the torsional spring constant of the rotational restraint per unit length.

THE CRITICAL CONFIGURATIONS
To obtain a sufficient condition for snap-through stability we first obtain the critical

or equilibrium configurations. Setting the time derivatives to zero and using (7b), equation
(7a) reduces to

¢ =it =n it (12)
It follows from (7b) that # is a constant. Integrating (4) and using (10b) yields

1

n=—3] (¢—3¢Hdl (13)
-1

Equations (12) and (13) together with the boundary conditions (10a} and (10c) determine
the critical configurations. The trivial solution (¢ = = 0) is the undeformed state.
Depending upon the geometric and stiffness parameters, there may be zero, two, or more
additional configurations. The solution is

A . . cos
¢=2[b(smql"——1"smq)+1— qr]—ké(l—l“z). (14)
q cos g
+ In [1] the expression used was equivalent to M = — (¢” + f2¢). Here the second term is dropped since for

numerical computation it is negligible in comparison to ¢".
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where ¢ is the eigenvalue. b is a constant associated with a specific configuration and

1+ K -
T E Kuangl ()
The eigenvalue is related to the membrane strain through the relation
N = — g%/ (16)
There are two distinct cases. For symmetric configurations
b =0, (17)
and g is a root of the characteristic equation
g =8 {1Ra)
where
g =2q%3 —4q*/}* (18b)
B= <1J§ta§ q/q)l [sec? g — tan g/q]. (18¢)
There may also exist non-symmetric configurations for which
p2 9~ A(sec® g — tan g/q)
A2<1 N sin2q 5 Si112(]> (19)
24 g2
and q is a root of the characteristic equation ‘
(g* + K)sing — Kgcosqg = 0. (20)

Clearly, non-symmetric configurations exist only when the right hand side of (19) is
positive. Setting b* equal to zero and solving for 4 for a specific root to (20), ¢ = gy. we
obtain

t

- 6 §

v =q|-— — . 21

vTd l:ﬁ — 3 4% (sec® ¢ — tan q/’q)—l (21)

The roots of (20} are admissable only if (21) yields a real number. It can be shown that
when g = gy

b* > 0if 2 > iy
bt < 0if 2 < An-

Thus an additional pairt of non-symmetric configurations exist as 4 is increased beyond
A

To investigate the existence of symmetric configurations we examine the characteristic
equation (18) with K held fixed. The function g defined by (18b) increases monotonically
with the parameter /. and completely fills the space under the curve

y =243

t The pair arises. of course. from taking the square root to obtain . One member of the pair is the mirror
image of the other reflected in the ray 8 = 0.
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as A takes on all positive values. The function Bdefined by (i8¢} has, for ¢ > 0, a series of
positive branches separated by poles. For all finite K, each branch beyond a certain one
drops below 2g%/3. We denote dy as a constant such that when 4 = J, the function g is
tangent to the N-th branch of B. Thus two additional roots to (18a) exist as 4 is increased
beyond each 1. Associated with each 1, are constants g that locate the tangency points.
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FI1G. 2. Number of equilibrium configurations as a function of geo-
metrical parameter A and rotational restraint stiffness K.

In the present investigation the constants Ay were determined numerically through itera-
tion. If the sequences for 1y and Ay are both arranged in ascending order. then

Iy < Ay < Aysis

with 1 only slightly larger than Zy. The conditions for the existence of various kinds of
equilibrium configurations is surnmarized in Fig. 2. The 4 — K plane is divided into
regions by the curves labeled H,, H,. . ... The curve H, is associated with the root §;, the
roots being ordered by increasing magnitude. Because the numerical difference between
4y and 7y is very small, the curve associated with g, is indistinguishable from H,; in the
figure. Thus, at least two symmetric and two non-symmetric configurations exist above and
to the left of each curve. The undeformed configuration, of course, exists everywhere. As
/ increases or K decreases, an increasing number of configurations may exist. The total
number existing in each region 1s shown as the first number in the parentheses.

We pext examine the energy state associated with each critical configuration. We
mntroduce the dimensionless potenttal energy
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~ Ul -vy ~ =
U = — = 2
Eah po? v+ (22)

where U is the total potential energy. ¥ is the dimensionless strain energy. and l7 is due
to the external elastic restraints against rotation at I’ = + 1. We have

1

V=4{ [4*n*+ M?1dr (23a)
=1
V,=4K[¢7 (= 1.1) + ¢ (+ L.D)]. (23b)
Substituting (14} into (23) gives. after simplification -
~ KA? . 5
V. = "S- [b*(cos g — sing/q)* + (tan g — ¢/A)*] (24a)
e
-~ gt Al,, sin 2 s ta ta
AN A{3 [h~ (1 _ *,‘f) Fsectq + 20 4] _ f} (24b)
2 2 2q q q
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F1G. 3. Energy of critical configurations for K =1 vs. geo-
metrical parameter A.
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F1G. 4. Energy of critical configurations for K = 10 vs. geo-
metrical parameter A.

Plots of U vs. 1 are shown in Fig. 3 and Fig. 4 for K = 1 and K = 10 respectively.t The
distribution of critical configurations as a function of 1 is evident in the figures. In Fig. 4
the differences between 1, and 1 are too small to distinguish.

LOCAL STABILITY OF CRITICAL CONFIGURATIONS

For snap-through to occur. a stable non-trivial equilibrium configuration must exist.
Thus we must investigate the stability character of each equilibrium configuration. We
denote the perturbation from a given configuration ¢, by ¢,. Thus the perturbed motion is

¢ =d.+ by (25)

Substituting this into the equation of motion, and noting that ¢, is a solution, we obtain

H
E(¢y) — &7 F(d) — ¢, F(d,) — A1 + ¢/ + ¢ . pydl =0, (26a)
-1
where
.. 1
E(¢) = ¢ — 550" — (1 + ¢) F(9) (26b)
i
Fi¢) = —4{ (¢ —+¢")dr. (26¢)

-1

+ The plot corresponding to K = 0 is given in [1].
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We introduce the representation

$a = Y, Tir) ZAI). (27)
j=1
where the Z; are the natural modes of infinitesimal vibration about the undeformed
configuration. For convenience they are listed in the Appendix. Substituting (27) into
(26a), using Galerkin’s method, and retaining only the terms linear in the T{t) gives the
governing equations for small perturbations. The result is

T.+Y C,T, =0, (28a)
j=1
where 2

Ci= ,“izj - % P+ nQ;+n;Q; + 30, Q; (28b)

.l
P,=|_,227dr (28c¢)

1
0, = | zig.dr (28d)

-1
.M fori=j (28¢)

Hii =g fori #j

no=— é‘l Z.dr. (28f)

-1

The constant y; in (28e) is the natural frequency of the j-th mode of infinitesimal vibration
about the undeformed configuration. Expressions for P;;, Q; and n; may be obtained by
direct integration. For brevity they are omitted here. The eigenvalues of the matrix C;
are the squares of the natural frequencies of the perturbed motion. Hence the critical
configuration is unstable if any of the eigenvalues are negative. For the present analysis
the first twenty eigenvalues were determined numerically with the Jacobi Method. after
truncating C;; to a 20 x 20 array. Using additional modes did not significantly change
their values. In Fig. 2 the second number in the parentheses indicate the number of stable
configurations which exist in each region. At most. only one configuration (in
addition to the undeformed one) is stable. It exists in the region above and to the left of
the curve S,5,S, : everywhere else in the 4 — K plane only the undeformed configuration
is stable. When the second stable equilibrium configuration exists, it is symmetric and
corresponds to g < g, where ¢, is the lowest root to (18) associated with points along the
curve S, S,. Our numerical investigation indicates that g, is approximately equal to 7.

CONCLUSIONS

Dynamic snap-through instability cannot occur if the undeformed configuration is the
only locally stable equilibrium configuration. Thus in the present problem. dynamic
snap-through can only occur in the region above the curve S,5,S,; in the 4 — K plane
(Fig. 2). The critical spring stiffness is the value of K on the curve §,5,S,. It is a function of
4. but it is clear from the figure that snap-through will never occur if K exceeds 16.

For the region where snap-through may occur we can state a sufficient condition for
stability. The unstable configuration with the lowest energy level is non-symmetric.
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F1G. 5. Sufficient condition for stability against snap-through.

except for a very narrow range of A between 4; and A,. We denote this energy level by U..
The shell cannot snap-through under impulsive load if the initial energy imparted to the
shell is less than U, . This sufficiency condition is shown in Fig. § for several values of K
for which snap-through is possible.
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APPENDIX
Infinitesimal vibrations about the undeformed position
Neglecting tangential inertia and retaining only linear terms reduces the equations of motion to

¢ = )14 ¢, (A1)

For the boundary conditions (10), the solution is

b= ¥ [C,sin(@yr + A) ZA0) + C,sin (fr + A) Z(D)]. (A2)

n=1



28 L. J. OvensHIRE and [. K. McIvor

where the bar denotes an asymmetric mode and the tilde denotes a symmetric mode. The quantities C, and 4,
are arbitrary constants determined from the initial conditions.
The dimensionless circular natural frequencies are
L, = 02iA* (A.3a)

R

i, = 52A% (A3b)

where ©, and ¥, are roots to the characteristic equations

(2etanh v + K)sine — (K tanhv)cost =0 (A.4a)
and
[t + 2K tanhv — Ko (1 — ¢*/i*] sin¢
—¢[—tanhe + (2¢ + Ktanh o) (1 — 0*4A%] cose = 0, (A.4b)
respectively.

The asymmetric mode shapes are

- sine, I
" (A.5)
The symmetric mode shapes are
Z,, = A,(cosv, ] + R,coshu,l + S,). (A.6a)
where
(v,cosv, + Ksinuv,)
L {A.6h)

a (v, cosh v, + K sinh v,)

— [2¢, + K(tanh o, + tane,}] cost,
S = - [ A )]7&(7)\ 1» (A.6¢)
(v, + Ktanhg)

sin 2r, L {sin 20, ,
A, =11+ - + R —-+1]})+25;
2, 20,
2R, . .
+ (sinh v, cos v, + cosh v, sin v,)
U"
sin r, sinhe,| ~*
+4S, — ~+4R,S, — . (A.6d)
l‘" TIl

The mode shapes satisfy the orthogonality condition
1
I Z,z,dr =4,,.
-1
where 8, is the Kronecker delta and Z,, represents either a symmetric or an asymmetric mode.

mn

Résumé On utilise la théorie des coques peu profondes pour étudier la déformation plane non linéaire d'un
panneau cylindrique circulaire élastiquement retenu & scs supports contre la rotation. On détermine les con-
figurations critiques ou & I'équilibre qui peuvent exister sous une charge nulle. En examinant la stabilité locale
des diverses configurations. on obticat la rigidité critique en rotation au dessus de laquelle la coque ne peut pas
donner licu & une rupture dynamique sous une charge par impulsions. On donne finalement une condition
suffisante de stabilité pour la gamme de géométries et de rigidité de rotation pour lesquelles la rupture peut exister.

Zusammenfassung - Die Theorie flachcer Schalen wird beniitzt. um die nichtlincare ebene Verformung ciner
kreisfsrmigen zylindrischen Platte zu untersuchen. die elastisch an den Unterstiitzungen gebalten wird. um cine
Rotation zu verhindern. Die kritischen oder Gleichgewichtskonfigurationen. die bei Nullbelastung bestehen
kxannen. werden bestimmt. Durch Untersuchung der lokalen Stabilitit verschiedener Konfigurationen wird die
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kritischc Rotationsstcifheit erhalten. oberhalb derer die Schale kein dynamisches Durchknicken unter stossartiger
Beanspruchung zeigen kann. Schliesslich wird fiir den Berecich von Geometrien und Rotationssteifheiten. fir
die ein Durchknicken mdoglich ist. eine hinreichende Bedingung fiir Stabilitét angegeben.

Apnoramgua—I[IpuvensieTcss Teopust Monornx o0oJ04eK ¢ 1eJABK  HMCCICOBAHUA HEJTMHEHHON
HAOCKOR jAedopMalin Kpyrioil (miunIpuueckoil MaHean #a olopax YNpyro npeisTCTBYOUINX
HOBOPOTOM.  OUPEUCISATCH  KPUTHYCCKUEe WM PABHOBECHBIE KOHQUIYPAI{MN, KOTOpBIE MOLYT
CYHIECTBOBATL UPH HyJeBoil narpyske, Msvuas MecTnyio yerofunBocThb panHbBIX KOH(PUTYpaumii
HOJYTAETCH KPUTHUCCKYIO MRECTROCTh (VETOHUMBOCTB) 110 OTHONIEHUIO TIOBOPOTA, BHIIIE KOTOPOi
000 10MKA 105 BIHANUCM UMNYIbCHOH HAIPY3KH He MOMeb NpPOABIATH ;IHHAMHYECKOrO XJIONKA.
Haronéiy  HpuBoanTed  10CTATOMHOC VCTOBHE  YCTOUUHBOCTH jJisi  OOJACTH  TeoMeTPHYECKHX
ROLpUPrYpanuil 1 KecTROCTH IPOTHB HOROPOTA, ;1151 KOTOPBIX XJIOIOK MOHET TPOHCXORUTE.



