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Abstract----Shallow shell theory iq used to investigate the non-linear plane deformation of a circular cylindrical 
panel elastically restrained against rotation at the supports. The critical or equilibrium configurations which 
may exist at zero load are determined. By examining the local stability of the various configurations, the critical 
rotational stiffness is obtained. above which the shell cannot exhibit dynamic snap-through under impulsive load. 
binally for the range of geometries and rotational stiffness for which snap-through may exist, a suffkient condition 
for stability is given. 

INTRODUCTION 

IN A PREVIOUS paper fl] the authors used shallow shell theory to investig&e the dynamic 
stability of simply supported cylindrical panels subject to impulsive loading. The actual 
impulse to produce snap-through was obtained by direct integration of the equations of 
motion. The results implied that the critical impulse is strongly dependent upon the 
spatial distribution of the loading. The values obtained were compared to the values 
associated with a sufficient condition for stability. Although the sufficiency condition 
may be conservative, it does provide a bound valid for all distributions. 

The su~ciency condition was based on the theory introduced by Hsu [2]. For the 
problem of impulsive loading of an initially undeformed shell. the condition is equivalent 
to the statement that the total energy imparted 10 the shell is less than the potential energy 
associated with the first non-trivial cquilibri~m configuration encountered in the phase 
space by successive energy surfaces expanding about the undeformed state. It is necessarily 
an unstable configuration. 

Implied in the above statement is the ass~~mption that at least one non-trivial cqLl~Iibri~tm 
configuration exists which is locally stable. Dynamic snap-through instability cannot occur 
if the only locally stable equilibrium state is the undeformed configuration. Hsu [3] showed 
that simply supported sinusoidal and parabolic arches have for a range of geometries a 
stable non-trivial equiIibriL~m con~guration, whereas the corresponding clamped arches 
do not. Vahidi [4] also concluded that clamped shallow archescannot exhibit snap-through. 

Based on the formulation in [l], the present paper investigates a shallow cylindrical 

+ Physical Scientist. formerly Lecturer. the University of Michigan. Ann Arbor. Michigan. 

19 



20 L. .I. OVENSHIKE and I. K. MCIVOR 

panel which is elastically restrained against rotation at the supports. From the above 
discussion it is clear that a critical restraint stiffness must exist, above which dynamic 
snap-through cannot occur. After obtaining the equilibrium configurations, this critical 
stiffness is determined by examining the local stability of the various equilibrium states, 
The sufficient condition for stability is then obtained for the range of geometries and 
restraint stiffness for which dynamic snap-through can exist. 

FORMULATION 

The shell geometry is shown in Fig. 1. We consider plane motion of the shell. Before 
deformation a mid-surface point P has polar coordinates (a. 0). The point in the deformed 
shell is located by the displacement vector 

6 = ,&(/i~r + (i5n). (1) 

where a is the radius of the mid-surface, /j is the semi-opening angle, and t and n are the 
unit tangent and normal vectors to the undeformed mid-surface. Thus 4 and Ic/ are dimen- 
sionless radial and tangential displacement components. 

FE. 1. Shell geometry. 

The membrane force N and bending moment M per unit length of cylinder are 

(2) 

where h is the shell thickness. E is Young’s modulus. v is Poisson’s ratio and 
q = *’ - $I + f 4” 

j@ = - 4”. 

in which the prime denotes 3!8r where 

r = oip. 

(4) 

(5) 

(6) 
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In (2) the quantity /?“q is the mid-surface strain, and in (3) the quantity @/a is the change 

in curvature .t 
The equations governing the free plane motion are given in [ 11. Consistent with the use 

of (5), they are in the present notation 

4 + /l-J 4”” _ V _ (V 4’)’ = 0 (7a) 

p’$ - r/’ = 0 (7%) 

in which 

i2 = fl’/cZ, (x2 = & (k/a)2. (8) 

The dot denotes d/Z? where 

5 = CT/u. c2 = E/p (1 - v2) (9) 

in which t is real time. 

The boundary conditions considered in the present paper are 

&+ 1-z) =0 (lOa) 

$(& 1.T) = 0 (1Ob) 

A?( i 1, 5) = + K #(_t 1, T), (1Oc) 

in which 

K = k /3 a/[E k3/12 (1 - v2)], (11) 

where k is the torsional spring constant of the rotational restraint per unit length. 

THE CRITICAL CONFIGURATIONS 

To obtain a sufficient condition for snap-through stability we first obtain the critical 
or equilibrium configurations. Setting the time derivatives to zero and using (7b). equation 

(7a) reduces to 

It follows from (lob) yields 

(p”” - q A4 (p” = q )“4. 

(7b) that y is a constant. Integrating (4) and using 

v] = -tjl (4 -i@‘)dT. 
-1 

(12) 

(13) 

Equations (12) and (13) together with the boundary conditions (1Oa) and (10~) determine 
the critical configurations. The trivial solution (4 = II/ = 0) is the undeformed state. 
Depending upon the geometric and stiffness parameters. there may be zero. two, or more 
additional configurations. The solution is 

4 =,1- 
[ 

h(sinqT - rsinq) + 1 -coS 
1 cos q 

+ i(l - r2). (14) 

f In [ 11 the expression used was equivalent to R = - (4” + /I’d). Here the second term is dropped since for 
numerical computation it is negligible in comparison to 4”. 
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where 4 k the eigenvalue. h is a constant associated with a specific configuration and 

A = ~~ _‘_+_K__ I 
1 + K tan 4,/q 

(15) 

The eigenvalue is related to the membrane strain through the relation 

‘1 = - q’.1/P. 

There are two distinct cases. For symmetric configurations 

h = 0. 

and 4 is a root of the characteristic equation 

{j = B. 

where 

<j = 2 q2./3 - 4 q4/P 

(16) 

(17) 

(lX;a) 

(1%) 

[set” q - tan q!q]. 

There may also exist non-symmetric configurations for which 

h2 = c A’(sec’ (1 - tan q/q) 

A2 

! 

1 

(lfk) 

(19) 

and q is a root of the characteristic equation 

(q2 + K) sin q - K q cos q = 0. (20) 

Clearly. non-symmetric configurations exist only when the right hand side of (19) is 

positive. Setting b2 equal to zero and solving for 3, for a specific root to (20). q = qN, we 

obtain 

- 3 AZ (sec2 q - tan q/q) 
1. 

(21) 

The roots of (20) are admissable only if (21) yields a real number. It can be shown that 
when q = qN 

b” > 0 if A > Ly 

h’ < OifL 4 X,. 

Thus an additional pair?- of non-symmetric configurations exist as I is increased beyond 
x,. 

To investigate the existence of symmetric configurations we examine the characteristic 

equation (18) with K held fixed. The function g defined by (18b) increases monotonically 
with the parameter j.. and completely fills the space under the curve 

JJ = 2 q2!3. 

i- The pair arises. of course. from taking the square root to obtain h. One member of the pair is the mirror 
image of the other reflected in the ray f3 = 0. 
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as A takes on ail positive values. The function Bdefined by (I8c) has. for 4 > 0, a series of 

positrve branches separated by poles. For all finite K, each branch beyond a certain one 
drops below 2q2/3. We denote 2, as a constant such that when i = iN the function g is 
tangent to the N-th branch of B. Thus two additional roots to (1Xa) exist as iL is increased 
beyond each IN. Associated with each K, are constants qN that locate the tangency points. 

O II II I L 1, , 1 1 1 , , [ 
I 2 3 4 5 6 7 8 9 IO II 12 13 14 I5 I6 

Stiffness, K 

FIG. 2. Number of equilibrium configurations as a function of geo- 
metrical parameter i and rotational restraint stiffness K. 

In the present investigation the constants AN were determined numerlcally through itera- 
tion. If the sequences for 1, and x, are both arranged in ascending order. then 

with 1, only slightly larger than r,,,. The conditions for the existence of various kinds of 
equilrbrium configurations is summarized in Fig. 2. The /1 - K plane is divided into 
regions by the curves labeled H,, H,. . . The curve Hi is associated with the root gi, the 
roots being ordered by increasing magnitude. Because the numerical difference between 
2, and i, is very small. the curve associated with qi is indistinguishable from Hi in the 
figure. Thus. at least two symmetric and two non-symmetric configurations exist above and 
to the left of each curve. The undeformed configuration, of course. exists everywhere. As 
1. increases or K decreases. an increasing number of configurations may exist. The total 
number existing in each region is shown as the first number in the parentheses, 

We next examine the energy state associated with each critical configuration. We 
intro&m the dimensionkss potential energy 
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(22) 

where U is the total potential energy. p is the dimensionless strain energy. and 4. is due 
to the external elastic restraints against rotation at r = k I. We have 

P= +jl [i.3~~z + R2] dr (23a) 
-I 

C;, =fK[qY’(- 1.7) + #‘(+ l.t)]. 

Substituting (14) into (23) gives. after simplification. 

(23b) 

t. = yi [b2 (cos q - sin q/q)’ + (tan y - q/A)‘] Pa) 

K= I 

- Symmelric 
45- 

--- Non-symmefric 

Geomemcol parameter, x 

FIG. 3. Energy of critical configurations for K = 1 vs. geo- 
metrical parameter 1.. 
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- Symmetric 

--- Non-symmetric 

23456769 IO II 12 13 14 

Gecmetncol parameter, x 

FIG. 4. Energy of critical configurations for K = 10 vs. geo- 
metrical parameter 1. 

Plots of u vs. 2 are shown in Fig. 3 and Fig. 4 for K = 1 and K = 10 respectively.? The 

distribution of critical configurations as a function of A is evident in the figures. In Fig. 4 
the differences between JN and 2, are too small to distinguish. 

LOCAL STABILITY OF CRITICAL CONFIGURATIONS 

For snap-through to occur. a stable non-trivial equilibrium configuration must exist. 
Thus we must investigate the stability character of each equilibrium configuration. We 
denote the perturbation from a given configuration 4, by 4d. Thus the perturbed motion is 

4 = 4, + &. (25) 

Substituting this into the equation of motion, and noting that 4, is a solution. we obtain 

EM,) - &’ F(4,) - &I’ F(&) - $1 + 4:’ + &,i’ 4: &, dT = 0, G’6a) 
-1 

where 

E(4) = ;d _ >; 4”” 
- (1 + 4’) F(4) (26b) 

i- The plot corresponding to K = 0 is given in [l]. 
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We introduce the representation 

cjd = i q(T) z,(r). (27) 
,=I 

where the Zj are the natural modes of infinitesimal vibration about the undeformed 
configuration. For convenience they are listed in the Appendix. Substituting (27) into 
(26a). using Galerkin’s method. and retaining only the terms linear in the T,(T) gives the 
governing equations for small perturbations. The result is 

where 

I 

Ti + 1 cjj T, = 0, 
I- 1 

(28a) 

(2Xb) 

(28c) 

(28d) 

2 -4 fori =j 
PiJ - 0 for i #j 

12%) 

The constant ,uj in (28e) is the natural frequency of thej-th mode of infinitesimal vibration 
about the undeformed configuration. Expressions for Pij. Qi and ni may be obtained by 
direct integration. For brevity they are omitted here. The eigenvalues of the matrix Cij 
are the squares of the natural frequencies of the perturbed motion. Hence the critical 
configuration is unstable if any of the eigenvalues are negative. For the present analysis 
the first twenty eigenvalues were determined numerically with the Jacobi Method. after 
truncating Cij to a 20 x 20 array. Using additional modes did not significantly change 

their values. In Fig. 2 the second number in the parentheses indicate the number of stable 
configurations which exist in each region. At most. only one configuration (in 
addition to the undeformed one) is stable. It exists in the region above and to the left of 
the curve S,S,S, : everywhere else in the j_ - K plane only the undeformed configuration 
is stable. When the second stable equilibrium configuration exists, it is symmetric and 
corresponds to 4 < qs where qs is the lowest root to (18) associated with points along the 
curve S, S,. Our numerical investigation indicates that q, is approximately equal to 7~ 

CONCLUSIONS 

Dynamic snap-through instability cannot occur if the undeformed configuration is the 
only locally stable equilibrium configuration. Thus in the present problem. dynamic 
snap-through can only occur in the region above the curve S0S,S2 in the 1. - K plane 
(Fig. 2). The critical spring stiffness is the value of K on the curve S0SiS2. It is a function of 
j_. but it is clear from the figure that snap-through will never occur if K exceeds 1.6. 

For the region where snap-through may occur we can state a sufficient condition for 
stability. The unstable configuration with the lowest energy level is non-symmetric. 
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01 1 II 1 11 1 11 11 11 ’ 1 
I 2 3 4 5 6 7 8 9 IO II 12 I3 I4 

GeometrIcal pammeter, x 

F~ti. 5, Sufficient condition for stability against snap-through 

except for a very narrow range of A between l-A and Al. We denote this energy level by D,. 
The shell cannot snap-through under impulsive load if the initial energy imparted to the 

shell is less than 0,. This sufficiency condition is shown in Fig. 5 for several values of K 

for which snap-through is possible. 
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APPENDIX 

Infinitesimal uibratlons about the undeformed position 

Neglecting tangential inertia and retaining only linear terms reduces the equations of motion to 

For the boundary conditions (10). the solution is 
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where the bar denotes an asymmetric mode and the tilde denotes a symmetric mode. The quantities C, and A, 

are arbitrary constants determined from the initial conditions. 

The dimensionless circular natural frequencies are 

& = O,z!i’ IA.Da) 

fi” = 6f.1.2. (A3b) 

where 6, and 5, are roots to the characteristic equations 

t2r tanh r + K) sin L’ - (K tanh L.) cos r = 0 fA.4a) 

and 

[r + 2K tanh r - KP(I ~ ~~:i.~] sin I’ 

- r[ - tanh t: + (2 r + K tanh t) (I - L~JL”)] cos 1: = 0. tA.4h) 

respectively. 

The asymmetric mode shapes are 

The symmetric mode shapes are 

where 

Z” = 
sin (1, r 

1 -- 
sin 2 r, ’ 

( --.-I 21,” 

?,, = A,, (cos c,J + R, cash t:,r + S,). 

R = (I’, cos 11, + K sin r,,) 
,, 

(I,,, cash I’, + K sinh r,) 

S = r [Zr. + I< ttanh tiv + tan r.)] co!: r,, 
n 

(I:, + K tanhy,) 

+ R; 

+ 
ZR, 

(sinh r, cos c, + cash i,, sin I.) 
t’,, 

sm I‘,, sinh r,, * 
+ 4s” ~-. + 4 R,S, -.- 

L’” 1” 1 
The mode shapes satisfy the orthogronality condition 

tA.5) 

(A.&I) 

(A.hb) 

IA.&) 

(A&d) 

j’ %,Z,dT =Cr nz”. 
-1 

where $,,,, is the Kronecker delta and Z, represents either a symmetric or an asymmetric mode. 

R&urn& On utilise la thborie dcs coques pcu profondcs pour etudier la d&formation plane non linearm d’un 
panncau cylindrtque circulaire elastiqucment rctcnu a scs supports contre la rotation. On determine 1~s con- 
figurations critiques ou a I’equilibre qui peu\cnt exister sous unc charge nullc. En examinant la stabilitt locale 
dcs diverses configurations. on obticnt la risidite critique cn rotation au dessus de laquelle la coque ne pcut pas 
donner lieu a une rupture dynamique sous une charge par impulsions. On donne linalcment une condition 
auffisantc de stabilite pour la gamme de gi-ometrier ct de rigidite de rotation pour lesquclles la rupture peut existcr. 

Zusammenfassung Die Theorie flachcr Schalen wtrd bentitzt. urn die nichtlincarc ebene Vcrformung caner 
kreisfiirmigen eylindrischcn Platte zu untcrsuchen. die elastisch an den Untcrstiitzungcn gehalten wird. urn tine 
Rotation LU berhindcrn. Die kritischen oder Gleichgewichtskonfigurationen. die bci Nullbclastung bcstchen 
konncn. werdcn bestrmmt. Durch Untersuchung der lokalen StabilitHt vxschiedener Konfigurationen wird die 



kritischc Rotatlonsstcifheit erhalten. oberhalb dercr die Schale kein dynamisches Durchknicken unter stossartigcr 
Beanspruchung zcigen kann. Schliesslich wird fiir den Bercich van Geometricn und Rotationsstcifheiten. fiir 
die ein Durchknicken miiglich ist. eine hinrcichendc Bedingung fiir StabilitHt angegcben. 
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