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ABSTRACT 

The implications of a carrier model of ion and substrate cotransport are worked out. 
Each carrier is assumed to have one ion and one substrate binding site. The model 
includes features that have not been included in previously published models. These 
features are the effect of the membrane potential and of the assumption that all carrier 
forms, with or without bound substrate and with or without various bound ions, can 
cross the membrane. The model is of a two-state (gate-type) carrier with transition rate 
constants. In one state the carrier interacts with outer bulk phase; in the other state it 
interacts with the inner bulk phase. Equilibrium in the reactions between ion, substrate, 
and carrier is assumed at each surface. 

INTRODUCTION 

Over the past decade extensive evidence has been accumulated which 
shows that the uptake of sugars and amino acids is accompanied by an 
uptake of sodium in a variety of cell types. Much of this has been reviewed 
by Stein [I], Mitchell [2], Rothstein [3], and Jacquez and Schafer [4]; 
Schultz and Curran [5] have written a detailed review. The evidence on 
the stoichiometry of sodium-amino acid cotransport is less extensive. 
It is of two kinds: (a) measurement of the dependence of initial flux of 
amino acid uptake on the extracellular sodium concentration; and (b) 
direct measurement of simultaneous fluxes of sodium and amino acid and 
comparison of the increment in Naf influx with the concomitant amino acid 
influx. As to the first of these, Vidaver [6] found that the glycine influx in 
pigeon red cells showed a second-order dependence on extracellular sodium. 
This was confirmed by Wheeler and Christensen [7], but these authors 
also found that alanine influx in pigeon red blood cells showed a first-order 
dependence on extracellular sodium. A first-order dependence on extra- 
cellular sodium has been reported for AIB uptake by rat diaphragm [8] 
and Ehrlich ascites cells [9], for alanine uptake by rabbit reticulocytes [IO] 
and rabbit ileum [ Ill, and for glycine uptake by LS mouse ascites cells [ 121. 
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As to the evidence on simultaneous fluxes of sodium and amino acid, 
Schafer and Jacquez [13] found an approximately 1 : 1 ratio of sodium to 
AIB uptake, over a wide range of concentrations of sodium and AIB, in 
Ehrlich ascites cells. Wheeler and Christensen [7] found ratios of 1.53, 
2.52, and 0.96 for glycine, alanine and @-alanine, respectively, in pigeon 
red cells. Eddy [14] found a ratio of 0.9 for glycine uptake in LS cells. The 
evidence for involvement of sodium in sugar transport is equally impressive 
[15-201. Furthermore, there have been a number of reports of the involve- 
ment of potassium since the early work of Christensen et al. [21] and 
Riggs et al. [22]. Schafer [23] found a ratio of K+ efflux to AIB influx of 0.6 
in Ehrlich ascites cells and Eddy [14] also found a ratio of 0.6 for glycine 
uptake in LS cells. 

Many enzymes are activated by cations. A favored explanation for 
this activity of cations is that the binding of cation to the enzyme stabilizes 
the proper conformation of the enzyme molecule. A similar explanation 
seems plausible for the action of cations involved in cotransports. The 
role of monovalent cations in enzyme activation has recently been reviewed 
by Suelter [24]. 

For the remainder of this article we need a standard terminology for 
carrier models. Referring to Fig. I, I distinguish between reaction rate 
constants, such as CI, fi, y, 6, and transition rate constants, such as k,, k_1, 
kO, k_,. S is substrate, C carrier. The membrane carriers are viewed as 

St +s 

FIG. 1. Schematic of a simple two-state carrier model. C is carrier in the membrane; 
S is substrate. C and CS each have two states, one on the left side (outer surface) of the 
membrane, the other on the right side. 

occurring in two possible states, one on the inner surface, the other on the 

outer surface of the membrane, with transition rates between the two 

states. In an equilibrium carrier model the carrier-substrate complex is 
assumed to be in equilibrium with the substrate in the adjacent bulk 
phase, whereas in a reaction carrier model the equilibrium assumption is 
not invoked. A model is said to be symmetric in the reactions if the 
corresponding reaction rate constants are the same at the two surfaces 
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(i.e., a = y, p = S), and symmetric in the transition rates if ki = kpi. 
These definitions extend to carrier systems that bind more than one sub- 
strate to give coupled transports. In Mitchell’s terminology [2], coupled 
transport of two molecules in the same direction is a symport, in opposite 
directions, an antiport. 

The concept of a carrier has been the germinative idea in the study of 
transport systems in living cells. Irwin [2.5] used the term carrier in 1931- 
1932 to describe the hypothetical role of proteins in the penetration of 
dyes into cells. In 1933 Osterhout [26] described a model (real, not mathe- 
matical) for movement of potassium across a lipid phase that was clearly a 
carrier model, although he did not use this term. In 1937 Lundergardh 
[27] proposed a hypothesis to explain anion uptake by roots that was a 
carrier hypothesis. In his review of renal tubular excretion in 1939 
Shannon [28] proposed a carrier-type model and showed that it predicts 
the occurrence of a T,,, for tubular excretion, again without using the term 
carrier. HGber [29] uses the term carrier and discusses the carrier hypothesis 
in the 1945 edition of his book, and by the time of Ussing’s review of ion 
transport in 1949 [30], the idea of carriers was clearly one of the basic 
ideas in active transport. The early work of Hodgkin, Huxley, and Katz 
[31] was inspired by a carrier model, which they present in detail in their 
1949 paper [31], although in the final paper [32] of their 1952 series they 
conclude that the specific model that had originally guided their thinking 
did not account for their findings. 

Carrier models have also played a basic role in the work on sugar and 
amino acid transport, although the models published up to about 1965 
did not include ion cotransport as an explicit feature. In 1952 in a dis- 
cussion of sugar transport, LeFevre and LeFevre [33] proposed an adsorp- 
tion transport model, that is, one in which substrate binds to a fixed 
membrane site, which may dissociate and deliver substrate to either side 
of the cell membrane. Widdas [34] proposed a carrier model for glucose 
transport that was an equilibrium model with equal transition rate con- 
stants for all carrier forms with symmetry in the transition rate constants 
and the reaction rate constants. Rosenberg and Wilbrandt [35] also exam- 
ined implications of a number of equilibrium carrier models, again sym- 
metric in transition rate and reaction rate constants and with the assump- 
tion of equal transition rate constants for all carrier forms, but they also 
examined some enzyme-carrier models in which the carrier-substrate 
binding was enzymatically mediated. Patlak [36, 371 pointed out that a 
mobile carrier in the strict sense was not necessary and that all that is 
necessary is a membrane combining site, which he called a gate, that has 
two states. In one state the site is accessible to bulk phase on one side of 
the membrane only, in the other state it is accessible to bulk phase on the 
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other side of the membrane. Such a model is perhaps better represented 
diagrammatically by Fig. 2 than by Fig. 1. Given the transition rate 
constants for conversion between these states, such a gate-type model 
shows kinetics indistinguishable from those of what used to be called a 
mobile carrier model, which in its usual formulation is also only a two-state 

FIG. 2. Diagram of two-state or gate-type model. 

system with transition rates. Mitchell [38] also proposed what appeared 
to be a two-state carrier model at about the same time, although he did 
not explicitly differentiate between a two-state carrier (gate) and a true 
mobile carrier model. Later, Vidaver [39] examined some special cases of 
the gate-type model. This distinction is generally recognized now, and the 
term carrier model is really used in this restricted sense by most workers 
when talking about transport across cell membranes. The distinction is 
important because the term mobile carrier really applies to an important 
situation in which there is simultaneous diffusion of substrate, carrier, and 
the substrate-carrier complex and reaction between substrate and carrier, 
as in the facilitated diffusion of oxygen through thick layers (I-1000 p) of 
hemoglobin or myoglobin [40, 411. Mitchell [2] has reviewed the older 
models used to describe this true mobile carrier transport; all assume 
equilibrium between carrier and substrate at all points in the diffusion 
path. Friedlander and Keller [42] used the techniques of irreversible ther- 
modynamics to linearize the reaction terms in the diffusion equations. 
Kutchai et al. [43] and Kreuzer and Hoofd [44] have shown that these are 
poor assumptions and have solved the exact equations numerically on a 
computer. Kreuzer [45] and Wittenberg [46] have recently reviewed the 
experimental work on facilitated diffusion of oxygen in solutions of hemo- 
globin and myoglobin. In this article we are concerned only with the two- 
state type of model, and I use the term carrier model in this restricted 
sense. 

Jacquez [47] extended the discussion to reaction carrier models without 
symmetry in reaction rates or in transition rate constants. Heinz and 
Patlak [48] calculated a lower bound for energy expenditure in a transport 
model that included a sequence of reactions, and Patlak [49] extended this 
to consideration of a linked antitransport, an antiport, and discussed the 
effect of multiple pathways as well as the effect of the membrane potential 
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on transport of a charged molecule. Jacquez [50, 511 considered kinetics of 
a divalent carrier transport and compared equilibrium and reaction carrier 
models for a univalent carrier and included the effect of exchange reactions 
between substrates in the bulk phase and the carrier-substrate complexes. 
Regen and Morgan [52] also examined a reaction carrier model without 
symmetry in transition rate or reaction rate constants. Finkelstein [53] 
used a true mobile carrier model in a discussion of active transport of 
sodium across a mosaic membrane but used the simplifying assumption 
that the reactions between substrate and carrier occurred only at the 
surfaces of the membrane, so he did not have to consider simultaneous 
diffusion and reaction in the interior of the cell membrane. Silverman and 
Goresky [54] proposed a carrier model in which there were two forms of 
the carrier with different affinities for the transported substrate and irrever- 
sible conversions between the two free forms on each side of the membrane 
to drive the transport. Wong [55] and later Britton [56] examined the kin- 
etics of transport with polyvalent carriers, and Britton included consider- 
ation of the effect of the membrane potential on transport of charged 
particles. Hill and Kedem [57] examined the steady-state solutions for 20 
different models, some of the carrier type and some that consisted of a 
lattice of binding sites, with use of a diagrammatic method introduced by 
Hill [58] for obtaining steady-state solutions of multistate transport 
models. The method is useful because it provides a formal approach that 
makes it easy to write the basic differential equations for the system and 
the equations for the steady state. However, it does not include leak 
fluxes. It is particularly interesting because the diagrams are graphs in 
which the nodes are states and the lines linking nodes represent allowed 
transitions, which makes one hopeful that the theory of graphs may 
contribute to the comparative study of the structures of transport models. 
The method has been used by Essig [59] and Essig, Kedem, and Hill [60] 
and by Blumenthal and Kedem [61] to examine flux ratios and the inter- 
action of isotope fluxes in some carrier-type and lattice-type models. 

Less work has been done with models of coupled transport of substrates 
and cations. Inui and Christensen [9] and Stein [l] assumed the sequence of 
reactions for Na+-amino acid symport shown in Fig. 3, but assumed that 
only the complex NaCS crossed the membrane. Semenza [62] develops the 
Michaelis-Menten kinetics for enzyme reactions that involve a substrate 
and a modifier and uses the results to analyze some of the data reported on 
sodium-dependent transport of sugars and amino acids. Curran et aZ. [I l] 
assume the sequence C + S+CS + Na++NaCS and that C, CS, and 
NaCS can all cross the membrane with equal transition rate constants. 
They do not include the effect of the membrane potential, but point out 
some of the required modifications if the Goldman equation [63] holds for 
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the flux of NaCS. Vidaver and Shepherd [64], in modeling glycine transport 
in pigeon red cells, assumed the formation of complexes NaC, Na,C, and 
Na,CS in that order, and that C, NaC, Na,C, and Na,CS all cross the cell 

FIG. 3. Reaction mechanism with only complex NaCS transported. 

membrane For a carrier model with one ion and one substrate site Eddy 
[14] assumed that both Na+ and Kf can bind at the cation binding site 
but that only C and NaCS can cross the membrane. The model is an 
equilibrium model with symmetry in reaction and transition rate constants 
and does not include the effect of the membrane potential. Recently 
Jacquez and Schafer [4] used an argument that depended only on energy 
considerations to show that for an obligatory 1 : 1 coupling of Na+ and 
substrate for carrier movement, the steady-state concentration ratio for 
substrate ci/c,, must obey relation (l), 

where I’,,, is the membrane potential and [Na], and [Na]i are extracellular 
and intracellular sodium concentrations, respectively. For an obligatory 
type of coupling in which NaCS moves in and KC moves out, this relation 
becomes (2). 

5 < CNale CKli 
c, ’ mi . [We’ (2) 

In this brief review I have neglected the approach to an analysis of 
transport processes that uses strict irreversible thermodynamics in the 
main because this approach has contributed much less than have the kinetic 
models to the dialogue between experiments and theory. However, the 
papers by Hill [57], Hill and Kedem [58], and Essig et al. [60] contribute to 
the integration of the two approaches. A critical review can be found in 
the paper by Rapoport [65]. 

My purpose here is to examine a carrier model of substrate and cation 
cotransport that includes the effect of the membrane potential as well as 
the possibility that all carrier forms can cross the membrane. Basically this 
is a generalization of the model used by Eddy [14]. For the assumptions 
that describe obligatory coupling the model should predict the same steady- 
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state substrate concentration ratios that have been obtained from purely 
energetic considerations [4]. The possibility that Naf, K+, and H+ complexes 
of the carrier can be formed should be included. Furthermore, we want to 
see if there are differences in the predictions of the models depending on 
whether the carrier-cation complexes are or are not charged. The present 
derivation is for one carrier system. There is evidence for a multiplicity of 
carriers in amino acid uptake in some cells. This complication would have 
to be considered in any application of theory. 

A MODEL AND ITS BASIC ASSUMPTIONS 

THE MODEL 

Assume a two-state (gate-type) carrier model, each carrier having one 
binding site for an ion and one for a substrate. The distinction between 
ion and substrate is arbitrary in the general model, which we develop for 
any charges on ion or substrate, although we will be interested primarily 
in carriers that bind univalent cations and neutral substrates. The ions will 

OUT 

c CS MC MCS 

C cs MC MCS 

IN 1 2 3 4 5 6 

(a) 

S 

I 

1 
I 2 Dx I 

3 4 

7 
I 

(b) 

7 8 

b 

8 

FIG. 4. (a) The numbering of the system states for the model. (b) Thestategraph for 
the model. 

, 

be indicated by the notation Mi, the substrates by Sj. In the sequel we will 
be concerned with Na+, Kf, and H+, which will be M1, M2, and M3, 
respectively, in our notation. 

If only one substrate S and one ion M are present, we can diagram the 
states as in Fig. 4a. The states at the outer surface have been given odd 

6 
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numbers, those at the inner surface even numbers. Figure 4b shows the 
state graph for this model. Note that the inner cycle 1,2, 3,4 involves only 
free carrier and carrier-substrate complex. The horizontal lines represent 
transitions between inner and outer states, the other lines represent 
reactions. For each additional ion involved there is a set of states similar 
to 5, 6, 7, 8, which are linked to each other and to the set 1, 2, 3, 4 in the 
same way as are 5, 6, 7, 8. Each line represents two possible transitions; 
if the coefficient of the concentration term describing each transition is put 
above or to the left of the line for transition in one direction and below or 
to the right for the opposite direction, it is easy to write the differential 
equations from the diagram. The method for writing the steady-state 
solutions is given in Hill’s paper [58]. We want to derive initial fluxes as 
well as steady-state fluxes, so we use the kinetic method directly and use 
the equilibrium assumption for the reactions to reduce the number of 
equations and then introduce a special notation to simplify the algebra. 

BASIC ASSUMPTIONS 

1. The binding and dissociation reactions are assumed to be rapid 
enough to make the equilibrium assumption valid. Thus we assume an 
equilibrium carrier model and symmetry in the binding reactions at the 
two sides of the membrane. 

2. Symmetry in the transition rate constants is not assumed. Later, 
however, we will assume that any asymmetry is due only to the effect of 
the potential across the membrane. This means that we will assume no 
direct coupling between the carrier system and cellular metabolism, the 
only coupling being indirect, through effects on membrane potential and 
the ion gradients. The transition rate constants are not necessarily equal 
for different carrier species. Thus if only one ion M, and one substrate Sj 
are present, the carrier species are C, M,C, CS,, and MiCSj; and for each 
of these there are distinct transition rate constants for the transitions 
between the inner and outer states in the membrane. 

TERMINOLOGY 

We use a double subscript notation for transition rate constants and 
dissociation constants, the first subscript referring to the ion, the second 
to the substrate, as shown in Fig. 5. A zero subscript in the first position 
means that no ion is present, in the second position, that no substrate is 
present. 

1. Transition rate constants. 
The asymmetry in the transition rate constants is indicated as shown in 

Fig. 5. 
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FIG. 5. Schematic diagram giving the notation for transition rate coefficients and 
concentrations of carrier species. 

2. Dissociation constants. 
Equations (3) define the dissociation constants for binding of one of the 

ligands. 
K. 

IO 
_ C”ilCcl 
_CM,cl’ 

K = cm%1 
O’ W’ 

(3) 

For the binding of the second ligand, parentheses around subscripts 
indicate the second ligand bound. Thus Kicj, and Kcijj are the dissociation 

constants defined by Eq. (4). 

C”il[csjl 
KO)j = [M,Cs,] ’ 

(4) 

Define Kij = Ki,Ki,j, = KojK~k,j. Hence, by the equilibrium assumption, 

Eq. (5), giving the concentrations of the different carrier complexes, apply 
at the inner and outer faces of the membrane. 

[M,CS ,] = C”ilCclCsjl WxooSj niYOOtje 
* J 

[Mic] _ I”;;‘, 

, 

x” = T’ 

V Yij = -7 

mix00 niYo0 

[CSj] = a&, 

xiO = K,’ YiO = z ; 

xOOsj 

0’ x”j = K,’ 

YOOtj 

Y”j = Koj’ 
(5) 

Concentrations 

As is commonly done in work on transport models, we use concentra- 
tions in place of activities to avoid having to carry a multitude of activity 
coefficients through the derivations, but this has to be remembered when 
attempting to apply the results. As is shown in Fig. 5, x and y are used to 
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indicate outer and inner states in the membrane. The units used for the 
concentration of the different carrier complexes will depend on how one 
expresses experimental results. The units frequently used are moles per 
membrane area, moles per dry weight of cells, and moles per cell water. 
We use mi, sj, and ni, tj for concentrations of Mi and Sj in outer and inner 
bulk phases, respectively. Later we translate to standard chemical notation, 
[Mi], = mi, [MJi = ni, where subscripts e and i, used with the standard 
chemical notation, indicate external and internal bulk phases. 

THE EFFECT OF THE MEMBRANE POTENTIAL 

The membrane potential is assumed to have an effect only through its 

effect on the transition rate constants for charged complexes. As is dia- 
grammed in Fig. 6, consider the membrane to consist of two phases, the 
outer one at potential 41, the inner one at potential 42. The rate of trans- 
ition of MiCSj from phase 1 to phase 2 is kijXij and the reverse is k_ijyij. 

I 
I 

MSS, h MCS 
‘X,,’ ‘ b,l a ‘Yl,’ 

I 

I 
1 

FIG. 6. Diagram giving potentials and the states for the complex MiCSj. 

Consider such a system in a hypothetical equilibrium in which the electro- 
chemical potentials of MiCSj are the same in both phases. Let zij be the 
charge on complex MiCSj. Then Eq. (6) holds. 

RT In xij - z~,F~~ = RT In yij - z~~F~~. (6) 
Let V, = & - 41 be the membrane potential. Then, 

Yij = Xij exp ( > zijF% 
RT . 

But at equilibrium, kijxij = k_,jy,j. Hence, 

k_, = kij exp . 

Equation (8) defines the ratio k_ij/kij as a function of the membrane 
potential but there is no implication that one or the other of kij or k_, 
remains constant as V, changes. Suppose that the two-state model is a good 
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picture of the actual situation, with one state at one potential, the other at 
another; let kc = ktij be the transition rate constants at zero membrane 
potential. Then it is easy to show that kij = k$ exp(zijFV,,,/2RT) and 
k_ij = kc exp(-zijFVm/2RT). However, we do not need this result in 
what follows; we need and use only the equation for the ratio k_ijlkij. 

Note that the simplifying assumption that 41 and 42 are bulk phase 
potentials is used, and that the dissociation and binding reactions occur at 
these potentials. It would be of interest and more realistic to consider the 
bulk phases and surface phases to have different potentials and to intro- 
duce transition rate constants for movement of Mi and Sj between bulk 
and surface phases. It turns out that for the equilibrium type of carrier 
model such a model is the same mathematically as the present model ; 
however, the dissociation constants for the reactions then really include 
partition coefficients within them. 

BASIC EQUATIONS AND METHODS 

Let C, be total carrier concentration and let C,i be concentration of 
total carrier on the inside of membrane. 

c0 = 1 C Cxij + Yij>. (9) 
i=o j=l) 

In Eq. (9) and those that follow we exhibit only the index or perhaps the 
index and its lowest value for a particular summation, the summation 
being understood to be over the possible values of that index for the par- 
ticular system under study. We need two basic equations, one for the rate 
of change of Coi, one for conservation of total carrier. These are Eqs. (10) 
and (11). 

dcoi 
__ = dt 

These may be simplified by abbreviating the coefficients of xoo and yoo as 
in (12) and (13), 

dCoi 
__ = Ex,, 

dt 
- FYOO, (12) 

Co = Gxoo + HYOO, (13) 
where E, F, G, and H are sums of positive terms. 



82 JOHN A. JACQUEZ 

By the pseudo-stationary-state assumption, dCoildt = 0. This is the 
same assumption as is used in the derivation of the initial velocity of 
enzyme reactions. For the steady state this assumption is exact! Equations 
(12) and (13) then become two simultaneous linear algebraic equations 
that have for their solutions 

CoF 
x00 = -9 

D 

Yoo = cg, (15) 

D = EH + FG. (16) 
Now all fluxes can be calculated in terms of xoo and y,,. The remainder 
of the derivations consist of the tedious algebra of examining special 
cases. The results follow in the next section. 

For three ions and one substrate the corresponding reaction carrier 
model presents a much more difficult problem. Instead of two simultane- 
ous equations, we then have 16 simultaneous equations to solve. Even 
though the matrix of coefficients for these equations is rather sparse, the 
problem is algebraically messy. Hill’s method becomes more useful in 
that case. 

RESULTS 

Before presenting the results it will help to introduce a simplifying 
notation for the components of E, F, G, and H. We define the following: 

komi. 
e0 = k00 + iFl y y ej = 

LO 

fo = k-00 + iz y; fj 
LO 

,0=1+g; Sj = 

10 

,,=l+$; hj = 
IO 

(17) 

With this notation, E, F, G, and H become 

E = e, + CejSj, F = h + Cfjtj, 
i j 

G = 90 + CSjsj> H = ho + Chjtj. (18) 
.i 

In the main we will consider only a system with ihree univalent cations 
M1, Mz, and MS, which we will think of as Na+, K+, and H+, respectively, 
and one or two substrates. 
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ONE SUBSTRATE 

Transport fluxes 

We derive the equation for the one-way transport flux of substrate S1 
and then tabulate the one-way carrier fluxes and the net carrier fluxes. To 
this end, let J’(Sj) and J+(Sj) be one-way fluxes and J(Sj) the net flux 
The one-way carrier flux J’(Sj) is given by Eq. (19). 

= elslxoo. 

Substituting Eq. (14) for xoo gives Eq. (20). 

(19) 

J’(S,) = (eo + 

elslCOCfO + fi~A 
elsJ(ho + htd + (f. + fitd(g0 + slsJ 

elslCOCfo + fir,> 
= (eohO + fog01 + @ eel + fOglh -t (e0h + gofJh (20) 

+(e,b + flgl)sltl 
This expression shows the same dependence on s1 and tl as was found 
before the ion effects were explicitly considered [47, 501, but now the co- 
efficients of the various terms are functions of the ion concentrations. If 
the intracellular concentration of substrate can be kept low, then the initial 
one-way flux Ji;;(S,) is given by Eq. (21) which shows a Michaelis-Menten 
type of dependence on S1 in which V,,, and K,,, are functions of the cation 
concentrations. 

COeI f0sr 

J,T;(sl) = (e,h, + fogo> + (e,h, f glfo)s,’ 
(21) 

Note that since both s1 and t1 appear in Eq. (20), there is a trans effect 
of the substrate concentrations on the one-way fluxes. The significance of 
this tram effect depends on the relative values of& and fi and of the co- 
efficients of s1 and t, in the denominator of Eq. (20). Table 1 gives the 
one-way and the net fluxes for S, and the rth ion M,. 

It is possible now to catalog the special cases of this model, for example, 
obligatory coupling of Na+ and substrate, obligatory coupling of Na+ 
and substrate and exchange for K +. This is easily done by the reader. We 

will do it for the steady-state concentration ratios. 

Cotransport of Ions and Substrate 

It is of interest to examine the dependence of the substrate flux on the 
ion concentrations and the stoichiometry of ion and substrate movements. 
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First consider the ion dependence of initial flux as given by Eq. (21). 
From Eq. (21) we obtain the following for the maximal flux Jigs and for 

For illustration, suppose Na+ (M,) is the only ion that is involved (i.e., 
that k,, = kiI = 0 for i > 1). Then 

JXS,) = 

Note that if [Nali is relatively constant, then both Jigs and K,(S,) 
show a dependence on [Na], that is not typically Michaelis-Menten in 
type because of the constant term in the numerators. To simplify the 
algebra, suppose [Nali is relatively constant, so that& and h, are constant. 
Then Eas. (23) become Eqs. (24). 

Po~oo -t fol + C hog f $]INal. 
Xm’~l)=[h,~+fol+[~~~+~]~Na,~. (24b’ 

Note from the first of Eqs. (24) that some of the initial flux may be a 
carrier-mediated flux that is independent of [Na],; the fraction of the total 
flux mediated by the complex CS, depends on the relative values of k,,/ 

K,, and kllKI1. 
Now let us consider the possibility of measuring the stoichiometry of 

the flux of ion MI and of the flux of the substrate. Consider one-way 
fluxes. For the ion M, (Na+) there may well be modes of entry other than 
the carrier system specific for substrate S1. Any measurement of the flux 
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of M1 includes this other flux J,-,(M,), which is presumably independent of 
S,. Thus a measurement of the flux of M1 consists of J,(M,) + J(M,). 
If one corrects the measured flux by subtracting the flux of M, when no 
substrate is present (i.e., for [S,] = 0), one actually subtracts J,(M,) + 
J(M,,) where J(M,,) is the specific carrier system flux of M1 in absence of 
substrate. Thus the ratio of corrected flux of M1 to flux of S, would be 
given by Eq. (25). 

flux ratio = J’(“l) - J’(“l,) 
J’(Sd . 

This is the correction used by Eddy [14], although for initial flux rather 
than one-way flux. It is not always obvious in some of the reported studies 
of ion-substrate stoichiometry whether or not the flux or uptake of ion was 
corrected for the flux at zero substrate concentration. In practice probably 
the best strategy is to plot J’(M,) as a function of J’(S,) and examine 
how the slope of such a graph changes with S1. It should be obvious from 
the equations for the fluxes that for this type of model one cannot expect 
fixed, near-integral stoichiometries unless there is tight coupling between 
substrate and ion movement; that is, complexes MiC and CS, should not 
contribute appreciably to the flux of M, or S,. If that is so, k,, = kol = 0 
and J(M,,) = 0. The flux ratio is then given by Eq. (26): 

J’Wd - J’W,,) J-w,) 1 

J'(Sd 
=---=. 

J'(S,) 
(26) 

Otherwise it is given by Eq. (27): 

The second term in Eq. (27) is difficult to evaluate in the general case. 
However, if klo/Klo N 0 (i.e., M,C cannot cross the membrane or M,C 
cannot be formed), then the flux ratio is independent of substrate concen- 
tration but does depend on the concentration of the ion M1 and is less 
than 1 but increases toward 1 with increase in m, as shown by Eq. (28). 

J-CM,) - Jvfld (klllKllh 
J'(S,) = (~oI/&H) + (klllKlh 

= ~W~ll~(~~~K,,) f ml’ (28) 

On the other hand, if the complex CS, cannot cross the membrane, but 
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M,C can, the first term of Eq. (27) becomes independent of ml but the 
second term is an involved algebraic expression in ml, nl, tl, and si. 

J’GQJ - J’WIO) 
J'W 

(29 

Steady State 

For the steady state, Eq. (30) holds: 

J’(S,) - J+(S,) = k,(t, - sl). (30) 

That is, the net carrier-mediated flux must equal the noncarrier-mediated 
leak of substrate across the cell membrane. If the term k,(t, - s,) is 
appreciable in comparison with the one-way fluxes, the implications for 
the steady state are rather difficult to unearth from relation (30). It is 
common practice to assume that k,(t, - sl) is small compared to the one- 
way fluxes [57, 581 and we follow that here. Then one may assume that 
J’(S,) E J-(S,). This assumption is not always valid, but it is probably a 
fair assumption for amino acids for Ehrlich ascites cells, and many other 
cells for low values of S,. From this assumption we obtain the steady- 
state distribution ratio for various special cases of this model. We assume 
that the substrate is concentrated, so that tl > s1 and k,(tl - sl) is a small 
positive number. Then 

(CoP>_fl(eO + elOl = (cO/&l(fO + fit&l - k(h - bh 

from which we obtain 

(31) 

tt elf0 _Dk, (e,fo/e0fi> - 1 =-- 
St ss fe 10 Coeofl 1 + WlCoeofd 1 ’ 

(32) 

By our assumption the second term in Eq. (32) is only a small correction 
term, so that e, fo/fieo is a close upper bound for tl/sl. If the assumption 
is false and tl > s1 in the steady state, then the equations that are developed 
below all overestimate the steady-state concentration ratios. In the 
remainder we neglect the small correction term and develop the implica- 
tions for special cases from Eq. (33) 

t1 elf0 
- =---= 

Sl ss fie0 

k-ioni 
+c-- i Kio 1 

kiomi +c-- i Kio 1 
(33) 

For the more interesting special cases that follow we write [Na], = m,, 
[NaJi = ni, [KJ, = m2, [K]i = JZ~, [HI, = m,, [H]i = n3, and Ci = tl = 

[Slli? 'c, = s1 = [sIle, so as to put the results in a notation commonly 
used in transport work. In looking at the special cases it is also worth 
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considering two possibilities for the charge on the carrier. If the carrier 
carries a unit negative charge, C and CS, are both negatively charged, but 
MiC and MiCSj are neutral if Mi is a univalent cation. In that case, Eqs. 
(34) hold, where 5 = FVJRT. 

k-,, = k,,,e-c, k-i0 = kioy 

k_io = kale-c. k_,, = kij. (34) 

On the other hand if C is neutral, then M,C and MiCSj carry unit positive 
charges for Mi a univalent cation and relations (35) hold. 

k-oo = koo, k_io = kioeC, 

k-w = km, k_ij = kijee. (35) 

Note that the equations have been derived for any charges on the various 
carrier complexes. The results for any particular assumed charges on the 
different carrier complexes are readily found by substituting k_ij = 
kij exp(-zijVmF/RT) in Eq. (33). 

Free Carrier Cannot Cross Membrane. In this case k,, = k_,, = 0 
and Eq. (36) gives the steady-state distribution ratio. 

ci C(b~/~ol) + 7 (ki~d~i,)lC~ (k-idKio)I 

< = C(~-O,/~(O,) + 7 (k-ilni/Ki,) CT (b/~i,)mJ’ 
(36) 

Carrier-Substrate Complex CS, Cannot Cross Membrane. Then 
k,, = k_,, = 0 and Eq. (37) describes the situation. 

ci [T (kil/Ki,)miI[k-,, + C (k-idKi~)niI 

c t? - = [C (k-il/Kil)ni][koo + 7 (ki,lKio)miI ‘ 

Ion-Carrier Complexes M,C Cannot Cross Membrane. 
cross only in combination with the carrier and substrate, kio 
Then 

(37) 

If the ions 
= k-i, = 0. 

If the terms in potassium and hydrogen can be neglected, then Eq. (39) 
holds whether the carrier is neutral or negatively charged. 

ci -_=e + Nkol/Kod + (klltNale/K1lll 
Kkol/~ol)e-F + (k~x[Nali/K~~)I’ CL? 

(39) 

Free Carrier and Carrier-Substrate Complex Cannot Cross. If only 
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carrier with cation on it can cross the membrane, k,, = k_,,, = k,l = 
k_ol = 0. 

C(kllCNale/~~l) + U%CKI&d + &1C~IeI~31)1 
ci X [(k- ,o[NaIiIK,o) + (k-,,CKIiIh,) + (k-,oCHIi/~~,)I 
-_= 

C, C(k-,,CNaIJ~,J + (k-~,CKIi/~z1> + (k-~~lKli/K~~)I . 
x CGho[Nal,/Go) + (k~olXl,/~~o) + (k~oCHI,IK~o)I 

fWpose klllK1l % bl/G, k31/&1 and k20/&o % holK1o, 
kso/K3o % ho/Km. This is then a tightly coupled pump in which 

(40) 

and 
sub- 

strate can enter only in association with Na+ and carrier can return without 
substrate only in a K+ or H+ form. Then, whether the carrier is negatively 
charged or neutral, Eq. (41) holds: 

If the terms in [H] are negligible, 

Ci [We -= ~ 
ce Pali 

k,oIXIi 
K 

k,oL%e 
K2o 

+ 
- 

+ 

kSo[HIi 
K 

k,ohe 
1 
’ 

K 30 1 
Ci Pale [KIi 
c,= mm; 

(41) 

(42) 

For this sort of tight coupling of ion and substrate fluxes, Eq. (42) can be 
derived from strictly energy considerations [4] without referring to any 
model. 

Tight Coupling with Only Free Carrier or Cation-Carrier-Substrate 
Complex Able to Cross. For this situation kio = k_io = kol = k_,, =O. 
Then Eq. (33) becomes (43). 

ci 
-x 

CC? 

[ 

kllCNale + kzl[Kl, 
k-o, K22 K21 

k 00 k-,,[NaIi 

Kll 

+ k-,,CKli 

K21 

+ 
- 

+ 

k, 1 CHle 
K31 1 

k-,,CHli ’ 
K31 I 

(43) 

If the terms in K+ and Hf are negligible, so that only the sodium-carrier- 
substrate complex crosses, then whatever the charge on the free carrier, 
Eq. (43) reduces to (44). 

ci WI, Fvrn 
c= mexp [ 1 -__ 

RT (44) 

Again, this can be derived from energy considerations alone [4]. In this 
example of tight coupling, only the full ion-carrier-substrate complex 
contributes to the net substrate flux and only free carrier can return. 
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TWO SUBSTRATES PRESENT 

The algebra becomes increasingly difficult as the number of substrates 
is increased. It is important, however, to examine the initial fluxes for a 
number of special cases in which two substrates are present. These are the 
situations that would correspond to the experiments of competitive inhi- 
bition and exchange diffusion. 

Competition 
We examine how the initial flux of one substrate depends on the 

concentration of another. We can imagine two extreme types of sub- 
strates. One readily forms complex CS, which also crosses easily; this type 
of substrate forms complex M,CS primarily via CS as intermediate. The 
other type of substrate takes the alternate route primarily in formation 
of M,CS,. The flux of S1, J’(S,), in the presence of S2 is given by Eq. (45): 

J’(Sl) = (e, + 

Gslel(fo + fit1 + fibI 
elSl + wJ(ho + hltl + &A) 

(45) 

+(fo + J-it1 + .f2t&0 + SlSl + c72%) 

To simplify matters somewhat, consider the initial flux, for which tl = 
tz = 0. 

GfOel~l 

J’(sl’ = (elho + hso> + (he, + foglh + (he2 + fogzh’ 
(46) 

This predicts that the carrier initial flux of S1 should be completely in- 
hibitable by Sz provided the concentration of S2 can be raised sufficiently, 
no matter what types of substrate S, and S2 are. The effect of S2 depends 
on the relative values of (h,e, +f0g2) and (hoe1 +fOgl). However, it is 
almost impossible to keep tl and t2 negligible, so that in actual experiments 
Eq. (45) should be considered, and then it is difficult to predict the full 
effect of changing S2 because tl and t2 will also change and exchange 
diffusion may come to play an important role. 

Exchange Dzjksion 
Now let us consider the initial flux of Si, J,‘(S,), in cells that have been 

loaded with S2 so that s2 = 0, tl = 0. The flux is then 

G(Sl) = (eo + 

GelslCfo + fit21 
elsJho + h2tJ + (fO + fdd(go + glsd’ 

(47) 

This is to be compared with initial flux for the same S, but for t2 = 0 for 
which Eq. (48) holds. 

JiG(S1) = (eo + 
COelslfO 

elsl)hO + f&e + slsl)’ 
(48) 
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The ratio of the two fluxes is 
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J,’ IIf0 + f&l Me0 + elsl) + fb(so + slsl)l 
C” = j-0 Keo + elsl)(h + btd + (f. + fd&h + slsl)l’ (49) 

The difference of the two is 

DISCUSSION 

Some of the implications of the equations developed so far are not 
immediately obvious; it may help to put them in words. A significant role 
is played by the relative contributions of complex CS, and M,CS, to the 
flux of substrate. Consider two extreme types of substrate. The first readily 
forms complex CS,, which can cross the membrane so that considerable 
substrate can cross the cell membrane independently of the ions. We talk 
primarily in terms of Naf cotransport. This is a leak around the con- 
centrating capability of the ion-mediated transport, so we do not expect 
high concentration ratios. For such a system we would expect that a por- 
tion of the initial flux is sodium independent and that the ready movement 
of CS, provides a high exchange capability that is not dependent on the 
presence of Na+. On the other hand, the other type moves only in the 
complex M,CS,, and so we expect high concentrating ability. Furthermore, 
if primarily the Na+ complex is involved in substrate movement, there can 
be little exchange flux unless the intracellular Na+ concentration is appre- 
ciable. Thus at the usual low intracellular Na+ concentrations this is a 
poorly exchanging substrate that is concentrated to high distribution ratios. 
These descriptions of the possible behavior of two types of substrates in 
this model come close to those given by Christensen [66] for the A and L 
systems for amino acid transport. One might also conceive of substrates 
intermediate in type. For example, one type might form NaCS via NaC 
as intermediate, but also form CS, which plays a minor role in transport. 
Thus we see at least the possibility of different behaviors for different 
substrates moving by the same system. 

Much of the work on amino acids and the sugars has been done with 
initial fluxes or with near steady-state concentration ratios. It is time to 
emphasize the need for detailed studies of the one-way fluxes in the steady 
state. We could then examine the ion dependencies of the coefficients of 
s1 and t, in Eq. (20). Initial fluxes would appear to be far less suited to this 
sort of estimation problem because not only is intracellular substrate 
concentration changing rapidly during initial flux measurements, but the 
intracellular ion concentrations may also be changing. 

Finally, I emphasize that the foregoing model is but one example of a 
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two-state type of carrier model. It is possible to consider both multistate 
and polyvalent models, and some such probably should be examined in 
more detail. Not only might we consider that carrier can exist in two states, 
but it might be worthwhile examining models in which carrier exists in a 
succession of states across the membrane with transitions between adjacent 
states; in the limit as the number of states increases this approaches a true 
mobile carrier model. Hill and Kedem [57] have examined a number of 
models of these types. Another interesting possible group of models are 
basically two-state models in which the carrier is polyvalent with binding 
sites on both sides of the membrane. For example, consider a model that 
has a substrate binding site and an ion binding site on each side of the 
membrane per carrier molecule and assume that a transition consists of an 
interchange of the sites from the two sides, such as by a rotation of the 
molecule. One example of a model of this type has been published by Lief 
and Stein [67], who proposed a tetramer model of a carrier to explain 
findings on glucose transport in red blood cells. The molecule they propose 
has one low-affinity and one high-affinity binding site for sugar on each 
side of the membrane. 
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