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1. Introduction

Narkiewicz, in a series of papers [5-10], has discussed invariant sets of
algebraic points for polynomial transformations (i.e., morphisms) on affine
space and on the projective line. In particular, he has shown that under
suitable hypotheses all such sets are finite. Kubota [I, 2] extended the
problem and studied sets of algebraic points on the affine line which have the
same image set under two morphisms. It is our purpose here to give a simple
proof of a theorem which encompasses all these results. Our proof uses the
concept of heights on projective space. A height function is implicit both in
Narkiewicz’s and in Kubota’s work, but neither uses the most naive formu-
lation of height. In the case of algebraic number fields the results on heights
that we need are quite elementary and are easily derived. We do so here, for
completeness sake. In the case of function fields, we use results on heights
derived by Lang and Neron [3].

We denote m-dimensional affine number space by 7™ and m-dimensional
projective number space by ™. Thus, /™ consists of all ordered m-tuples
from some sufficiently large algebraically closed field £, and #™ consists of
all the classes of ordered nontrivial (m + 1)-tuples from £2 subject to the
usual equivalence relation. Let K be a subfield of Q. If % is some subset of
7™, we denote by %, those points of % with coordinates in K. Similarly,
it % is a subset of 2™, then %y consists of those points in whose ratios lie
in K.

A rational mapping F from 7" to #™ defined over K is of the form

X 5 (Fy(%),een Fr(X)), (1)
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where the F; are forms (homogeneous polynomials) over K of the same
degree d. We will call d the order of the mapping. The mapping F is a morphism
on 2 provided it is defined everywhere on 2% i.c., provided the forms F;
have no common nontrivial zero in £. Thus a necessary and sufficient
condition that F be a morphism is that the resultant R of F, ..., F,, be
different from zero.

A morphism from 2 to 2" possesses two special properties: (a) It is a
pointwise surjective mapping, and (b) the cardinality of the inverse image of
each point is finite.

To sec that (a) is true, let ¢ be an (m {- |)-tuple over £ representing a point
in .#". Some coordinate of ¢, say ¢, , is nonzero, and we can find nontrivial x
with coordinates in §2 satisfying

oy — ¢;Fy = 0, (= L, m). (2)

If Fi(x) = 0, then x would be a common nontrivial zero of the F; , and hence
the resultant R = 0, contrary to F being a morphism on 2. Hence, Fy(x) 4 0
and (Fy(x),..., F,,(x)) and ¢ represent the same point in 2.

To see that (b) is true, suppose F(x) == ¢ for an infinity of classes x. Some
coordinate of ¢, say ¢, , is not zero and it follows that the variety defined by (2)
contains a curve 4. But in #" each curve meets every surface, and hence 4
meets the surface Fyy == 0 in at least one point. If y represents that point,
then y 1s a common zero of the F; and hence R == 0, contrary to F being a
morphism on #". Hence the inverse image of each point is a finite set. If the
morphism is of order d, the cardinality of the inverse image of a point is d7;
i.e., the degree of the morphism is d™.

A morphism H from .&/" to &/™ defined over K is of the form

X 55 (Hy(x),..., H(x)), (3)

where the H; are polynomials, not necessarily homogeneous, over K. We call
d == max(deg H, ,..., deg H,)) the order of H. Clearly, a morphism of .2/ to
/" need not be pointwise sutjective—the simplest example being a projection
of 7™ onto a line in /™. While the cardinality of the inverse image of any
generic point of a component of Im(H) is finite, this need not be the case for
all points in Im(H) even when H is pointwise surjective. For example, the
morphism

(5, ) > (3% 4 %, 3+ ) 4)

is pointwise surjective on .72 and takes the y-axis into the origin.

One can imbed /™ into #7 by the rule: (%, ,..., x,) In .o77 < > class of
(1, 2y yoery ) in P We then speak of the points of 2™ not in .o/™ as the
points of 2" at infinity or as the points on the infinite hyperplane X, -= O.
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Each morphism H of &/ into /™ can be extended to a rational mapping
of #m into #™. For, if d is the order of the morphism H, let

Fy = Xy F = XfH, ( zi i{)) JE, o= X@H, (‘Xl }«-—)

Clearly the mapping
X 15 (Fy(x),eee, B (X))

1s a rational mapping of #* into #" which agrees with H on the points in /™.
If the extended mapping F is a morphism on " we say H is an extendable
morphism. Let

Hy s HY 41, (= Loy m),

where F1;" is the sum of the monomials in H; of degree d and H s the sum of
the remaining terms of H; . The H; are homogeneous and R, the resultant of
Fy oo F,, , 1s a power of R/, the resultant of H,',..., H,'. Hence the extended
mapping F is a morphism on 2#™ exactly when R # 0. Thus H is an extend-
able morphism exactly when R’ # 0.

Since H and its extended mapping F agree on .77, we sce that if H is an
extendable morphism, then (1) H is pointwise surjective on /" and (ii) for
each x in .o/ the cardinality of H-(x) is finite. It should be remarked that
properties {i) and (i) do not characterize extendable morphisms. The
morphism

(%, ¥) > (xy -+ x, &y 4 ¥) ©)

has R' == 0 and possesses properties (i) and (ii).

The principal result of Narkiewicz [10] can be stated as follows: An
extendable morphism on /" of order d defined over an algebraic number
field has an infinite invariant subset in . if and only if d = 1. Kubota [1]
has gone on to show: Let K be a global field, i.e., an algebraic number field
or function field in one variable over a finite field, and let F, G be polynomials
over K of degrees fand g, respectively, with f > g. If 2" is a subset of K such
that G is injective on 4 and if F(Z) = G(Z'), then the cardinality of 4" is
finite. Furthermore, Kubota showed, by examples, that the hypotheses that G
be injective on Z and that f > g are essential.

We shall prove:

TuroreM. Let K be a finitely generated field. Let F, G be morphisms on 7™
to P, defined over K, of orders f, g respectively, with f > g. If & is a subset of
Py such that G is injective on 2 and F(X') D G(X'), then the cardinality of &
is finite.

481/20/2-x5
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None of the hypotheses: (a) A finitely gencrated, (b) f > g, and (¢) G
injective on 2" can be omitted. That (b) and (c) are necessary follows from the
examples of Kubota. We can sce that (a) is necessary by observing that if K
contains all the roots of unity, then the morphisms on 2! to 2.

(0,2) > 0503, (0 3) 5 (n ),
together with the infinite set
A== {(l, {) all {, where £ =1, p an odd prime}

satisfy all the hypotheses of the theorem except (a) and 2 is an infinite set.
Similarly, if K contains @®, n =0, k1, 4-2,..., then S, I and the set
A {(1, a®") | n € Z} satisfy all the hypotheses except (a) and 27 is infinite.
Roughly speaking, for the theorem to be true for an infinite field K, K must
be a long way from being algebraically closed.

One obtains an immediate corollary by substituting in the statement of the
theorem “.o/™” for “#™” and “extendable morphism” for “morphism.” As
Narkiewicz [10] has shown, the corollary is not true if we replace “extendable
morphism on .2/"” by “morphism on .«7””. The morphism on .72 given by (5)
has an infinite invariant subset in .27, namely all the K points on the x-axis
and on the y-axis.

The morphism given by (5) is a special case of the following more general
phenomena. Suppose H is a morphism on .27" of order d, not extendable to
a morphism on #". Let

My - HY o  HY 1Y, (o 1, m),

where H{" is a form of degree & in X ,..., X, . Suppose the algebraic set 7~
in .o7™ defined by the equations

H e Y O H e o HY

is of dimension at least one. Such would certainly be the case if there were a
common nontrivial solution of the equations

oY — gV o = g® = Y — . — HP — 0.

Suppose further that ¥ contains an infinite set of points 2" invariant under
the linear morphism

H* — (H" + HP,.., HY + HY).
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Then H has Z as an invariant subset. We have been unablc to decide if this
situation is the only one yielding nonlinear morphisms on .2/* defined over K
having infinite invariant subsets of %". To resolve this question it would
appear we would need to know the behavior both of rational mappings on K
points of Zaviski closed subsets of #" and of morphisms on K points of
varieties of .o7" in the form of something like our Lemma 2.

It would be natural to inquire into the possible relations existing between
morphisms F, G of the same order defined over K such that they have the
same image on some infinite subset of K points. I'or example, the morphisms
on /%

X > a3, x> 7 — a3

agree on the set Z of rational points on the affine line where & consists of all
the coordinates of the infinity of rational points on the elliptic curve
X? 4 V3 == 7. The relation one might expect to obtain would be: If F is the
composition of morphisms, say F = F; < F, 0 - o F, then

G =LyoF,oLioF,eLyo e, ;0F oL,

where the L; are linear morphisms. We leave discussion of this problem to
another time.

ParT I: Tue Case wHeEre K 1s AN ALrceBraic NuMsrr FIELD

2. Properties of Naive Height Function

Let K be a given fixed algebraic number field and let © denote the set of all
equivalence classes of valuations on K. Then, with a suitable normalization of
these valuations, we have for all nonzero q in K:

lal, = 1 for all but finitely many p in &, 6)
[Mlah=1 (7)
pel
and
Ja'y == | Ngola)l. 3)
parchimedean

If x4 ,.n.y %, are in K, not all §, define

By yeey 2,) == [ max{] x|y yoey | %y [ph 9
ped
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This product converges because of property (6). Also, because of property (7),
for a + 0, we have

hax, ..., ax,) = h(xy,..,x8,).

Hence, we can define the height of a point P in 2™ to be A(xy ..., x,,), where
(xg ..., x,) 1s any representation of P. 'The height function we have defined
depends on K and strictly speaking we should write 7, . If we used
i (PYYE5Q we would have a height function defined for all points P in 7 ",
where A is the field of algebraic numbers. But we are concerned with points
in #p and so the simpler function will suffice.

Since cach point P in 2" has a representation in which 1 appears as a
coordinate, we see that

A(PY 7=
for all P in 2",

For each point P in " there are representations where the coordinates
are integers in K and where the ideal generated by the coordinates is one of a
finite set of integral ideals 9, ,..., ¥, , one from cach of the idcal classes of K.
We call such a representation a reduced representation. When we use a reduced

representation for P, we see that

WPy =[] maxl o [T maxt

pnon-arch 7 qarch

= N(xg ey v,) 2 ] maxt ¥ aj

gqarch
> N(xg 5eeey x,)7 max{; N1, (1
J
where NV is the norm from the ideals of & to Q. Hence
H(P) > max{] N(sy)} - [max NOU]. (12)
i i

Since there are only finitely many integers of K with norm less than a given
bound we can conclude

Levva 1. If K is an algebraic number field, there are only finitely many
points in Py of height less than a given bound.

Lemya 2. Let F be a morphism on 7", of order d, defined over an algebraic
number field K, then there exists constants Cy , C, such that

ChH(P) << h(E(P)) << C,h%(P) (13)

for all P in P The constants depend on ¥ and K, but not on P.
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Proof. The morphism F is given by forms F, ..., F,, of degree d defined
over K which have a nonzero resultant R. We can further assume that the
coefficients of the F; arc integers of K which gencrate one of the finitely many
ideals 20, ..., 90, .

For cach P in 7" we choose a reduced representation x. Clearly, for such
a representation the F,{x) are integers of K, and hence

[T max{{Fx),} < L (14

pnon-areh 7
For cach archimedean valuation q on K we have
< O NERAT
FJ\X) i (:G[mfw{l &y Iq»][ 3

where C, is a constant determined by the form /', and by q. It then follows
(see (8)) that

NEE) < T main s GO, 09

qarch

where €’ is a constant depending on F and K. Combining (11) and (15) we
obtain

| N(F(x)), << C'MHYP) . C.hY(P), (16)
where M = max;{{ NW; {}. Finally combining (14) and (16} we obtain
ME(x)) < ChY(P). (17)

From elimination theory (see [12]) we know that there exist forms
A (X ey X,) of degree < d(m — 1) - T with coethcients which are poly-
nomials over Z in the coefficients of the F, , and hence arc integers of K, such
that

By o AgBy = RXP™Y (= 0,y ). (13)

It follows from (18) that the ideal B, == (Fy(x),..., F,,{x)) divides one of the
ideals (R) A%, Hence, for all P in #,", NB, is bounded, say by B. Also,
for cach archimedean valuation q we havc

l ’1”()() ¢ = \ C”[rﬁd\{l ‘ ](1(7)1 1);]

where C” is a constant depending on K and on the A4;; and so on F and K.
It then follows from (18) that for all 7,

max{| Fy(®)lq} = C"max{l x; 1117,
E 7
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where C” depends on C”, R and K and so on F and K. Hence, (see (11)) we
have
WEP)) = BIC” || [max{ a; o]

qarch

L Ch(P).

Combining this last inequality with (17) gives (13) and completes the proof
of the lemma.

3. Proof of the Theorem when K is an Algebraic Number Field

Let F, G be morphisms on #™ to 2™ of orders f, g, respectively, with f > g.
Then, by Lemma 2, there exists a positive real number H such that for P,
Q in {/)K'm’

() If A(P) > H, then K(F(P)) > HG(P)), and
(8) If A(P) > H, and F(P) = G(Q), then Q) > h(P).

Let ={PeZ |WP)< Hjand & = {PecZ | (P) > H}. By Lemma I,
¥ is a finite set. Since F(Z') O G(X), if Q € & there exists a point B in 2" such
that F(B) = G(Q). It follows from (B) that B is in %. Hence, F(#) 2 G(%).

Since G is injective on Z, G is injective on %, and hence
card % = card F(%) = card G(%) = card ¥.

Thus
F#) = G(¥),

and hence
F(Z)D G(Z).

It follows from Lemmas 1 and 2 that there are only finitely many points in
P such that #(G(P)) is less than a given bound. Hence, the set of real
numbers {#(G(P)) | P e &7} is discrete and if Z is not empty, there exists
a point Q in Z such that

MG(Q)) = min A(G(P)). (19)

Since F(%) D G(Z), there is a point Py in & such that F(P;) = G(Q). But then
(«) implies A(F(Py)) > HG(P,)) and we have A(G(Q)) = h(F(Py)) > HG(FP,)),
contrary to (19). Hence & must be the empty set and ' = % is a finite set.

The same proof would apply for a function field in one variable over a finite
field of constants.
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Part II: THe GENERAL CASE

4. A Height Function for Points Defined over Function Fields

Lemma 3. Let K be a function field of transcendence degree | over a field &
which 1s algebraically closed in K. Then there exists a nonsingular complete
projective curve T such that T is the projective closure of an affine curve 7',
K is the quotient field of kty ,..., 1,] where (t, ..., 1)) is a generic point of T~
and t, ..., t,, are each integral over k[t,].

Proof. It is well known, for example, see [4, p. 406] that given K/k there
exists a complete nonsingular projective curve € C 2", for some m, defined
over k such that if 5 is any hyperplane not containing %, then the affine
curve %' = € N A has K as the quotient field of its coordinate ring. Let
M = k[xy,..., x,] be the coordinate ring for €7, so that (¥ ,..,x,) is a
generic point of 4”. The curve % is the unique projective closure (relative
to ) of €', see [11, p. 14]. By Noether’s normalization theorem, see [4, p. 4],
there exists a ¢ in M such that M is integrally dependent on A[f]. Let
t = (1, %y, 8,) and let F == loc, t. Then M = k[t 2 ,..., x,] and M is
the coordinate ring for . Let 7 be the projective closure of 77 (relative
to ). Clearly there is a projection of 7 onto 47, and hence, see [11, p. 18],
there is a projection of 7 onto %. Since 4 is nonsingular so is 7. The curve 7
has the properties required for the lemma to hold.

We now seek to define a height function on the points #;", where K is a
function field of transcendence degree 1 over k. While it is not necessary,
it 1s most convenient to do so by defining a height function on #,™, where
L == Kk and k¢ is the algebraic closure of &. We can then express L as

L = kot ooy 1), (20)

where the ¢#; are transcendental over %; 4, ,..., ¢, are integral over k°[t,], and
{#; ;... 1) are the ratios of a generic point of a nonsingular projective curve 7
defined over £°. To simplify notation, in this section we shall assume k == k¢
and we let # = #; .

We now recall the definition of height on points of ;™ given by Lang and
Neron [3]. The elements of L can be viewed as functions on 7 and, as is
customary, we let (x) denote the divisor on . associated with the element x
from L; i.c.,

(%) = Z Vp(x)ps
»
where the sum is over all places on L trivial on % and v (x) denotes the order
of x at p. If %, ,..., x,, are from L, define

(%) = h(xg oy X,,) = ——-deg{xigr;’% (x)} @2n
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Since the degree of a principal divisor (x) 1s 0 and since (xy) = (a) -+ (v),
whenever xy =2 0, we see that

h(xxg oy Xx,) = h(xg e, X))
We now define the height of a point £ in .#,”, by
h(P) =- h(x),

where x 1s any representation for P. Clearly 2(P) is a rational integer, and since
each P has a representation in which [ appears as a coordinate we sce that 4(P)
is always a nonnegative integer. Furthermore, since nonconstant functions
always have poles, we see that

h(P) == 0 if and only if Pe 2

Each point P in £, not in Z, ™, determines a curve Z(P) in 2 defined
over k; namely,
Z(P) = loc, P = loc, x,

where x is any representation of P. Also, there is a rational mapping

T I p (22)
with

N2

Hence f is a rational surjective mapping of .7~ onto Z(P). As i1s shown in [3],

h(P) = (deg f)(deg Z(P)), (23)

where deg Z(P) is the projective degree of the curve Z(P). It follows that
if #(P) is bounded then either P e 2, or deg Z(P) is bounded.

It should be noted that our height function is relative to the field L and more
appropriately we should write %, . Also, the height function we have defined
relative to function fields corresponds to the logarithm of the height function
we defined relative to algebraic number fields. In the case of function fields,
the logarithmic height function is more convenient and so we use it.

We shall call a place on 7 finite {infinite) if it corresponds to a specialization
t — a extending ¢ — a, where g is in & (where a == o). We let

Wr= 3 nlp,

piinite

(= Y wa

qinfinite
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Clearly we can assume that a point P in ;" has a representation x whose
coordinates are polynomials over k in ¢, i, ,..., 1, and so are integral over k[t].
Let

D= 5, nfln(e)ip = inf ().

p finite ¥/ 7
It deg D > 2g, where g is the genus of the curve 7, then by the Riemann-—

Roch theorem there exists an element vy in L, not in 4, such that

(v) = —D.

Thus (¥)r 2 —D == —inf, ,, (x)p and (¥); == 0 whence deg(y)r < 0.
Clearly (yxq ,..., y,,) is also a representation of P and

D, = .\‘i-I}LfO (yx)r = D+ (3)r =0,
whence the yx; are integral over A[¢]. Also
0 < deg D, < deg D.

Now, from among all such y, choose one such that deg( )y is minimal. Then,
for such y, 0 < D, < 2g; for otherwise we could repeat the technique to
obtain a ¥’ such that deg(vy)r << deg(y)r and deg D,,, << deg D, . Thus
we can assume that each point P in Z,™ has a representation x where

(1) x; are integral over A[f], and

(i) 1inf, .4 (x;)r has bounded degree (< 2g).

We shall call such a representation a reduced representation.

LevMa 4. Let L be a function field in one variable over an algebraically closed
field k. Let ¥ be a morphism on 7" of order d defined over L. Then there exist
constants C ..., Cy such that

Cy + Cydh(P) < W(F(P)) < Cy + Cyd -+ Cydh(P) (24)

Jor all P in ;™. The constants depend on L and ¥, but not on P.

Proof. We can assume that F is given by forms Fy,...,F,, of degree d
having no common zero and having coefficients which are polynomials over %
in ¢, ty,.., t; and hence the coeflicients are integral over k[t]. As we have
scen earlier, there exist forms A4;; over L such that the identity

‘4i0F0 + + AimFm == R‘Yid7n+1 (25)
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holds. Here R is the resultant of the F;, hence is a polynomial over & in
1, ty,..., t,. The coefhicients of the 4,; are from the ring generated by the
coefficients of the F; and hence lie in £[t, ¢, ,..., t,].

Let p be a fixed place on 7. From the identity (25) we obtain

J

va( Ry (Z Ay(x) F,.(x)), (i =0,.., m),
and hence

vo(R) + (dm - 1) wy(x;) = inf v, (A,(x)) + inf v (Fi(x))
2z inf () 4 [d(m — 1) + 1] inf vy(x;)
-+ inf v, (F;(x)), (i =0,..,m),
where the first inf is over all coefhicients b of the 4;; . Therefore,
vp(R) + (dm +- 1) inf vy(x;)
= ir}f vp(b) - [d(m — 1) = 1] 1inf vy(x;) 4 inf vp{Fy(x)),
b J
or
vo(R) 4 d infvy(x)) > ir{lf vp(6) 4= inf v (Fi(x)).
Consequently,
—(R) d[—inf (x)] < —inf () — inf (Fx)),
and on taking degrees we obtain
C, -+ dh(P) <. h(E(P)), (26)

where C; == deg (inf, (5)).
Let x be a reduced representation of the point P in Z;™. Since the x; are
integral over A[t], we have

inf (x,) = inf (x)); — sup(x;"), . (27)
x;0 70 (#0

?&} x]
Similarly, since the coeflicients of the F; are integral over &{t], we have

inf (Fy(x)) = inf (Fi(x))r — sup (1/F(x)). (28)

]

If 2 - 0 and is integral over k[t], then

deg(z); = — Z vo(2) = deg{ Ny 1n(?);-

qinf
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Suppose z == 31 p(t) w; , where @, ,..., w, is a basis for L over k(t) and the =,
are integral over k[f]. Then N, ,.(y(2) is a form [ of degree n over k[t] in the
p:(2) which vanishes only if all p,(f) are 0. It follows that

n max deg, p(t) << deg; {Np (n(2)} < m + n max deg, p(?),
K2 1

where m depends on the coefficients of J and hence on the field L. As a
consequence, if 2y , %, are of this form, then

deg; Npn(z 1 22) <m + max deg, N, jnn(2:)-

Let g, be a fixed infinite place on 7. We have
‘un(Fj(X)) <C deg, Ny n(FA(x))
s m+ max Npswm),
where m is a monomial of F;(x). Then

—vo,(Fi(¥)) << M + dim + d sup deg, Ny ju5(,)
< M + dm + d sup deg(z} ),
x;#0
< M + dm + d deg sup(x} );,
x;#0

where M depends on the coeflicients of the F; . By (27) this gives
—vo (Fi(x)) < M + dm + d[(P) + deg inf(x,)z].

But then
Y, sup (v(1 Fix)) < n[M + dm + d{h(P) -+ 2g}],

g infinite F5(x)70
since X is a reduced representation. Hence
h(F(P)) = —deg inf(F(x)) + deg P, LJUE);
< deg P, LUE )

< n[M + dm + 2gd + dh(P)). (29)

The inequalities (26) and (29) give (24). This completes the proof of the
lemma.
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5. Proof of the General Theovem

We now consider the general case of a finitely generated field K. T'he proof
will be by induction on the transcendence degree of K over its prime field.
We shall denote that degree by (K). T'he theorem s trivial true if K 1s a finite
field since then card #™ is finite. Also, as proved in Section 3, the theorem
holds true for algebraic number fields. Hence the theorem is true for finitely
generated fields K with r(K) == 0.

We now assume the theorem holds true for finitely generated fields of
transcendency less than or equal to r and prove it for a finitely generated field
K with r(K) =7 = 1. Then K = k(0 ,..., 8,), where &, is the prime ficld
of K (the field generated by 1). Let K, = ky, K= kyty),..., K,
ko(0; ..., 0,) -+ K. Then #(K}) = v+ 1 for all j and there is a first integer ©
such that (K, ;) -7+ 1. Let & be the field obtained by adjoining to K,
ali the 6, , with 7 > o, which are algebraic over K, . Then £ is finitely gener-
ated, r(k) = r, and K is a function field in one variable over £ But then we
can write

Ko k(ty s t),

where cach #; is transcendental over &, /4, ,..., ¢, are integral ovre K[¢;] and
the ¢, are ratios of a generic point of a nonsingular projective curve 7.

Let F be a morphism from ;7" to 2" of order d defined over K. We can
suppose the coeflicients of the forms Fi(X) are polynomials in 7 ..., 7, with
coefficients in k. Hence the resultant of the F; is nonzero and is a polynomial
inf ..., t,over k. Let R(T) be a polynomial in 7% ,..., 7 such that R(t) = R.
Since R(t) == R = 0, we see that the surface # dcﬁncd by R(T) = 0 docs
not contain the generic point t of the curve J and hence .7 and # mect in
only finitely many points. Hence if a is a finite point on .7, not on the
surface #, then the specialization t —a induces a morphism F, on 22" of
order d defined over k(a). The coefficients of the forms defining F, being the
images under the specialization t+ a of the corresponding coefficients of
the forms defining F.

LemMa 5. Suppose the theorem holds for finitely generated fields k of
transcendency at most v. Let K = k(ty ,..., £,) where ¥(K) =14 r(k) and
r(k) == r. Let F, G be morphisms on #™ defined over K of orders f, g, respectively,
with f > g. Let 2 be a subset of ™ such that (i) G is injective on ',
(ii) F(2) D G(Z), and (iii) the points of X are of bounded height. Then 2" is
a finite set.

Proof. As we have just seen, there exist finitely many points % on F,

such that if a is on ;. and not in &, then F, and G, are morphisms on 7
defined over k(a) of orders f, g, respectively, with f > g.
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The points in the set 2" have representations with coordinates which are
polynomials over k in #, ..., 7, . We let Z, be the set of points in #™" which
have a representation y which is the image under the specialization t > a of
a representation of some point P in 2. If x is a representation of P, we denote
the point represented by y by P, Clearly 27, is a subset of .,
and F (£,) D G(Z,).

We next show that we can choose a point a on . not in # such that
(1) the mapping P — P, is injective on 7, and (I1) G, is injective on 2, .

Since the points P in 4 are of bounded height we know that the curves
F(PYy - locy Pare of bounded degree. The degree of a curve is the number
of intersections it has with a generic hyperplanc. Let

% A OAX'U %_ ’_M :U“m"‘(m = 0

be such a hyperplane. Let x be a reduced representation of a point P in %,
then deg Z(P) is the number of specializations t > a which takes

T gy + _:“" Fon¥n

into 0 and such that some x; does not specialize to 0. Since x; are integral
over k1, (2)y = (8)r, and

deg (2)p — deg Z(P) + deg inf (x))5 .
i

We are given that deg Z(P) is bounded and, since x is a reduced represcn-
tation for P, deg inf; (x)); is also bounded. Hence deg (2)f is bounded. But

deg (2)p = deg (z71), -= dEgllNKik(?l)(z)a

and hence deg}FI Nt (%) is bounded. Letwy ..., w, be an integral basis for K
over k(t,). Then

Xy o= 2 Wj'n(tl) Wy (30)

where o, (T} are polynomials in T, over k. Let e = max deg, o;,(t;). Then
deg;, Ngnp(®) 2 e[K : k(ty)].

Hence we can conclude that if x is a reduced representation of a point in Z°
(a set of points in 2™ of bounded height), then the coordinates of x are of
the form (30) where ¢ is bounded.
Let & = {P'| o runs over an index set A}, and let x/@ be a reduced
representation for P, Consider the set of polynomials
G = NenolG(x) Gix™) — G,(x'7) G(x7)],

i,7.0,7
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representations of points of bounded height, the polynomials G,
bounded degree. Since G is injective on %, for each ¢ =+ 7 there exist u, @
with O = # <C v = m such that G
a point on .7, having the degree of a, over k very large. Then a is not in the
set # and q, 1s not a zero of G, , . .. It follows that x = x{7) and that G,
is injective on &£, . This proves (I) and (1I).

By hypothesis the theorem holds true for fields of transcendency degree »
and so holds true for k(a). Our choice of a is such that F,, G,, 4, , 4(a)
satisfy the hypotheses of the thcorem and r(k(a)) = r. We can therefore
conclude that ', is a finite set. Since P> —> I, is an injective mapping on .2,

where 0 =< 7 <0 j < m, and ¢ % 7 run over /1. Since the x@, x'7 are reduced
».. have

13 not the zero polynomial. Let a be

W, e,0,7

it follows that Z is a finite set. This completes the proof of the lemma.

We can now complete the proof of the theorem for finitely gencrated A
along the same lines as employed in Section 3. By Lemma 4, there exists an /f
such that properties («) and (8) of Section 3 hold. Define % and # as in
Section 3 and show that F(#)D G(%#). One can then apply Lemma 3 to
conclude that % is a finite set and F(%) = G(#). One then argucs exactly as
in Section 3 that 2 is the empty set, and hence, # = % is a finite set.
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