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Let D be a domain in the complex plane, let {z,} be a sequence of distinct
points in D, and let {w,} be an arbitrary sequence of complex numbers. Given
a space E of functions on D, the problem arises to characterize the pairs of
sequences {z,} and {w,} for which there is a function f € E with f(z,) = w,,
n = 1, 2,.... In the present paper, we solve a general interpolation problem
of this type. We then apply the result to obtain criteria for interpolation by
H? functions, 1 < p < 0, by harmonic functions of class #?, and by functions
belonging to certain Hilbert spaces. The main tool is a general theorem,
closely related to the Hahn-Banach theorem, on the extension of functionals
over normed linear spaces.

1. A GENERAL INTERPOLATION THEOREM

We shall make use of the following extension theorem, due essen-
tially to F. Riesz and E. Helly (see Banach [2, p. 55]).

TueorEM A. Let ¢ be a functional defined on a set A in a complex
Banach space B. Then, in order that there exist a continuous linear
Sfunctional @ € B* with || ®|| < M and P(x) = $(x) for all x€ A4,
it is necessary and sufficient that

n

Z ()

k=1

<M

k(3
Z CpXp
k=1

for each n, for arbitrary elements x, ,..., x, of A, and for arbitrary
complex numbers c, ,..., ¢, .
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76 DUREN AND WILLIAMS

From this result we shall deduce a general theorem which has
direct applications to interpolation theory. Let S be any set, and let E
be a complex Banach space of complex-valued functions defined on S.
Addition and scalar multiplication in E are understood to be the usual
pointwise operations. For each s€ .S, there is a linear functional A,
on E defined by

A(f) =f()  fek

We shall assume that each functional A, is continuous. In other words,
each A; belongs to E*, the dual space of E. In case E is itself (iso-
metrically isomorphic to) the dual space of a Banach space E, , it may
happen that the functionals A, are weak-star continuous. In this case,
each A, can be identified with an element of E, under the canonical
map of E, into E* [9, p. 112].

We are now prepared to state the general interpolation theorem.

THEOREM 1. Let E be a complex Banach space of functions over a set
S. Suppose E is dual to a Banach space E,, and let each functional A,
(s€ S) be weak-star continuous. Let g be a complex-valued function
defined on a subset U C S. Then, in order that there exist a function
feE with || f|| < M and f(s) = g(s) for all s € U, it is necessary and
sufficient that

n

z ¢ &(5%)

k=1

| (1)

<M “ Y e,
k=1 -~

for each n, for arbitrary elements s, ,...,s, of U, and for arbitrary
complex numbers ¢, ,..., c,, .

Proof. 'The necessity of the condition (1) is clear. To prove the
sufficiency, let x, € E, be the element which corresponds to A,
and define £: .S — E, by £(s) = x,, s€.S. Let ¢ be the functional
defined on £(U) by

p(x;) = g(s), selU.

Then, by Theorem A, this functional ¢ can be extended to a functional
D e Ey* with {| @] << M, if and only if

n

Z Clc¢(xs,,)

k=1

<M @

n
2 Cx¥ s
k=1

for all n, for all s, ,..., s, € U, and for all complex numbers ¢, ,..., ¢, -
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But because the canonical embedding of E; in E* = E}* is an
isometry, the condition (2) is equivalent to (1). Furthermore, since
E,* = E, the functional @ € Ej* can be identified with a function
fe E, and we have || f|| = | @] and

F) = A(f) = Dlxs) = b(x,) = g(s), seU.

Thus f is the desired extension of g.

It has been pointed out to us by Y. Katznelson that weak-star
continuity of the functionals A, is essential and cannot be relaxed to
continuity in the norm topology of E. For example, consider the
space A of absolutely convergent power series

O W W

=0

Now 4 is dual to the space 4, of power series g(z) = Y. b,2™ where
b, — 0, and the dual of 4 is the space of power series g(z) = X b,2"
where {b,} is bounded, the pairing in both dualities being (f, g) =

3 a,b, . Regarding 4 as a Banach function space on | 2| < 1, it is
easily seen that point evaluation at { is weak-star continuous for
| {] < 1, while for | {] =1 it is continuous but not weak-star
continuous. In the notation of Theorem 1, suppose U = {5y, $; ,...},
where |s,] = 1, |s,| <1 form > 1, and s, — s,. Since for n > 1
the functionals A, are weak-star continuous, they belong to a norm-
closed subspace of A* (the image of A, under the canonical embeddmg)
which does not include A, . By the Hahn-Banach theorem there is a
functional ¢ € A** such that P(A,) = 1 and §(A,) = 0 for n > 1.
Define g(s,) = (X, ), n = 0. Then (1) is satisfied with M = || ¢ .
However, there is no f€ A4 such that f(s)) = g(s,) = 1 and f(s,) =
£(s,) = 0 for n > 1, since each f € 4 is continuous in the closed disk.

2. APPLICATIONS TO HILBERT SPACES

Consider now the case in which E is a Hilbert space H of functions
over S, and let ( , ) denote the inner product. Each of the “point
evaluation” functionals A, is assumed to be continuous (and therefore,
of course, weak-star continuous). Thus by the Riesz representation
theorem, to each ¢ € S there corresponds an element k, € H such that
i kel =11 Al and

f(t)zAt(f):(f,kt)» fEH
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The function K(s, t) = k/(s) is known as the reproducing kernel of H.
Sinc

inoe
ince

(ke s ky) = Rs) = K(s, 1),

it follows that K(t,s) = K(s, t). For a general discussion of repro-
ducing kernels see [1].
A function F(s, t) is said to be positive semidefinite on S X S if

Y Y aGF(si,5) =0

i=1 j=1

for all n, for all 5, ,..., 5, € S, and for all complex numbers ¢, ,..., ¢, .

Tueorem 2. Let H be a Hilbert space of complex-valued functions
on a set S, with reproducing kernel K(s, t). Let g(s) be a complex-valued
function defined on a subset U C S. Then in order that there exist
fe H with ||f|| < M and f(s) = g(s) for all s U, it is necessary and
sufficient that [M2K(s, t) — g(s) g(t)] be positive semidefinite on U x U.

Proof. By Theorem 1, the condition (1) is necessary and sufficient
for the existence of the extension f. But this condition is equivalent to

n

2 n n
? Cig(si) < M2 (Z C_z 850 Z C_] sj)v
i=1 i=1 j=1
or
n n _ n n
z Cic;g(si) g(s,») < M? E;Cj(ks,- ’ ks,—)i
i=1 j=1 i=1 j=1
or

z MK (s, , 5) — g(5) 8] = O,

n
i=1

as asserted.
By way of illustration, let us choose S to be the unit disk | 2| << 1
in the complex plane. Then we have the following examples:

(1) For the space H? of analytic functions f(z) = ¥ a,2" in
| 2| < 1 such that

2
LI = o tim [ e db = 3 Jay 2 < oo,

n=0

the reproducing kernel is K(z, {) = (1 — =)~
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(i) For the Bergman space of analytic functions f(z) such that

| @ 2

R N

=1 ([ epdsdy = 3

1Zl<1 n=0

the reproducing kernel is K(z, {) = (I — 2{)2.
(iii) For the space of analytic functions f(2) with f(0) = 0 and
finite Dirichlet integral

=)

Ifi? =— f'(R)Fdxdy =} nla, | <o,

o
lz] <1 n=l

the kernel function is K(z, {) = log((1 — ={)™).

More generally, for the Bergman space over an arbitrary simply
connected domain D with at least two boundary points, the repro-
ducing kernel is K(z, {) = ¢'(z) ¢'({), where y maps D conformally
onto the unit disk and §({) = 0. (See, for example [6, p. 253].)

3. APPLICATIONS TO HP SPACES

A function f(2) analytic in | 2| < 1 is said to be of class H?
(0 < p < o0) if the integral means

M) = 5 [ 15z aof

remain bounded as » — 1. If p > 1, H? is a Banach space under the
norm

[1£1l, = lim M,(r, f) = 32% jzﬂ | (e d@%””,

where f(e) is the radial limit of f(2), defined almost everywhere.
The space H® of bounded analytic functions is a Banach space under
the norm

[ fllo = sup [f(2)]-
lz)] <1

An account of the theory of H? spaces may be found in [4].
We can now apply Theorem 1 to obtain the following criterion for
interpolation by H? functions.
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THEOREM 3. Let {2,} be a sequence of distinct points in the open unit
disk, and let {w,} be a sequence of complex numbers. Suppose 1 < p < 0.
Then in order that there exist f € H? with || fil, < M and f(z,) = w, ,
n =1, 2,..., it is necessary and sufficient that

n

Z c: 8(=:)

i=1

n
Z C;W; ’ <M
i=1

3

max
geH?P,llg|l, <1

for each n and for all complex numbers c, ..., c, .

Proof. The condition (3) is equivalent to (1). Thus, the theorem
will follow from Theorem 1 if we can show that H? is a dual space and
that point evaluation is weak-star continuous. For 1 < p << o0,
there is no difficulty, since HP? is reflexive. Hence, we need to discuss
only H* and H*.

To show that H' is a dual space, we identify each f € H! with the
complex-valued measure f(¢%%) df on the unit circle I". This identifica-
tion embeds H! in the space M(I") of finite regular Borel measures
on I'. Furthermore, M(I") is the dual of the space C(I") of continuous
functions on I, and by the theorem of F. and M. Riesz (see [4], p. 41),
H' is a weak-star closed subspace of M(I"). Thus [4, p. 111], H'is dual
to C(I')/ 4, , where A4, is the subspace of all g € C(I") such that

27
f ge?) f(e®)dd =0  forall feH
0

(By the F. and M. Riesz theorem, H* is the annihilator of A4, in
M(I").) The Cauchy representation [4, p. 40]

et

fQ =5 [ g fendn 1L <1, @

with e¥(e?® — )=t € C(I"), shows that each functional A,(f) = f({) is
weak-star continuous.

To show that H* is a dual space, we regard H® as a subspace of L,
the space of bounded measurable functions on I'. Then L® = (L1)*,
and H*® is the annihilator of H!, the subspace of functions feL!
such that

27
f enf(ei®)d0 =0, n=01,2,...
0

Thus, H® = (LY/Hy)*, and the Cauchy representation (4) again
shows that point evaluation is weak-star continuous. This concludes
the proof of Theorem 3.
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COROLLARY. Suppose | <p < co and 1/p+ l/g = 1. Then
there exists f€ HP such that || fll, < M and f(2,) =w,, n=1,2,..,
if and only if
. can,| < Mmin |k — g1, 6

geH?

i=1

for each n and for all complex numbers ¢, ,..., c,, , where

n

k(z) =

Proof. 'The kernel k(2) generates the linear functional

M = af ) = 3z | M f(e)d

=1

By the duality relation for extremal problems in H? spaces {4, p. 130],

¢l = max |$(f)] = min ||k — g,
i geHY

p =

where “max” and “min” indicate that the extrema are attained.

In the case p = ¢ = 2, it is known [4, p. 142] that the “‘natural
kernel” & is always extremal; so we have || ¢ || = || k||, . But a straight-
forward calculation gives

IhE=3 Y 2T

i=1 j=1 %

Thus, Theorem 3 gives the following result, which is actually a special
case of Theorem 2.

THEOREM 4. In order that there exist fe H? with || fll, < M and
f(=,) = w, for n =1, 2,..., it is necessary and sufficient that

L3 calr iy w0

for each n and for all complex numbers ¢, ,..., ¢, .

This result should be compared with the following theorem of
R. Nevanlinna and G. Pick, characterizing the pairs of sequences
{z,} and {w,} which admit an H® interpolation.

580/9/1-6
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THrOREM B. In order that there exist fe H® with || fl, < M and
f(zn) = w, forn =1, 2,..., it is necessary and sufficient that

for each n and all complex ¢, .

This theorem may also be expressed in terms of functions f(z)
with positive real part. For a proof and further references, see [8].
We have not been able to deduce the Nevanlinna-Pick theorem from
Theorem 3.

It is interesting to observe that if fe H?, | < p < oo, then the
condition (5) with ¢; = -+ =¢,_;, = 0 and ¢, = 1 gives

()l < M R[lg = O(1 — | 3, )7H%).
(See [4, lemma on p. 65].) This is close to the best possible result

JGR)=o((l —|=)7), |z]—1,
which can be proved (for 0 < p < 00) by other methods (see [4, p. 84]).

4. HarmonNIc INTERPOLATION

Theorem 1 may also be applied to interpolation problems for
harmonic functions. Although we shall discuss only the case of the
unit disk, the methods extend easily to harmonic functions over more
general domains. For 0 < p << oo, let #? be the space of complex-
valued functions #(z) harmonic in | 3| < I, such that M (7, u) is
bounded for 0 <{ # < 1. Let 4® be the space of bounded harmonic
functions in | 2| << 1. Then A? is a Banach space if 1 < p < 0.
If 1 < p < oo, A? is isometrically isomorphic to the space L? over
the unit circle I'; while 4! may be identified with the space M(I") of
finite regular Borel measures on I. (See [4, Chapter 1].) In particular,
h? is reflexive if 1 < p << oo. The space A* may be regarded as the
dual of L1, and the Poisson formula shows that each point evaluation
functional A () = u(l) (| {| << 1) is weak-star continuous on A®.
Finally, 42! may be viewed as the dual of C(I'), the space of continuous
functions on I'; and the Poisson-Stieltjes representation shows that
evaluation at each point { (] {| <C 1) is weak-star continuous on A'.
Thus, Theorem 1 applies to 4P, and we obtain the following analogue
of Theorem 3.
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THEOREM 5. Let {2,} be a sequence of distinct points in the open unit
disk, and let {w,} be a sequence of complex numbers. Then in order that
there exist weh® with |ul, <M and u(z,) =w,, n=1,2,.,
it is necessary and sufficient that

w(z)] )

ven®,fioll, <1

n
§ e <0 _sup
i=1

for each n and for all complex numbers c, ,..., c,, .

This theorem may also be expressed in a dual form involving the
Poisson kernel
— 2
Plet)y = I —7 2 = re,

1 —2rcos(d — &) 472’

CoroLLARY. If 1 < p < o, a necessary and sufficient condition
for the existence of u € h? with || u ||, < Mandu(z,) = w, ,n = 1,2,...,
is that

n

Z ciPzi
q

i=1

for each n and for all complex numbers c, ,..., ¢, , where ¢ = p[/(p — 1)
is the conjugate index.

Proof. 'This follows at once from the Poisson representation of
veh? for 1 < p < o0, and from the Poisson—Stieltjes representation
of vehl

5. UNIVERSAL INTERPOLATION SEQUENCES

A sequence {z,} of distinct points in | 2| < 1 is called a universal
interpolation sequence if for each bounded sequence {w,} there is a
function fe H® with f(z,) =w,, n=1,2,... The complete
description of the universal interpolation sequences was given by
L. Carleson [3]. Call a sequence {z,} uniformly separated if there is a
8 > 0 such that

>8, n=12...

l—zz

i

Then Carleson’s result is as follows.
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TraeoREM C. {2,} is a universal interpolation sequence if and only

if it is uniformly separated.

Shapiro and Shields [7] have generalized this theorem to include
“weighted” interpolation in H? spaces, | <{ p < 0. An account of
this theory may be found in [4, Chap. 9].

A sequence {z,} of distinct points in |z | < 1 will be called an
(HP, £9) interpolation sequence if for each {w,} € £ there is a function
fe Hrsuch thatf(z,) = w, ,7n = 1, 2,... . In other words, the require-
ment is that

{f(2.)} : fe HP} O L0

Thus the (H*®, £*) interpolation sequences are the universal inter-
polation sequences. The next theorem describes the (H?2, £%) inter-
polation sequences. Similar results can be obtained for other spaces
of functions.

THEOREM 6. Suppose 1 < q¢ < oo, and let ¢ = q/(q — 1) be the

conjugate index. Then {2,} is an (H?, £9) interpolation sequence if and only
if there exists a constant A > 0 such that

>l 142 " )

n n
> 4
1;1 Jz=:1 - 3127

for each n and for all complex numbers c, ,..., ¢, . If ¢ = oo, the right-
hand side of (7) should be interpreted as
A max |¢; |2
1<i<n

Proof. Suppose (7) holds. Then for each {w,} € /2 with |[{w,}il, < 1
we have by Holder’s inequality

n 2 n e 1 &2
Z cw; < 32 | ¢; ‘(l g < z Z Z CzCJ _
i=1 £=1 i=1 j=1

Therefore, by Theorem 4, there exists fe H? with f(z,) = w,,
n=1,2,.

Conversely, suppose {z,} is an (H?Z, /‘1) interpolation sequence.
This says that to each w = {w,} €9, there corresponds f e H? with
f(z,) = w,, n = 1,2,.... This correspondence induces a one-one
linear mapping 7 from #2 into HZ/N, where

={feH?:f(2,) =0,n=1,2,..}
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It is easy to verify that T is a closed operator. Hence by the closed
graph theorem, T is bounded. In other words, there is a constant M
such that to each w = {w,}e#? with || w], < 1, there corresponds
feH? with | fl, <M and f(2,) =w,, n=1,2,.. Thus by
Theorem 4,

lzii cc,

— %%

for each n and all complex ¢; . Taking the maximum of the left-hand
side over all we /% with || w|, << 1, we obtain (7). This completes
the proof.

llg

CoroLLARY 1. If{z,} is uniformly separated, then

ZZ ”_’ — =>4

for each n and all complex c; .

Proof. 'This is an immediate consequence of Theorem C and

Theorem 6.

COROLLARY 2.
{f(zn)} : feH}D L

if and only if the eigenvalues of the Hermitian matrices [(1 — z;2;)7']
(i, 7 = 1,..., n) have a positive lower bound, independent of n.

Note. Professor A. K. Snyder informs us (private communication)
that he has proved the existence of an (H?, /®) interpolation sequence
which is not uniformly separated. More recently, Duren and Shapiro
[5] have constructed (H?, /) interpolation sequences (for each p << c0)
which are not uniformly separated.
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