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Let D be a domain in the complex plane, let {.z~} be a sequence of distinct 
points in D, and let {w*} be an arbitrary sequence of complex numbers. Given 
a space E of functions on D, the problem arises to characterize the pairs of 
sequences {z,} and {w,} for which there is a function j E E with j(z,) = w, , 
72 = 1, 2,.... In the present paper, we solve a general interpolation problem 
of this type. We then apply the result to obtain criteria for interpolation by 
H* functions, 1 < p < co, by harmonic functions of class hP, and by functions 
belonging to certain Hilbert spaces. The main tool is a general theorem, 
closely related to the Hahn-Banach theorem, on the extension of functionals 
over normed linear spaces. 

1. A GENERAL INTERPOLATION THEOREM 

We shall make use of the following extension theorem, due essen- 
tially to F. Riesz and E. Helly (see Banach [2, p. 551). 

THEOREM A. Let (b be a functional dejined on a set A in a complex 
Banach space B. Then, in order that there exist a continuous linear 
functional @ E B* with 11 @ 11 < M and @i(x) = d(x) for all x E A, 
it is necessary and su$icient that 

for each n, for arbitrary elements x1 ,..., x, of A, and for arbitrary 
complex numbers c1 ,..., c, . 
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From this result we shall deduce a general theorem which has 
direct applications to interpolation theory. Let S be any set, and let E 
be a complex Banach space of complex-valued functions defined on S. 
Addition and scalar multiplication in E are understood to be the usual 
pointwise operations. For each s E S, there is a linear functional h, 
on E defined by 

W) =.m fEE* 

We shall assume that each functional X, is continuous. In other words, 
each h, belongs to E *, the dual space of E. In case E is itself (iso- 
metrically isomorphic to) the dual space of a Banach space E, , it may 
happen that the functionals h, are weak-star continuous. In this case, 
each h, can be identified with an element of E, under the canonical 
map of E, into E* [9, p. 1121. 

We are now prepared to state the general interpolation theorem. 

THEOREM 1. Let E be a complex Banach space of functions over a set 
S. Suppose E is dual to a Banach space E,, , and let each functional A, 
(s E S) be weak-star continuous. Let g be a complex-valued function 
de$ned on a subset U C S. Then, in order that there exist a function 
f E E with I/f jj < M and f (s) = g(s) for all s E U, it is necessary and 
suficient that 

(1) 

for each n, for arbitrary elements s1 ,..., s, of U, and for arbitrary 
complex numbers cl ,..., c, . 

Proof. The necessity of the condition (1) is clear. To prove the 
sufficiency, let x, E EO be the element which corresponds to h, , 
and define / : S -+ E, by 8(s) = x, , s E S. Let + be the functional 
defined on f(U) by 

4(x3> = g(s), SE u. 

Then, by Theorem A, this functional 4 can be extended to a functional 
@ E EO* with 11 Q, jl < 44, if and only if 

for all n, for all si ,..., s, E U, and for all complex numbers cl ,..., c, . 
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But because the canonical embedding of E, in E* = Et* is an 
isometry, the condition (2) is equivalent to (1). Furthermore, since 
E,* = E, the functional @ E E,,* can be identified with a function 
f E E, and we have lifll = 11 0 11 and 

f(s) = W) = @(%) = e4 = g(s), s E u. 

Thus f is the desired extension of g. 
It has been pointed out to us by Y. Katznelson that weak-star 

continuity of the functionals A, is essential and cannot be relaxed to 
continuity in the norm topology of E. For example, consider the 
space A of absolutely convergent power series 

Now A is dual to the space A, of power series g(x) = C bnzn where 
b, + 0, and the dual of A is the space of power series g(x) = C b,P 
where (0,) is bounded, the pairing in both dualities being (f, g) = 
C anbn . Regarding A as a Banach function space on / 2: 1 < 1, it is 
easily seen that point evaluation at 5 is weak-star continuous for 
I51 < 1, while for I 5 I = 1 it is continuous but not weak-star 
continuous. In the notation of Theorem 1, suppose U = (so, si ,...>, 
where~s,~=l,js,I<lforn~l,ands,+s,.Sinceforn>l 
the functionals hsn are weak-star continuous, they belong to a norm- 
closed subspace of A* (the image of A, under the canonical embedding) 
which does not include As0 . By the Hahn-Banach theorem there is a 
functional JI E A** such that #(Aso) = 1 and #(AJ = 0 for n > 1. 
Define ds,) = W,n), n > 0. Then (1) is satisfied with M = 11 $11. 
However, there is no f E A such that f(~,,) = g(s,) = 1 and f(sn) = 
g(s,) = 0 for n 3 I, since each f E A is continuous in the closed disk. 

2. APPLICATIONS TO HILBERT SPACES 

Consider now the case in which E is a Hilbert space H of functions 
over S, and let ( , ) denote the inner product. Each of the “point 
evaluation” functionals A, is assumed to be continuous (and therefore, 
of course, weak-star continuous). Thus by the Riesz representation 
theorem, to each t E S there corresponds an element k, E H such that 
II kt II = II 4 II and 

f(t) = w> = (f, 4, fE H. 
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The function K(s, t) = K,( ) s is k nown as the reproducing kernel of H. 
Since 

it follows that K(t, s) = K(s, t). For a general discussion of repro- 
ducing kernels see [l]. 

A function F(s, t) is said to be positive semidejnite on S x S if 

for all n, for all sr ,..., s, E S, and for all complex numbers cr ,..., c, . 

THEOREM 2. Let H be a Hilbert space of complex-valued functions 
on a set S, with reproducing kernel K(s, t). Let g(s) be a complex-valued 
function dejned on a subset U C S. Then in order that there exist 
f E H with 11 f 11 < M andf(s) = g(s) for all s E U, it is necessary and 
sufficient that [M2K(s, t) - g(s) g(t)] be positive semidejinite on U x U. 

Proof. By Theorem 1, the condition (1) is necessary and sufficient 
for the existence of the extension f. But this condition is equivalent to 

< M2 ( , 

or 

or 

z .fl cicW2K(si > si> - g(s,) g(s,)l 2 0, 

as asserted. 
By way of illustration, let us choose S to be the unit disk 1 x 1 < 1 

in the complex plane. Then we have the following examples: 

(i) For the space Hz of analytic functions f (2) = C a,z” in 
/ x 1 < 1 such that 

the reproducing kernel is K(x, 5) = (1 - a&)-‘. 
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(ii) For the Bergman space of analytic functionsf(x) such that 

the reproducing kernel is K(x, Z;) = (1 - zc)-“. 

(iii) For the space of analytic functionsf(z) withf(0) = 0 and 
finite Dirichlet integral 

Ilfll” = ; j j If’W A dY = 2 n I an I2 < a, 
Id<1 T&=1 

the kernel function is K(x, 1;) = log((1 - z&l). 

More generally, for the Bergman space over an arbitrary simply 
connected domain D with at least two boundary points, the repro- 
ducing kernel is K(z, Lj = 4’(z) #‘(Q, where # maps D conformally 
onto the unit disk and #(<) = 0. (See, for example [6, p. 2531.) 

3. APPLICATIONS TO HP SPACES 

A function f(z) analytic in [ x j < 1 is said to be of class HP 
(0 < p < CO) if the integral means 

M,(r,f) = [& jr If(reis)lp d/l” 

remain bounded as Y + 1. If p 3 1, HP is a Banach space under the 
norm 

where f(e@) is the radial limit of f(z), defined almost everywhere. 
The space Hm of bounded analytic functions is a Banach space under 
the norm 

An account of the theory of HP spaces may be found in [4]. 
We can now apply Theorem 1 to obtain the following criterion for 

interpolation by HP functions. 
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THEOREM 3. Let {zJ be a sequence of distinct points in the open unit 
disk, and let (w=> be a sequence of complex numbers. Suppose 1 < p < co. 
Then in order that there exist f E HP with jj f /lP < M and f (zn) = w, , 
n = 1, 2,..., it is necessary and suficient that 

(3) 

for each n andfor all complex numbers cl ,..., c, . 

Proof. The condition (3) is equivalent to (1). Thus, the theorem 
will follow from Theorem 1 if we can show that HP is a dual space and 
that point evaluation is weak-star continuous. For 1 < p < 00, 
there is no difficulty, since HP is reflexive. Hence, we need to discuss 
only H1 and H”. 

To show that H1 is a dual space, we identify each f E H’ with the 
complex-valued measuref(eie) df9 on the unit circle r. This identifica- 
tion embeds H1 in the space &?(I’) of finite regular Bore1 measures 
on I’. Furthermore, IM(IJ is the dual of the space C(I’) of continuous 
functions on r, and by the theorem of F. and M. Riesz (see [4], p. 41), 
H1 is a weak-star closed subspace of AI(r). Thus [4, p. 1111, H1 is dual 
to C(r)/&, , where A, is the subspace of all g E C(r) such that 

J 

277 
g(eie)f(eie) de = 0 for all f E HI. 

0 

(By the F. and M. Riesz theorem, H1 is the annihilator of A, in 
M(r).) The Cauchy representation [4, p. 401 

(4) 

with eis(eis - [)-’ E C(r), shows that each functional AC(f) = f (LJ is 
weak-star continuous. 

To show that H” is a dual space, we regard Hw as a subspace of L”, 
the space of bounded measurable functions on r. Then L* = (Ll)*, 
and H” is the annihilator of H,,l, the subspace of functions f E L1 
such that 

s 277 einef (eie) d0 = 0, n = 0, 1) 2 ,... . 
0 

Thus, H”O = (L1/HG1)*, and the Cauchy representation (4) again 
shows that point evaluation is weak-star continuous. This concludes 
the proof of Theorem 3. 
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COROLLARY. Suppose 1 <p < co and l/p + I/q = 1. Then 
there existsfg HP such that j]fll, < M andf(za) = w,~, n = 1,2,..., 
zjc and only z. 

(5) 

for each n and for all complex numbers c1 ,..., c, , where 

Proof. The kernel K(x) generates the linear functional 

By the duality relation for extremal problems in HP spaces [4, p. 1301, 

II $ I! = ,,;a:, I #WI = $2 II k -g/h, 
9. 

where “max” and “min” indicate that the extrema are attained. 
In the case p = q = 2, it is known [4, p. 1421 that the “natural 

kernel” K is always extremal; so we have II$II = 11 K II2 . But a straight- 
forward calculation gives 

Thus, Theorem 3 gives the following result, which is actually a special 
case of Theorem 2. 

THEOREM 4. In order that there exist f E H2 with )I f [I2 < M and 
f(z,) = w, fOY n = 1,2,..., it is necessary and suficient that 

for each n and for all complex numbers c1 ,..., c, . 

This result should be compared with the following theorem of 
R. Nevanlinna and G. Pick, characterizing the pairs of sequences 
(zn> and {wJ which admit an H”O interpolation. 

584911-6 



82 DUREN AND WILLIAMS 

THEOREM B. In order that there exist f E H” with 11 jllm < M and 
f(x,) = w,forn = 1, 2,..., it is necessary and suficient that 

for each n and all complex ci . 

This theorem may also be expressed in terms of functions f(z) 
with positive real part. For a proof and further references, see [8]. 
We have not been able to deduce the Nevanlinna-Pick theorem from 
Theorem 3. 

It is interesting to observe that if f~ HD, 1 < p < co, then the 
condition (5) with cr = **a = c,-i = 0 and c, = 1 gives 

if( < M 11 k llg = O((1 - / z, ~)-l’P), 

(See [4, lemma on p. 651.) This is close to the best possible result 

f(2) = o((1 - / x !)-I’“), 1X1+1, 

which can be proved (for 0 < p < co) by other methods (see [4, p. 841). 

4. HARMONIC INTERPOLATION 

Theorem I may also be applied to interpolation problems for 
harmonic functions. Although we shall discuss only the case of the 
unit disk, the methods extend easily to harmonic functions over more 
general domains. For 0 < p < co, let hp be the space of complex- 
valued functions U(Z) harmonic in 1 z ( < 1, such that MP(r, u) is 
bounded for 0 < Y < 1. Let hm be the space of bounded harmonic 
functions in 1 z / < 1. Then h” is a Banach space if 1 < p < co. 
If 1 < p < CO, hP is isometrically isomorphic to the space LP over 
the unit circle c while h1 may be identified with the space M(r) of 
finite regular Bore1 measures on I’. (See [4, Chapter 11.) In particular, 
hP is reflexive if 1 < p < co. The space hm may be regarded as the 
dual of L’, and the Poisson formula shows that each point evaluation 
functional &(u) = U(C) (1 5 / < 1) is weak-star continuous on hm. 
Finally, h1 may be viewed as the dual of C(r), the space of continuous 
functions on c and the Poisson-Stieltjes representation shows that 
evaluation at each point 5 (1 5 j < 1) is weak-star continuous on hl. 
Thus, Theorem 1 applies to hp, and we obtain the following analogue 
of Theorem 3. 



INTERPOLATION PROBLEMS 83 

THEOREM 5. Let {zn} be a sequence of distinct points in the open unit 
disk, and let {We} be a sequence of complex numbers. Then in order that 
there exist u E hn with 11 u IIn < M and u(zn) = w,, n = 1, 2,..., 
it is necessary and suficient that 

(6) 

for each n andfor all complex numbers c1 ,..., c, . 

This theorem may also be expressed in a dual form involving the 
Poisson kernel 

P&i”) = 
l-6 

1 - 2rcos(O - t) + 9 
x = reiB. 

COROLLARY. If 1 < p < 00, a necessary and sufficient condition 
fortheexistenceofuEhPwithII~/I~ < Mandu(x,) = w,,n = 1,2,..., 
is that 

@Wil -~lg@zi~~q 

for each n and for all complex numbers c1 ,..., c, , where q = p/( p - 1) 
is the conjugate index. 

Proof. This follows at once from the Poisson representation of 
z, E hp for 1 < p < co, and from the Poisson-Stieltjes representation 
of v E hl. 

5. UNIVERSAL INTERPOLATION SEQUENCES 

A sequence {zn} of distinct points in 1 z ] < 1 is called a universal 
interpolation sequence if for each bounded sequence {w,} there is a 
function f E Hm with f (xn) = w,, n = 1,2,... . The complete 
description of the universal interpolation sequences was given by 
L. Carleson [3]. Call a sequence (ZZJ unzformly separated if there is a 
6 > 0 such that 

Then Carleson’s result is as follows. 
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THEOREM C. {zn} is a universal interpolation sequence if and only 
zjc it is uniformly separated. 

Shapiro and Shields [7] have generalized this theorem to include 
“weighted” interpolation in HP spaces, 1 < p < 00. An account of 
this theory may be found in [4, Chap. 91. 

A sequence {zn} of distinct points in 1 z / < 1 will be called an 
(HP, 8’~“) interpolation sequence if for each {w,} E & there is a function 
f E HP such thatf (zJ = w, , n = 1,2,... . In other words, the require- 
ment is that 

{{f(%J> : f E HP) ’ e*. 
Thus the (H”o, F) interpolation sequences are the universal inter- 
polation sequences. The next theorem describes the (H2, R) inter- 
polation sequences. Similar results can be obtained for other spaces 
of functions. 

THEOREM 6. Suppose 1 < q < co, and let q’ = q/(q - 1) be the 
conjugate index. Then {zn} is an (H2, @) interpolation sequence zy and only 
if there exists a constant A > 0 such that 

1 

z/a, 
I ci IQ’ 

‘., c, . If q’ = 00, the right- for each n and for all complex numbers cl ,., 
hand side of (7) should be interpreted as 

Proof. Suppose (7) holds. Then for each {w,) E 8 with ]j{w& < 1, 
we have by Holder’s inequality 

Therefore, by Theorem 4, there exists f E Hz with f (xn) = w, , 
n = 1, 2,... . 

Conversely, suppose {zn} is an (H2, /‘J) interpolation sequence. 
This says that to each w = {wn} E @, there corresponds f E Hz with 
f (+J = w, , n = 1, 2 ,... . This correspondence induces a one-one 
linear mapping T from & into H2/N, where 

N = {f E H2 :f(x,) = 0, n = 1,2 ,... >. 
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It is easy to verify that T is a closed operator. Hence by the closed 
graph theorem, T is bounded. In other words, there is a constant M 
such that to each w = {wn} E & with 11 w ]I4 < 1, there corresponds 
f E H2 with I/f /a < M and f (zn) = w, , n = 1,2 ,... . Thus by 
Theorem 4, 

for each n and all complex ci . Taking the maximum of the left-hand 
side over all w E 8* with 11 w /I* < 1, we obtain (7). This completes 
the proof. 

COROLLARY 1. If {xn} is uniformly separated, then 

for each n and all complex ci . 

Proof. This is an immediate consequence of Theorem C and 
Theorem 6. 

COROLLARY 2. 

if and only ;f the eigenvalues of the Hermitian matrices [(l - z&)-‘1 
(i,j = l,..., n) have a positive lower bound, independent of n. 

Note. Professor A. K. Snyder informs us (private communication) 
that he has proved the existence of an (H2, 8”) interpolation sequence 
which is not uniformly separated. More recently, Duren and Shapiro 
[5] have constructed (HP, /“) interpolation sequences (for eachp < CO) 
which are not uniformly separated. 
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