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Abstract: This is our second type of model for protein folding where the configurational param-
eters and the effective potential energy function are chosen in such a way that all conformations are
described and the canonical partition function can be evaluated analytically. Structure is described
in terms of distances between pairs of sequentially contiguous blocks of eight residues, and all
possible conformations are grouped into 71 subsets in terms of bounds on these distances. The
energy is taken to be a sum of pairwise interactions between such blocks. The 210 energy
parameters were adjusted so that the native folds of 32 small proteins are favored in free energy
over the denatured state. We then found 146 proteins having negligible sequence similarity to any
of the training proteins, yet the free energy of the respective correct native states were favored over
the denatured state. © 2004 Wiley Periodicals, Inc. Biopolymers 75: 278–289, 2004

Keywords: thermal denaturation; globular proteins; canonical partition function; conformational
sampling; distance geometry

INTRODUCTION

Computational approaches to modeling protein fold-
ing generally involve extensive molecular dynam-
ics1–4 or Monte Carlo5–9 simulations. These methods
have been shown to work for small systems, and in
principle they eventually will produce a Boltzmann
distribution of configurations for even solvated pro-
teins, but there remain lingering concerns about the
adequacy of sampling for any finite calculation.10

Recently, we have been exploring an entirely new
approach called SMEUSE (Statistical Mechanics En-
abled Using Separable Energies). Here, the central
idea is that all the possible configurations of the
system must be described in terms of some set of
parameters that permit the construction of an energy-
like function consisting of a sum of terms, each of
which depends on a separate, small subset of the
configurational parameters. Then the canonical parti-

tion function breaks up into a product of simple inte-
grals over each subset of the parameters. Such a
partition function is vastly easier to evaluate than
integrating over all parameters simultaneously or ap-
proximating it by a stochastic process in the high-
dimensional parameter space. The difficulty is in
devising the set of configurational parameters and
corresponding energy function, particularly when
standard empirical energy functions, based on the
customary classification of physical effects, are un-
suitable for this approach.

In our first SMEUSE study,11 we described protein
conformations in terms of wavelet transforms of the
C� trace coordinates versus sequence position in the
polypeptide chain. The associated energy function
depended on conformation and the amino acid content
of different segments of the chain. We were able to
adjust its 26 parameters so that a training set of seven
proteins favored the native over the denatured state.
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Then another 480 unrelated test proteins also had
lower free energies for the configuration space around
their respective Protein Data Bank (PDB) native con-
formations compared to the denatured state. This re-
mains a promising approach even though it is difficult
to interpret the energy function in conventional terms.

Here we initiate an alternative SMEUSE parame-
terization for protein folding based on a recent gen-
eralization of distance geometry where the objects are
not single geometric points, but sets of points.12

Possible advantages are a more direct connection to
customary ideas about through-space interactions be-
tween amino acid residues, more natural incorpora-
tion of known limitations on packing density, and
eventual incorporation of additional constraints, such
as disulfide crosslinks.

METHODS AND RESULTS

All calculations described in this section were carried out in
MOE using the SVL computer language.13

Polypeptide Conformations in Terms of
Interresidue Distances

In this work we have considered only small and simple
proteins consisting of a single polypeptide chain involving
only the standard 20 amino acid residue types, without
crosslinks or substantial ligands. For reasons of computa-
tional convenience, attention has been restricted to chain
lengths n no greater than 128 residues. As a first approxi-
mation, let the polypeptide chain be represented as only one
point per residue, taken to be the C� atom. Assuming
standard bond lengths, bond angles, and fixed planar trans
peptide bonds, the distance between successive C� atoms is
fixed, as in a freely jointed chain model, although even
allowing all possible � and � dihedral angles in each
residue is more restrictive than the freely jointed chain.

In order to describe conformations of such chains inde-
pendent of overall translations and rigid proper rotations, a
natural choice of parameters is the set of interresidue dis-
tances, {dij, i,j � 1, . . . , n}, but there are n(n � 1)/2 of
these, whereas a freely jointed chain in three dimensional
space would have 3n � 6 � (n � 1) � 2n � 5 net degrees
of freedom, subtracting three translational and three rota-
tional degrees of freedom and the n � 1 fixed di,i�1 distance
constraints. Indeed, short polypeptide chains having freely
variable � and � dihedral angles do exhibit 2n � 5 degrees
of freedom. Consider tetraalanine, Ala4, in C� representa-
tion where 5000 random �� conformations were sampled
and displayed as dots in Figure 1 scattered in a coordinate
system consisting of the 2n � 5 � 3 variable distances, d1,3,
d2,4, and d1,4. If there are m degrees of freedom, then the
number of conformations c within radius r of the center of
the cloud should vary as rm, and in fact such a log–log plot

of c vs. r agrees with m � 3 for small r (plot not shown).
While it is certainly possible for the allowed conformations
of cyclic molecules to occupy complicated lower-dimen-
sional subspaces,14 the conformation spaces of polypeptide
chains have locally 2n � 5 dimensions.

Globally speaking, Figure 1 clearly shows additional con-
formational restrictions. Each of the three variable interresidue
distances has upper and lower bounds due to chain connectiv-
ity, flexibility, and steric hindrance. If they were otherwise
independent, the figure should show a simple rectangular solid.
Note, however, that as d1,4 approaches its upper bound (i.e., the
chain becomes nearly fully extended), the lower bounds of d1,3

and d2,4 also increase, giving rise to the point at the top of the
scattering of conformers. At the other extreme of small d1,4, the
allowed values of d1,3 and d2,4 become negatively correlated,
as shown in the cross-section view in Figure 2. Such effects are
readily understood intuitively and can be derived from the
fixed di,i�1 values plus the triangle inequality, di,k � di,j � dj,k.

The question, then, is how to describe the set of all
possible conformations of a polypeptide chain in a compact
and convenient form while at least approximately account-
ing for the true number of degrees of freedom and the rather
subtle interrelations we can see in even a tetrapeptide. As in
standard distance geometry calculations of conformations,15

one can derive upper and lower bounds, lij � dij � uij, for
each of the n(n � 1)/2 distances, and all conformations must
lie inside this initial hyperrectangle in n(n � 1)/2 dimen-

FIGURE 1 The conformation space for Ala4 in terms of
the three nontrivial inter-C� distances. Note how the lower
bounds of d1,3 and d2,4 necessarily increase as d1,4 ap-
proaches its upper bound.
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sions, which we will refer to as the a priori “range.” Figures
1 and 2 clearly show that the allowed conformations lie in
a lower dimensional subspace, they do not completely fill
such an initial rectangular range, and the volume to be
described is not even necessarily convex. An approximate
way to deal with this is to break up the initial range into
smaller ranges that are mutually nonoverlapping but have
contracted their bounds to better outline the volume of
allowed conformations, as shown in Figure 3. The union of
the ranges still accounts for all possible conformations, but
the disallowed volume enclosed by them decreases. This
approach has been used before to describe the conforma-
tions of small molecules,16,17 but for even n � 128 residues,
this is quite an undertaking in 8128 dimensions. Any sort of
conformation space can be described to any desired accu-
racy as the union of many nonoverlapping ranges, but the
number of ranges increases rapidly with the dimensionality
and required accuracy.

In order to reduce the dimensionality of the task, we
turned to a recent generalization of distance geometry called
cluster distance geometry,12 where the polypeptide chain is
subdivided into blocks of b sequentially adjacent residues,
and the variables are the sums of squared interresidue dis-
tances between blocks I and J.

DIJ � �
i�I

�
j�J

dij
2 (1)

Here we have used b � 8, so that for n � 128 there are 16
blocks, and ranges involve 16 � 15/2 � 120 dimensions.
While this representation of the chain has obviously even
lower resolution than one point per residue, considerable a
priori information can be built in regarding limitations on
polypeptide chain packing, and the DIJ are easily interre-
lated at the level of triangle inequality reasoning.12 In par-

ticular, the bounds IIJ � DIJ � UIJ that determine the initial
overall range covering all polypeptide conformations are
readily calculated from n and b, as described in Ref. 12.

Separable Energy Model

The guiding principle of SMEUSE is that corresponding to
the conformational variables employed, there must be an
energy-like function that consists of a sum of terms, each of
which depends on a small disjoint subset of the variables.
Here we take the terms to be simple square well potentials
depending on the summed interblock distance, DIJ, and the
amino acid compositions of the two blocks without regard
to sequence separation or radii of gyration of the blocks.

Etot � �
I�J

E�DIJ,tIJ� (2)

Equation (2) assumes that the contribution to the total
energy from each pair of blocks is independent of the other
DIJ values, even though these quantities are interdependent
in order to correspond to realizable conformations in three-
dimensional space.12 The assumption is that these relations
are adequately approximated by the set of ranges used to
describe all possible conformations, rather than considering
only a single rectangular range.

The individual square well terms are very simple.

E�DIJ, tIJ� � � a � tIJ for DIJ � �
0 otherwise (3)

FIGURE 3 A two-dimensional example of how the re-
gion of allowed conformations in Figure 1 can be repre-
sented as the union of nonoverlapping rectangles. The ab
initio bounds for all conformations are shown as the heavy
rectangle (plus a small margin for clarity), the true confor-
mation space is enclosed in dashed lines, and the five ranges
are indicated by light rectangles.

FIGURE 2 Detail of Figure 1 when d1,4 is small, showing
that the region of allowed conformations is no longer con-
vex because d1,3 and d2,4 are negatively correlated.
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The interblock sequence composition vector tIJ has 210
components, each being the number of residue pairs from
the two blocks having a particular (unordered) residue pair
type, just as DIJ consists of a sum over pairs of points
between the two blocks in Eq. (1). Thus, the sum of the
components of each tIJ is always b2, except when the blocks
involve virtual residues, as noted below. Clearly this is a
rough approximation to the real interactions in that any
random permutation of the amino acid sequence within a
block will give the same tIJ vectors. Two blocks are viewed
as interacting across all their constituent residue pairs as
long as the overall DIJ is below a fixed cutoff, �, regardless
of whether the blocks are spatially extended or compact.
The interaction may be either positive (unfavorable) or
negative (favorable), depending on the signs and magni-
tudes of the components of a. Steric repulsion for very small
values of DIJ is treated as the responsibility of the set of
ranges to enforce LIJ � DIJ for some appropriate lower
bounds, rather than building in an energetic penalty. Equa-
tions (2) and (3) should be viewed as a very simple initial
energy model that can doubtless be substantially improved
in future studies.

In this work, the only adjustable parameters in the en-
ergy function are the 210 components of the a vector and
the cutoff �. We use the same parameters for all terms in Eq.
(2) without regard to total chain length n or sequence
separation �I � J�. Presumably a different choice for b � 8
would require readjusted a and �. How the parameters are
adjusted is discussed below.

Conformational Ranges Suited to
Proteins and the Energy Function

There are many imaginable schemes for subdividing the
initial ab initio range into smaller ranges that more precisely
describe the full set of possible conformations. The guiding
principles used here are first that extended conformations
seen in the denatured state of proteins need not be so
precisely described as compact, native-like conformations.
Second, there is no need to discriminate between even two
compact conformations that are viewed as equivalent by the
energy function. Consequently, the final set of ranges de-
pends on the form of the energy function and on the set of
proteins used for training it.

Since our model considers only a single polypeptide
chain, the proteins in the training set should be those having
native conformations stabilized strictly by noncovalent in-
trachain interactions. From the total Protein Data Bank18

(PDB) of over 26,000 experimentally determined three-
dimensional structures, PDB Select19 is a subset where the
proteins have sequences that differ by at least a small
amount, according to a formula that permits a smaller frac-
tion of identical residues for longer chains. Out of the 5416
entries in the PDB Select 90% list of April 2002, we found
96 X-ray crystal structures apparently involving only one,
short polypeptide chain without substantial ligands, such as
heme groups. Further scrutiny resulted in only 32 entries
consisting of only a single polypeptide chain of length no

greater than 128 residues that seem to fold as monomers
under reasonably standard conditions to a compact structure
having a radius of gyration no more than 30% greater than
the minimum for the given chain length.20 Furthermore, no
pair of these 32 chains has greater than 90% sequence
identity after optimal sequence alignment, and the root
mean square deviation (rmsd) between matching aligned
residues after the usual optimal rigid body superposition21 is
greater than 3 Å. As shown in Table I, the final training set
involves considerable diversity of fold types.22

For a maximal chain length n � 128 divided into se-
quential blocks of b � 8 residues, there are 128/8 � 16
blocks, resulting in 15 � 16/2 � 120 pairs of blocks,
corresponding to 120 terms in Eq. (2) and the same number
of dimensions of the conformation space. The initial, all-
encompassing range consists of lower and upper bounds on
the 120 dimensions derived from geometric considerations

Table I Training Set Proteins

PDB
Entry

No.
Residues Typea

Native
Range Znat/Ztot

1AIX 106 � 70 0.497
1ACF 125 � � � 56 0.498
1BK2 57 � 71 0.500
1BM8 99 � � � 55 0.499
1BYW.A 110 � � � 53 0.498
1C44.A 123 � � � 61 0.499
1COA.I 64 � � � 57 0.499
1CQY.A 99 � 63 0.500
1DHN 121 � � � 69 0.498
1DT4.A 73 � � � 67 0.499
1ENH 54 � 58 0.500
1EW4.A 106 � � � 62 0.499
1G9O.A 91 Membraneb 63 0.500
1HEY 127 �/� 71 0.500
1I2T.A 61 � 54 0.499
1JWO.A 97 � � � 71 0.499
1MIL 104 � � � 60 0.496
1MJC 69 � 63 0.500
1OPS 64 � 71 0.499
1PGB 56 � � � 52 0.500
1PHT 83 � 63 0.499
1PTF 87 � � � 71 0.499
1QAU.A 112 � 59 0.499
1TEN 89 � 66 0.498
1TMY 118 �/� 71 0.499
1TUL 102 � 65 0.498
1UBI 76 � � � 71 0.983
1VCC 77 � � � 71 1.00
1WHI 122 � 53 0.499
2IGD 61 � � � 68 0.499
3IL8 68 � � � 64 0.499
9MSI.A 66 � 63 0.499

a SCOP classification.22

b A soluble domain from a larger membrane protein.
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and physical limitations on the maximal packing density of
polypeptide chains, the maximal extent of polypeptide
chains, etc.12 Clearly, shorter chains would involve a lower
dimensionality of the initial range, but it is computationally
convenient to treat all the training set proteins with one range.
This is done by the equivalent of “zero filling” in Fourier
analysis and signal processing, where extra “virtual” residues
are added to the C-terminus of each protein to bring its chain
length up to 128. These extra residues are placed in an ex-
tended chain attached to the C-terminal “real” residue and
pointing radially out from the protein’s center of mass. They
are given an imaginary 21st amino acid type that is taken to be
noninteracting, so they do not contribute to the block pair
contents tIJ in Eq. (3). Thus the sum of the components of tIJ
is the product of the number of real residues in blocks I and J.
While the extra residues have no effect on the energetic side of
the model, they do increase the conformational entropy of the
smaller proteins in Table I, such as 1ENH, which has 54
residues. Better treatment of variable chain length would be a
topic for future improvements.

Having only a single range corresponds to a trivial
model where there is no discrimination between folded and
unfolded states of the protein. At the opposite extreme,
consider a “shrink-wrap” model consisting of 32 very small,
nonoverlapping ranges, each centered around one of the
training set PDB structures. Now if the � cutoff in Eq. (3) is
chosen to be very large, all pairs of blocks in all 32 ranges
are always in contact, and each protein would have the same
energy in each range. At the opposite extreme, a very small
value for � would give the same zero energy value for all
proteins in all ranges. It turns out there is a rather narrow
range for � in between such that for each of the training
proteins, the energy of the native range corresponds to a
distinct polynomial in the 210 residue type pairs compared
to those of the 31 respective nonnative ranges. We find that
for � � 26096.7 Å2 it is possible to adjust the 210 compo-
nents of a so that the energy of the native range of each of
the 32 training proteins is lower (more favorable) than the
energy of the 31 other nonnative ranges. This value of � is
used in all that follows.

Of course the shrink-wrap model is not satisfactory for
protein folding because it neglects all conformations that are
not tightly folded. To get a set of ranges that still cover all
possible conformations while including less disallowed vol-
ume than the initial range, our general procedure is illus-
trated in Figure 3. Starting with the single initial range (the
large heavy rectangle in the figure), choose a dimension and
a value along that dimension between the upper and lower
bounds at which to split the range into two subranges. The
two subranges may often be contracted in other dimensions
while still containing all their allowed conformations. In this
work we have used no more than triangle inequality level
reasoning to perform the contractions, which is more in-
volved in cluster distance geometry than in standard dis-
tance geometry.12 Thus one subrange has its upper bound
lowered to the split value in the chosen dimension, and this
implies that some other pairs of blocks nearby in sequence now
also have reduced upper bounds to a lesser extent. Similarly,

the other subrange has a raised lower bound in the chosen
dimension, and this implies some increases in the lower
bounds of other dimensions. The process continues until some
stopping criterion has been reached, such as no range still
containing at least one of the training set protein native struc-
tures has a dimension available for splitting that is adequately
long. Such a criterion has the advantage of not further subdi-
viding ranges corresponding to conformations far from any of
the native structures. In any case, note that the union of the
final set of ranges should still cover all geometrically allowed
conformations, but it always includes some amount of disal-
lowed volume, as illustrated in Figure 3.

Specifically, the range-splitting algorithm we have found to
be most satisfactory is as follows. (1) Start with the initial
range that encloses all conformations for the given chain
length. (2) For each range that still encloses at least one of the
training protein structures, consider each dimension in turn that
corresponds to distances between real (not virtual zero fill)
residues of those proteins. If � � DIJ for all the natives and UIJ

� 5�, then split that dimension at � and go to step 4. (3)
Alternatively, if the range encloses more than one native struc-
ture and that dimension has native DIJ values both above and
below �, then split that dimension at � and go to step 4. (4) If
a range was split according to steps 2 or 3, contract the upper
and lower bounds of each of the new ranges using triangle
inequality bound smoothing. Then reexamine the list of ranges
again in step 2. Otherwise, there was no opportunity to split
any range, and the procedure is finished.

Note that the restriction in step 2 to dimensions in-
volving real residues has two beneficial effects. First, the
dimensions involving virtual residues are distance inter-
vals that are left intentionally broad, rather than point-
lessly specifying the conformation of virtual residues in
more detail. Secondly, any splitting in step 3 will differ-
entiate between conformations that will potentially have
different interaction energies, so that subsequent adjust-
ment of energy parameters will enable a given protein to
prefer one range over the other. Another way to view this

FIGURE 4 Projection onto three dimensions of the 71
regions in 120 dimensions. Ranges appear to overlap, but
this is an artifact of the projection. The largest box contains
all the others and represents all chain conformations, while
small boxes near the lower left corner correspond to native
ranges.
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effect is that when the final set of ranges are projected
onto the subspace of dimensions corresponding to real
residues of a protein in the training set, the native struc-
ture always falls into exactly one range, rather than the
projected ranges overlapping each other.

Applying this algorithm to the training set in Table I
using � � 26096.7 Å2 produces a set of 71 ranges where the
first 51 correspond to large volumes of less compact con-
formations, and the last 20 enclose the 32 training proteins.
While it is hard to draw satisfactory pictures of 120 dimen-
sional rectangles, Figures 4 and 5 illustrate the general idea.
Table I tells which range each native structure falls inside.
Note that some such ranges include only one native, while
range 71 includes eight of them. Extensive testing has never
discovered a real polypeptide conformation that is not con-
tained in one of the ranges or falls within two of them, so
these 71 ranges are apparently nonoverlapping, cover all
allowed conformations, and err only by including some
regions of conformation space that correspond to no three-
dimension polypeptide conformation.

Clearly the final set of 71 ranges depends on the
training set. In part, they are used to describe the full
conformation space by devoting greater detail to the

vicinity of the structures of real, globular proteins. Three-
dimensional chain conformations also have substantial
nonlinear constraints on the DIJ values beyond the trian-
gle inequality relations used in the range-splitting proce-
dure. Thus the training set proteins also serve to focus
attention on geometrically realizable structures. The na-
tive conformations of all other proteins we have exam-
ined always fall into one and only one of the 71 ranges,
but sometimes they lie in one of the larger ranges not
associated with any of the training set proteins. In future
work, we would like to determine sets of ranges without
reference to a particular training set in order to make the
description of conformation space more general.

Partition Function

Neglecting the momentum terms in the full Hamiltonian, the
classical canonical partition function consists of an integral
of the Boltzmann factor integrated over all conformational
degrees of freedom. In our model, this conveniently breaks
up into a sum over each of the 71 ranges, and the integral
over the 120 dimensions becomes a product of 120 integrals

FIGURE 5 Close-up of the native corner of Figure 4, showing labels representing the native
conformations of the training set proteins.
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Table III Correctly Predicted Proteins

PDB Entry Typea Native Range Znat/Ztot % Sequence Identity tob

1A8O � 7 1 21 1I2T.A
1AA3 � � � 71 1 21 1UBI
1ACP � 7 1 21 1DT4.A
1APF Small protein 37 1 21 1BK2
1AVS.B � 7 1 23 1PHT
1AY7.B �/� 71 0.999 21 1PTF
1AYJ Small protein 71 1 21 1I2T.A
1B00.A �/� 71 1 27 1TMY
2B3I.A � 71 1 22 1TEN
1B4B.A � � � 71 1 18 1COA.I
1BB8 � � � 7 1 18 1I2T.A
3BBG Small protein 25 1 15 1JWO.A
1BBL � 25 1 23 2IGD
1BBO Small protein 7 0.982 18 3IL8
2BBV.D � 2 0.998 7 1ENH
1BDS Small protein 37 1 16 1BK2
1BFG � 71 1 21 1WHI
1BHU � 71 1 20 1HEY
1BIK Small protein 71 1 17 1BYW.A
2BJX.A �/� 71 0.611 21 1DHN
1BK8 Small protein 71 1 18 3IL8
1BLU � � � 71 1 23 1DT4.A
1BQX.A � � � 71 1 21 1BYW.A
1BUH.B � � � 7 1 24 1BK2
1BUS Small protein 71 1 28 3IL8
1BYF.A � � � 71 1 22 1HEY
1C01.A � 71 1 20 1MJC
1C55.A Small protein 25 1 16 1OPS
1C75.A � 71 1 22 1BM8
1CCF Small protein 7 1 19 1PHT
1CDQ Small protein 71 1 23 3IL8
1CL4.A Small protein 16 1 16 1OPS
1CLF � � � 71 0.954 23 1PGB
1COU.A Small protein 7 1 21 1BYW.A
1CPZ.A � � � 71 0.959 21 1COA.I
1CXW.A Small protein 71 0.972 21 1JWO.A
1D6R.I � 71 1 21 3IL8
1DAV.A � 7 0.999 24 1COA.I
1DD3.A � 7 1 20 1WHI
1DD4.D � 7 1 21 1PGB
1DPT.A � � � 71 1 23 1MIL
1DUR.A � � � 71 1 20 1COA.I
1DX5.I Small protein 7 1 18 1BYW.A
1DZ3.A �/� 71 1 28 1TMY
1E53.A Small protein 71 0.999 18 1UBI
1E8Q.A Small protein 37 1 15 2IGD
1E8R.A Small protein 71 1 20 9MSI.A
1E9T.A Small protein 17 1 19 1BK2
1EGP.A � � � 16 0.762 22 1COA.I
1EJA.B Small protein 7 1 20 1OPS
1EP7.A �/� 71 0.977 24 1TMY
1ERD � 25 0.868 16 1BK2
2ERL � 25 1 17 1UBI
1ERV �/� 71 1 20 1C44.A
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Table III (Continued from the previous page)

PDB Entry Typea Native Range Znat/Ztot % Sequence Identity tob

1F4I.A � 25 1 19 1OPS
1F5Y.A Small protein 7 1 19 1DT4.A
1F66.G � 7 1 20 1ACF
1FBQ.B � 71 0.999 18 1PTF
1FE4.A � � � 71 1 19 1VCC
1FI6.A � 7 1 21 1MJC
1FM0.D � � � 71 1 23 1BYW.A
1FMY.A Small protein 25 1 15 1ENH
2FN2 Small protein 71 1 20 9MSI.A
1FO5.A �/� 63 0.948 23 1PTF
1FRE Small protein 25 1 18 1BK2
1FSB Small protein 25 1 16 1BK2
1FVS.A � � � 71 0.765 18 1PTF
1FXR.A � � � 71 0.982 18 1BYW.A
1G4D.A � 71 1 19 1OPS
1G6M.A Small protein 71 1 24 1ENH
8GCH � 1 0.62 8 9MSI.A
1GD0.A � � � 71 1 18 1DHN
1GMM.A � 71 0.95 21 1TUL
1GPS Small protein 37 1 17 1PHT
1GPT Small protein 37 1 18 3IL8
1GYZ.A � 71 1 18 3IL8
1H75.A �/� 71 1 20 1TMY
1H9E.A � 71 1 25 1COA.I
1HAF Small protein 25 0.747 24 3IL8
1HCD � 71 1 20 1C44.A
1HDF.A � 71 1 24 1G9O.A
1HEV Small protein 25 1 16 3IL8
1HH5.A � 7 1 21 1DT4.A
1HPI Small protein 7 1 21 1I2T.A
1HY9.A Small protein 25 1 17 9MSI.A
1HYK.A Small protein 37 1 14 1MIL
1I0V.A �/� 7 0.995 22 1TEN
1I2U.A Small protein 37 1 17 1MJC
1ICA Small protein 25 1 16 1G9O.A
1IFY.A � 25 0.999 18 3IL8
1IGL Small protein 7 0.928 23 1JWO.A
1IIB.A �/� 71 1 21 1C44.A
1IQT.A � � � 71 1 21 1BK2
1IYV � 52 1 24 1PTF
1J0T.A � 7 1 18 1BYW.A
1J6Q.A � 16 0.515 23 1G9O.A
1J75.A � 71 1 20 1G9O.A
1J7M.A Small protein 71 1 21 1JWO.A
1JBG.A � 71 1 21 1EW4.A
1JE9.A Small protein 71 1 23 1BK2
1JK4.A � 71 1 24 1MJC
1JKZ.A Small protein 37 0.998 23 2IGD
1JRH.I � 11 1 20 3IL8
1KJK.A � � � 37 1 25 1DT4.A
1KN6.A � � � 71 1 19 1COA.I
1KV4.A peptide 2 0.5 21 2IGD
1KVZ.A � � � 71 1 21 1DHN
1KW4.A � 7 1 24 1MJC
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over one dimension each, because the potential energy in
Eq. (2) was built to be a sum of terms, each depending on
one of the conformational variables. Thus

Ztot � �
r�1

71 �
I�J

�
LrIJ

UrIJ

exp	��E�DIJ,tIJ�
dDIJ (4)

where � � (kBT)�1 for some arbitrary temperature T. The
partition function depends on the protein’s amino acid se-
quence via the interblock residue type pair composition

vectors tIJ. Because E is a simple square well, the integral
for a particular range r and dimension IJ is

�
LrIJ

UrIJ

exp[��E�DIJ,tIJ�]dDIJ

� �
UrIJ 	 LrIJ for � � LrIJ

�UrIJ 	 LrIJ�exp		��a � tIJ�
 for � 
 UrIJ

�UrIJ 	 �� � �� 	 LrIJ�
� exp		��a � tIJ�
 otherwise

(5)

Table III (Continued from the previous page)

PDB Entry Typea Native Range Znat/Ztot % Sequence Identity tob

1KX1.A Small protein 71 1 20 1UBI
1L3Y.A Small protein 25 0.912 18 3IL8
1L4V.A Small protein 25 1 18 1BK2
1L5D.A � 7 0.997 20 1WHI
1LD6.A Small protein 71 1 17 1OPS
1LDL Small protein 7 0.999 16 1MJC
1LNG.A � � � 71 0.984 23 1UBI
1LSW.A � � � 71 0.998 20 1HEY
1M5T.A �/� 71 1 26 1TMY
1M7T.A �/� 71 1 20 1C44.A
1M8A.A � � � 71 1 25 3IL8
1MFI.A � � � 71 1 23 1ACF
1MHD.A � � � 71 1 20 1JWO.A
2MHR � 17 1 21 1TUL
2MOB.A � � � 71 1 23 1UBI
1MVO.A �/� 71 1 29 1TMY
1MYN Small protein 37 0.993 18 1PGB
1NXB Small protein 71 0.633 18 2IGD
3OVO � � � 2 1 9 3IL8
1PDN.C � 7 0.975 23 1G9O.A
1POU � 9 0.999 23 3IL8
2PSP.A Small protein 71 1 17 1BYW.A
1QJG.A � � � 8 1 20 1DHN
1QR5.A � � � 71 1 66 1PTF
1QUQ.D � 7 1 21 1HEY
1R69 � 71 1 21 9MSI.A
1REG.X � � � 7 0.999 22 1JWO.A
1RMD Small protein 71 1 20 1EW4.A
1RNV Small protein 2 0.998 8 2IGD
2RSL.B �/� 71 1 20 1EW4.A
1SNB Small protein 71 1 18 1DT4.A
1T1D.A � � � 71 1 21 1G9O.A
1TFI Small protein 7 1 19 1VCC
2TGI Small protein 7 1 20 1PHT
1TGX.A Small protein 7 1 24 3IL8
1TNT � 71 1 19 1G9O.A
1TPN Small protein 7 1 17 1A1X
2TRX.A �/� 71 1 21 1BYW.A
1WKT � 71 0.999 20 1JWO.A

a SCOP classification.22

b Percent sequence identity of most similar protein from the training set.
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depending on the relative values of � and the lower and
upper bounds on DIJ.

We take the partition function of the macroscopic native
state to be just the one term in Eq. (4) where r � rnat, the
one range containing the PDB structure of the protein. The
partition function of the denatured state is then the sum over
the other 70 ranges. The Helmholtz free energy of any
macroscopic state is A � ���1 ln Z. At the midpoint of
thermal denaturation, Anat � Aden, which is equivalent to
Znat � Zden or Znat/Ztot � 0.5, since the native range is
included in Ztot.

Optimization of Parameters

The 210 adjustable energy parameters in a were determined
by requiring that the native free energy of all 32 training
proteins be at least equal to the denatured free energy, and
otherwise the sum of the squares of the parameters should
be minimal. The straightforward constraints are that Zp,nat/
Zp,tot � 0.5 for each protein p in the training set. However,
there are technical problems with floating point overflow
and underflow when multiplying 210 factors together to
evaluate the partition function associated with one range, so
the calculations were actually done in terms of logarithms of
the partition functions. This was greatly facilitated by a
function in MOE’s SVL programming language13 called
logaddexp for summing numbers of disparate magnitudes.
Denoting this function by S, it calculates S(i � 1, . . . , n, xi)
� ln � exp (xi) in terms of logarithms. For example, from
Eq. (4) we have ln Ztot � S(r � 1, . . . , 71, �I�J ln � exp
(��E)dDIJ). Then the constraints were satisfied by local
minimization of penalty terms

Fobj � �
p
� �lnZp, nat 	 lnZp, tot 	 ln 0.5)2

if Zp, nat/Zp, tot � 0.5
0 otherwise

(6)

summing over all 32 polypeptide chains p in the training set.
Fobj can be reliably optimized even starting from initial
random values of the components of a in the range zero to
one, using a truncated Newton unconstrained local optimi-
zation procedure with analytical gradiant. We were not
troubled by convergence to local minima where Fobj was
significantly greater than zero.

Table I shows that even short of final convergence of the
minimization, the constraints are essentially satisfied for all
proteins, and they are even slack for 1UBI and 1VCC. For
five of them (1BK2, 1BYW.A, 1JWO.A, 1PTF, and 1TMY)
the total partition function is dominated by the native range
and one nonnative range that has a slightly greater partition
function. Otherwise, the native range predominates to any
desired degree at lower temperatures.

The resulting interaction energy parameters are shown in
Table II. While many of them make some intuitive sense, such
as negative (favorable) values for hydrophobic–hydrophobic
interactions in the lower right corner of the table, there are
many exceptions. Presumably a larger training set and/or a
more detailed energetic model would produce parameters hav-
ing seriously interpretable values. Yet the fact that most train-

ing set proteins have barely stable native states suggests that
these are the smallest parameter magnitudes that can account
for their stabilities. The real test is whether the final model of
ranges, energy function, and adjustable parameters has any
predictive power.

Prediction of Short Polypeptide Chains

The MOE13 molecular modelling software comes with a
nonredundant subset of the polypeptide chains in PDB
chosen to be those relatively precisely determined structures
having little missing coordinate data, and generally less than
90% sequence identity between any pair of chains. Out of
this list of 4986 PDB entries, we selected those consisting of
only a single polypeptide chain having no more than 128
residues, all of them having the 20 standard types, and all of
them having coordinates for their C� atoms. Each of these
1540 chains fell inside one of the 71 conformational ranges,
and for 174 of these, the native range’s free energy was
lower than that of all 70 nonnative ranges’ free energies
(Znat � Znon). If all ranges were equally likely to be a
protein’s native range, one would expect only 1540/71 � 22
correct predictions. These results are also not simply due to
sequence homology, because of the 174 correct predictions,
146 of them have less than 30% sequence identity (after
optimal gapped sequence alignment) to any of the training
proteins. These 146 are listed in Table III. For almost all of
these predictions, the native state is strongly favored over
the denatured in free energy (Znat/Ztot � 1), and range 71 is
the most frequently occurring native range, although a va-
riety of different SCOP fold types are represented in it.

When a given protein is predicted to have its native
structure in the correct range, it is something of an ab initio
protein fold prediction on the basis of the given amino acid
sequence and the statistical mechanical model that encom-
passes all possible conformations of a single chain having
no more than 128 residues. Having divided all conforma-
tions into only 71 ranges, however, suggests that even the
smaller ranges containing the training set proteins are still
rather broadly defined. Consider one of the successful pre-
dictions, PDB entry 1AA3, an NMR structure of a single
chain of 63 residues without crosslinks or substantial li-
gands. Deleting the last seven residues, it can be viewed as
seven blocks of eight residues each, and just as in Table III
with zero filling, its conformation falls within range 71.
Taking the limits on the corresponding dimensions of that
range as distance constraints, we derive 7 � 6/2 � 21 upper
and lower bound constraints on the interblock distances,
DIJ. Using cluster distance geometry metric matrix embed-
ding,12 we found that these 42 constraints are easy to
satisfy, and the sampling of five structures produced had
root mean square deviations (RMSDs) to the native ranging
from 8.3 to 11.5 Å. They were all fairly compact, but they
had large root mean square deviations in coordinates of the
centers of mass of the seven blocks after optimal superpo-
sition onto the native structure’s corresponding centers of
mass. This is all consistent with the ranges being only very
general descriptions of sets of conformations.
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Agreement with the PDB structure is gratifying, but
actually most polypeptide chains in PDB entries have fea-
tures that may greatly affect their conformation but are
outside the scope of the current model, namely multiple
polypeptide chains, associated polynucleotide chains, disul-
fide crosslinks, and a wide variety of substantial ligands or
cofactors. Therefore it is not surprising that many chains,
taken in isolation, have conformations that do not agree with
these calculations.

DISCUSSION AND CONCLUSIONS

We have described a version of SMEUSE based on
cluster distance geometry. Even representing
polypeptide chains as blocks of eight sequentially
adjacent residues, it is possible to construct a very
simple energy function involving interactions be-
tween blocks such that a set of 32 proteins have native
state free energies more favorable than that of the
denatured state. Then 146 other nonhomologous pro-
teins are correctly predicted to favor their native
states. There are several possible explanations for not
every protein in PDB being correctly predicted. One
is that most PDB entries involve significant contribu-
tions to their stabilities that are not included in this
model, such as disulfide crosslinks, quaternary struc-
ture, and binding of large ligands. Another explana-
tion is that the model is oversimplified and/or views
protein folds at too low a resolution.

Many of the limitations of the current model can be
readily improved while still keeping its computational
complexity under control. Chains longer than 128
residues can be accommodated with increased dimen-
sionality of the ranges. Multiple polypeptide chains
can be treated by a different set of ranges that have no
chain connectivity constraints between chains. Differ-
ent disulfide bridge arrangements can be included by
constructing special ranges that include the corre-
sponding low upper distance bounds. The set of all
possible conformations can be described more accu-
rately by larger numbers of more narrowly bounded
ranges. Another way is to reduce the number of res-
idues in a block. More sophisticated energy terms can
be incorporated in order to better reflect the exact
amino acid sequence and the environment of the res-
idues. In any case, the current model or such future
improvements maintain the key features of SMEUSE:
all conformations are included, and the partition func-

tion can be readily evaluated so that the thermody-
namics of protein folding can be confidently mod-
elled.
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