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ABSTRACT
We reported previously a model of polyglutamine repeat disorders with insertion of 146 CAG

repeats into the murine hypoxanthine phosphoribosyl transferase locus (Hprt(CAG)146; Ordway et
al. [1997] Cell 91:753–763), which does not normally contain polyglutamine repeats. These mice
develop an adult-onset neurologic phenotype of incoordination, involuntary limb clasping, sei-
zures, and premature death. Histologic analysis demonstrates widespread ubiquinated neuronal
intranuclear inclusions (NIIs). We now report characterization of the age of onset of behavioral
abnormalities, correlated with the time course of occurrence of NIIs in several brain regions, and
the occurrence of NIIs in non-neuronal tissues. Onset of behavioral abnormalities occurred at
approximately 22 weeks of age. There was variable time course of expression of NIIs in several
brain regions. Assessment of several non-neuronal tissues revealed nuclear inclusions in hepa-
tocytes and choroid plexus epithelium. �-Aminobutyric acid (GABA)/benzodiazepine receptors,
dopamine D1-like and D2-like receptors, and type 2 vesicular monoamine transporter (VMAT2)
binding sites were assayed before and after the onset of behavioral abnormalities. GABA/
benzodiazepine receptors were unchanged either before or after the onset of behavioral abnor-
malities in any region analyzed, whereas striatal D1-like and D2-like receptors were diminished
after but not before the onset of symptoms. Dorsal striatal VMAT2 binding sites were decreased
before the onset of behavioral changes. Mitochondrial electron transport chain components were
assayed with histochemical methods before and after the onset of behavioral changes. There was
no change in behaviorally presymptomatic or symptomatic animals. Hprt(CAG)146 mice did not
exhibit increased susceptibility to the mitochondrial toxin 1-Methyl-4-phenyl-1,2,3,6-
tetrahydropyridine. Hprt(CAG)146 mice are a useful model for studying polyglutamine repeat
disorders. J. Comp. Neurol. 465:205–219, 2003. © 2003 Wiley-Liss, Inc.
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Nine human neurodegenerative diseases are caused by
expanded CAG-polyglutamine (polyQ) repeats within nine
unrelated genes. Huntington disease (HD; Huntington’s
Disease Collaborative Research Group, 1993), denta-
torubropallidal-luysian atrophy (DRPLA), spinobulbar
muscular atrophy (SMBA; Kennedy-Alter-Sung syn-
drome), and spinocerebellar ataxias 1, 2, 3 (synonymous
with Machado-Joseph disease [MJD]), 6, 7, and 17 com-
prise the identified polyQ family of diseases (Taylor et al.,
2002). Other than the CAG repeat sequences, these loci
exhibit little sequence similarity. The expanded polyQ
repeats may cause neurodegeneration by means of “gain of
function” mechanisms by imparting novel neurotoxic
properties. There are suggestions also of possible “loss of
function” effects (Ferrer et al., 2000; Dragatsis et al., 2000;
Zuccato et al., 2001). Common features of this disease
family include dominant inheritance, anticipation of age
of onset, length thresholds for the development of pathol-
ogy around 38–40 CAG repeats (except for SCA6; [Jen,
2003]), and with the exception of SBMA, where dorsal root
ganglia are affected, degeneration restricted to the central
nervous system. Each polyglutamine repeat disorder has a
unique regional pattern of neuropathology. Within af-
fected regions, there is often subpopulation-specific loss of
neurons (Iizuka and Hirayama, 1986; Gouw et al., 1994,
Takiyama et al., 1994; Robitaille et al., 1995; Holmberg et
al., 1998; Yang et al., 2000; Fujigasaki et al., 2001; Bazzett
and Albin, 2001; Pulst, 2003).

Polyglutamine repeat diseases share a common his-
topathologic hallmark; intraneuronal aggregates of pro-
teolytic fragments of the pathogenic protein containing
the polyQ domain (Davies et al., 1997; Paulson et al.,
1997; Becher et al., 1998). The inclusions are often
ubiquinated and contain other proteins. Aggregates occur
within the nucleus (neuronal intranuclear inclusions,
NIIs) and the cytoplasm. There is good evidence that in-
tranuclear localization of polyQ-containing fragments is a
key step in the pathogenesis of neurodegeneration, but the
specific pathogenic role of NIIs is unclear (Klement et al.,
1998; Saudou et al., 1998; Kim et al., 1999; Cummings et
al., 1999).

Ultrastructural evidence of NIIs in HD was published
approximately 30 years ago, but their significance was
unappreciated until their rediscovery in murine genetic
models of HD (Tellez-Nagel et al., 1974; Mangiarini et al.,
1996; Davies et al., 1997). The rediscovery of NIIs empha-
sizes the importance of murine genetic models. Transgenic
and knockin murine models of several CAG repeat disor-
ders have been created that reproduce several aspects of
the human diseases (Burright et al., 1995; Ikeda et al.,
1996; Mangiarini et al., 1996; Reddy et al., 1998; Hodgson
et al., 1999; Levine et al., 1999; Sato et al., 1999; Schilling
et al., 1999; Shelbourne et al., 1999; Huynh et al., 2000;
Wheeler et al., 2000; La Spada et al., 2001; Lin et al., 2001;
Katsuno et al., 2002; Watase et al., 2002; Yoo et al., 2003).

The common features of these diseases suggest common
mechanisms of pathology driven by the expanded CAG
repeats, modified possibly by expression patterns and sur-
rounding sequences of the affected proteins. This infer-
ence predicts that expanded CAG repeats would be neu-
rotoxic in any appropriately expressed “carrier” gene. We
evaluated this prediction by developing a mouse line with
146 CAG repeats in the hypoxanthine phosphoribosyl
transferase locus, (Hprt(CAG)146), a gene that does not
normally include CAG repeats. This line has adult-onset

neurologic abnormalities, shortened life span, and wide-
spread expression of NIIs, confirming the primary impor-
tance of the expanded CAG repeat domains (Ordway et al.,
1997). Hprt is inactivated in these animals. Because Hprt
inactivation in mice is devoid largely of major conse-
quences, these results are consistent with the gain of
function concept (Jinnah et al., 1991, 1992, 1994).

We report additional data on this line, including more
precise determination of the age of onset of the behavioral
changes, the time course of development of NIIs in mice
characterized for behavioral abnormalities, the pattern of
alterations in neurotransmitter markers, the integrity of
mitochondrial electron transport chain markers, and sus-
ceptibility to the mitochodrial toxin 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine (MPTP).

MATERIALS AND METHODS

Mice

The Hprt(CAG)146 knockin mouse line generated by gene
targeting in mouse embryonic stem (ES) cells (Ordway et
al., 1997) was used in all experiments. These studies were
carried out on hemizygous males and homozygous females
derived from breeding of heterozygous females with hemi-
zygous males. Hprt is an X-linked locus and females ex-
press one copy of the locus due to X-inactivation. Offspring
from these matings were genotyped by polymerase chain
reaction using primers flanking the repeat region as de-
scribed previously (Ordway et al., 1997). Initial work in-
dicated no significant differences in the pathology of male
and female mutants. Control animals were similarly gene-
targeted mice with 70 CAG repeats inserted in the Hprt
locus (Hprt(CAG)70). These mice do not develop behavioral
changes or NIIs and have normal life spans (Ordway et al.,
1999).

Behavioral analysis

Twenty seven Hprt(CAG)146 mice, 15 to 24 weeks old,
were analyzed to more precisely define the age of onset of
behavioral abnormalities. Animals younger than 15 weeks
never showed behavioral abnormalities. Control animals
were 12 Hprt(CAG)70 mice, aged 24 to 64 weeks. Animals
were housed separately for behavioral analysis. Cages
were placed in a brightly lit laminar flow hood and cage
tops removed. Normal mice will actively move about the
cage under these conditions. Each mouse was scored as
active if it roamed from its initial position or reared within
30 seconds of cage lid removal. Mice were then held sus-
pended by the tail for 1 minute. Normal mice flail, extend
limbs, and attempt to escape by climbing onto the tester’s
finger. Clasping of the fore- or hindlimbs is abnormal and
was scored as present or absent. Mice able to climb onto
the tester’s finger within 1 minute were scored as escap-
ing; those unable to escape were scored as abnormal. For
rotarod analysis, mice were placed on a 4 cm diameter
rotarod turning at 2.5 rpm 30 cm above a padded cage
bottom (Ugo Basile, Comeria, Italy). Mice were scored as
falling or not falling within a 60-second trial. Animals
underwent 10 trials on 10 consecutive days. If a test was
abnormal on 20% of trials, that animal was scored as
abnormal on that test. If a seizure was witnessed during
any trials, that animal was scored as having epilepsy.
Animals were assigned a point for each abnormality on
each test—diminished spontaneous activity, clasping, in-
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ability to escape from suspension, falling from the rotarod
within 60 sec, and presence of epilepsy—for a cumulative
behavioral abnormality score with a possible total of 5
points. The higher the score, the greater number of
behavioral abnormalities. Statistical analysis was per-
formed between group behavioral abnormality scores
with the nonparametric Mann–Whitney U test using
the VassarStats program (http://faculty.vassar.edu/lowry/
VassarStats.html).

Immunohistochemistry and quantification
of NIIs

Mice were deeply anesthetized by intraperitoneal injec-
tion of Avertin (Aldrich, 0.4 mg/g i.p.) and perfused
through the heart with approximately 100 ml of 0.1 M
phosphate buffer (PB, pH 7.4) followed by approximately
100 ml of 4% paraformaldehyde in PB. Organs were re-
moved, post-fixed overnight in 4% paraformaldehyde in
PB and cryoprotected in sucrose/PB (up to 20% sucrose).
Frozen brains were cut into 40-�m sections in the hori-
zontal plane. Sections were sequentially collected in 1 in 5
series so that each group contained one section every 200
�m throughout the brain. Heart, liver, lung, kidney,
spleen, testes, and skeletal muscle were processed simi-
larly. Tissue sections were stained with rabbit polyclonal
antiserum against ubiquitin (1:250 or 1:1,000 dilution;
Dako) overnight at 4°C. Hprt immunoreactivity was visu-
alized with a rabbit polyclonal antipeptide antisera di-
rected against amino acids 7-17 of Hprt. The antiserum
identified a single appropriate band on Western blots. For
immunohistochemistry, both 1:500 and 1:2,000 dilutions
were used and gave identical results. Primary antisera
were diluted in PB, 0.3% Triton X-100, and 1.5% blocking
serum. Processing was completed with the ABC method
using Vectastain Elite kits (Vector Laboratories, Te-
mecula, CA). Detection was performed by using a diami-
nobenzidine (DAB) substrate and NiCl2 according to the
manufacturer’s recommended protocol (Vector Laborato-
ries). Sections were dehydrated in graded alcohols and
xylenes and mounted on gelatin-coated slides, and cover-
slips were affixed with Permount (Fisher, Pittsburgh, PA).
Sections were viewed on a Nikon Eclipse E800 microscope.
Adjacent series of sections were stained with 0.5% cresyl
violet.

For quantification, ubiquitin-immunostained sections
were used. By approximately 30 weeks of age, NIIs were
found in virtually all regions examined. Regions were
selected for quantification on the basis of relevance to
human pathology (striatum, cerebellar cortex), early oc-
currence of NIIs (parabrachial nucleus), late occurrence of
NIIs (globus pallidus), and to provide a representative
sampling of other regions (frontal cortex, hippocampal
formation, superior colliculus). NIIs were visualized by
light microscopy at 800� and counted by using an ocular
grid. To provide approximate frequencies of NIIs, the
number of NIIs counted was divided by the number of
cresyl violet–stained neurons in fields from the same ar-
eas of adjacent cresyl violet–stained sections. Cresyl
violet–stained neurons were distinguished from glia by
characteristic nuclear and nucleolar morphology. At least
five fields were counted per brain region per brain. Brains
were scored as lacking NIIs only after thoroughly scan-
ning all sections within a group that included sections at
200-�m intervals throughout the brain. Parallel confirma-

tory experiments were performed with an N-terminal
Hprt antiserum.

Receptor autoradiography

Hprt(CAG)146 and control mice of various ages were
killed by decapitation, and brains were extracted from the
cranial vault, coated with Shandon–Lipshaw embedding
matrix, and frozen in isopentane cooled by liquid N2.
Brains were stored at �70°C until time of sectioning.
Brains were warmed to �20°C, and 12-� sections were cut
on a cryostat and thaw-mounted onto gelatin-coated slides
and stored at �70°C.

Receptor autoradiography was performed as described
previously (Richfield et al., 1989; Higgins and
Greenamyre, 1996; Suzuki et al., 2001). To label type 2
vesicular monoamine transporter (VMAT2) binding sites,
slides were prewashed for 5 minutes at room temperature
(RT) in KBS-ethylenediaminetetraacetic acid buffer (pH
8.0), then incubated with 10 nM [3H]methoxytetrabena-
zine (specific activity 82 Ci/mmol). Tetrabenazine (10 �M)
was added to the ligand buffer to determine nonspecific
binding. After incubation, sections were rinsed twice for 2
minutes in cold assay buffer, dipped in cold distilled wa-
ter, and dried under cool air.

Assays for D1 and D2 dopamine receptors used a 25 mM
Tris buffer (pH 7.2) with 100 mM NaCl, 1 mM MgCl2, 1
�M pargyline and 0.001% ascorbic acid. For D1 receptors,
slides were incubated with 0.55 nM [3H]SCH23390 (spe-
cific activity 89 Ci/mmol) for 2.5 hours. Nonspecific bind-
ing was determined in the presence of 1 �M cis-
flupentixol. For D2 receptors, slides were incubated in
0.75 nM [3H]spiperone (specific activity 96 Ci/mmol) with
100 nM mianserin for 2.5 hours. Nonspecific binding was
defined in the presence of 50 �M dopamine. After incuba-
tion, slides were rinsed in cold incubation buffer for 10
minutes, dipped in distilled water, and dried under cool
air. Slides for �-aminobutyric acid (GABA)/benzodiazepine
receptor assays were prewashed for 30 minutes in cold
assay buffer (50 mM Tris-citrate buffer, pH 7.2), air-dried,
and incubated with 5 nM [3H]flunitrazepam (specific ac-
tivity 85 Ci/mmol) for 30 minutes at 4°C. Nonspecific
binding was determined in the presence of 2 �M clonaz-
epam in the ligand buffer. Sections were rinsed twice for 5
minutes in cold buffer and dried under warm air. Binding
to complex I of the electron transport chain was examined
by using 5 nM [3H]dihydroxyrotenone (DHR; specific ac-
tivity 60 Ci/mmol) in 50 mM Tris-HCl buffer, 1% bovine
serum albumin (pH 7.6). Sections were incubated in li-
gand buffer for 2 hours at RT. Nonspecific binding was
assessed by using 10 �M rotenone. Slides were rinsed in
RT incubation buffer for 1 hour, followed by two 5-minute
washes in 25 mM Tris-HCl (pH 7.6) and 15 seconds in
distilled water, then dried under a stream of warm air.

Tritium-labeled slides were apposed to tritium-sensitive
film (Hyperfilm 3H or BioMax, Amersham) with calibrated
radioactive standards and exposed for 2 to 5 weeks. Films
were developed and analyzed by using a computer-based
image analysis system (MCID, Imaging Research, St. Ca-
tharine’s, Ontario, Canada). Image density corresponding
to binding of tritiated ligand was converted to pmol/mg
protein using the calibrated standards. Specific binding
was determined by subtracting nonspecific from total
binding. Results were analyzed by using the VassarStats
program with a correlated t test.
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Histochemistry

For cytochrome oxidase histochemistry, slides were in-
cubated in 0.1 M HEPES buffer (pH 7.4) with 3.165 mM
nickel ammonium sulfate, 117 mM sucrose, 16.15 �M
cytochrome C, and 2.778 mM DAB for 30–45 minutes at
37°C. The sections were rinsed twice, 10 minutes each, in
fresh HEPES buffer, dipped in distilled water, air-dried,
dehydrated, and cover-slipped. For succinate dehydroge-
nase histochemistry, slides were incubated in 60 mM
phosphate buffer (pH 7.0) with 0.04% nitro blue tetrazo-
lium and 50 mM succinate for 45 minutes at 37°C. The
sections were then soaked for 10 minutes in 4% parafor-
maldehyde in 50 mM Phosphate buffer (pH 7.0), rinsed in
distilled water, dehydrated, and cover-slipped. Sections
were analyzed by measuring optical density using a com-
puter assisted MCID image analysis system (Imaging Re-
search). Regional optical density was quantified using a
uniform gray scale under uniform illumination conditions.
Results were compared using a correlated t test with the
VassarStats program.

MPTP lesions

Mice of varying ages and genotype were treated with 0,
20, or 40 mg/kg MPTP injected intraperitoneally in four
divided doses given at 2-hour intervals. After 7 days, the
animals were killed by decapitation. Groups included both
male and female mice. Genders of mice were balanced
within almost all groups, and there was no effect of gender
on results. The forebrains were frozen and processed for
autoradiography as described above.

Image preparation

Photomicrographs were prepared by photographing im-
ages with an Olympus BX-51 microscope equipped with
SPOT-RT digital camera (Diagnostic Instruments, Ster-
ling Heights, MI). Autoradiographic and histochemical
images were captured with an MCID apparatus (Imaging
Research). Images were imported into Photoshop 5.5
(Adobe, San Jose, CA) for adjustment of contrast, bright-
ness, and sharpness.

RESULTS

Behavioral results

Hprt(CAG)146 mice began to manifest significant behav-
ioral changes at approximately 22 weeks of age. To con-
firm this impression, Hprt(CAG)146 mice were divided into
two groups; 15 to 21 weeks old (n � 15) and 22 to 24 weeks
old (n � 11), and intergroup differences in cumulative
behavioral abnormality scores (summation of all individ-
ual behavioral tests scored as normal or abnormal; see
Materials and Methods section above) assessed with the
nonparametric Mann–Whitney U test (Fig. 1). For the 15-
to 21-week group, the mean rank was 8.7. For the 22- to
24-month group, mean rank was 20. This difference is
significant (P � 0.0002; two-tailed test). The 22- to 24-
week group was compared also with a group of Hprt(CAG)70

control mice; 23 to 24 weeks old (n � 6), 26 to 29 weeks old
(n � 2), and 60 to 64 weeks old (n � 4); total n � 12. The
mean rank of Hprt(CAG)70 mice was 6.7. The mean rank of
the Hprt(CAG)146 mice was 17.8. This difference is signifi-
cant (P � 0.0001, two-tailed test). The Hprt(CAG)146 mice
15 to 21 weeks old and the Hprt(CAG)70 mice did not differ
significantly in cumulative behavioral scores; both with

mean rank of 14 (P � 0.984, two-tailed test). The normal
results in Hprt(CAG)70 mice and Hprt(CAG)146 mice 15 to 21
weeks old are consistent with our prior experience with
wild-type and Hprt knockout mice, where behavioral ab-
normalities on this battery of tests are seen only rarely,
even in older animals (Ordway et al., 1997, 1999).

Time course of occurrence of NIIs

NII occurrence was surveyed with ubiquitin immuno-
histochemistry in Hprt(CAG)146 mice 15 to 18 weeks old, 20
to 26 weeks old, 32 to 38 weeks old, and 40 to 46 weeks old
(n � 3–4 for each group). Assessing NII occurrence in
older animals is difficult because of steeply rising mortal-
ity after 40 weeks. NII burden was assessed by estimating
the percentage of Nissl-stained neurons expressing NIIs.
No ubiquitin immunoreactive NIIs were found in the 15-
to 18-week age group (Table 1; Fig. 2). In older animals,
NIIs were detectable in varying numbers in all regions
surveyed. In the 20- to 26-month age group, NIIs were
present in a substantial percentage of neurons in the
parabrachial nucleus and frontal cortex, i.e., 58% and
37%, respectively. Moderate percentages of NIIs (�20%
and �10%) were present in cerebellar Purkinje cells, sub-
stantia nigra pars compacta neurons, superior colliculus
neurons, and inferior colliculus neurons. Less than 10% of
neurons in the hippocampal formation, striatum, globus
pallidus, or substantia nigra pars reticulata expressed
NIIs. In the 32- to 38-week age group, the regional distri-
bution and percentage of NIIs was similar to that found in
the 20- to 26-week age group with the possible exception of
parabrachial neurons where the percentage of NII-
containing neurons rose to 72%. In the 40- to 46-week age
group, all regions exhibited abundant NIIs. Percentage of
NIIs rose to 85% in the parabrachial nucleus and exceeded
60% in the frontal cortex, substantia nigra pars compacta,
cerebellar Purkinje cells, and hippocampal formation. Per-
centage of NIIs exceeded 50% in striatal neurons, superior
collicular neurons, and inferior collicular neurons. Even in
regions with the lowest percentages of NIIs, the substan-
tia nigra pars reticulata and the globus pallidus, percent-
age of neurons expressing NIIs was substantial, approxi-
mating 30%. Many regions displayed marked increases in

Fig. 1. Mean behavioral scores for Hprt(CAG)146 mice, 15–21 weeks
old, compared with Hprt(CAG)146, 22–24 weeks old, and Hprt(CAG)70

control mice. The 22- to 24-week age group has higher mean behav-
ioral scores than younger or control mice.
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the percentage of neurons containing NIIs in the interval
between the 32- to 38-week and 40- to46-week age groups.
In the frontal cortex, cerebellar Purkinje cells, globus pal-
lidus and substantia nigra pars compacta, there was a
two- to threefold increase the percentage of neurons con-
taining NIIs. In the remaining regions, the magnitude of
the increase was greater, approximately 5- to 10-fold. Sim-
ilar results were found with anti-Hprt antisera (Fig. 3).

NIIs in non–central nervous system tissue

Non–central nervous system tissues were studied in
two mutants, 30 and 46 weeks of age, and two wild-type

mice. NIIs were found in hepatocytes but not in heart,
lung, kidney, spleen, testes, or muscle (Fig. 4). NIIs were
seen also in choroid plexus epithelium (Fig. 4).

Receptor binding studies

GABA/benzodiazepine receptor, D1-like receptor, D2-
like receptor, and VMAT2 binding sites were assessed
before and after the onset of behavioral abnormalities in
Hprt(CAG)146 mice. Animals were assessed at approxi-
mately 16 weeks (n � 4) and 45 weeks of age (n � 7). These
results were compared with results from older (approxi-
mately 55 week) Hprt(CAG)70 mice as described in the

Fig. 2. Ubiquitin-immunoreactive neuronal intranuclear inclusions. Regions are cerebral cortex
(A–C), striatum (D–F), and parabrachial nucleus (G–I) at 15 weeks (A,D,G), 26 weeks (B,E,H), and 40
weeks (C,F,I). Arrows mark representative inclusions. Scale bar � 75 �m in I (applies to A–I).

TABLE 1. NII Distribution as a Function of Age1

Animal age
(week)

PN
(%)

CTX
(%)

PRK
(%)

SNc
(%)

SC
(%)

IC
(%)

HIP
(%)

SNr
(%)

STR
(%)

GP
(%)

15–18 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
20–26 57.8 36.6 18.0 17.1 16.4 16.3 7.5 4.7 4.5 3.8
32–38 72.0 22.7 23.3 20.9 11.7 7.5 10.0 7.8 4.8 7.2
40–46 84.6 63.4 64.9 65.6 50.5 58.7 65.9 31.9 56.6 27.5

1NIIs were identified with ubiquitin immunohistochemistry. Neurons were counted in parabrachial nuclei (PN), frontal cortex (CTX), cerebellar Purkinje cells (PRK), substantia
nigra pars compacta (SNc), superior colliculus (SC), inferior colliculus (IC), hippocampus (HIP) substantia nigra pars reticulata (SNr), striatum (STR), and globus pallidus (GP).
NII-positive neurons were counted manually using an eyepiece graticule in randomly selected fields. Total Nissl-stained neurons were counted in the same fields, and results are
expressed as percentage of total neurons per field. N � 3–4 per group.
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Material and Methods section. Additional controls in-
cluded younger (16 week; n � 4), middle aged (30 week;
n � 4), and older (51 week; n � 4) wild-type mice with
intact Hprt and older Hprt(CAG)39 mice (51 week; n � 2).
Results from these controls were virtually identical to
results obtained from Hprt(CAG)70 mice (data not shown),
and Hprt(CAG)70 mice are believed to be the best control
group for Hprt(CAG)146 mice. At 16 weeks and 45 weeks,
there were not changes in GABA/BDZ binding sites in any
region (Table 2; Fig. 5). D1-like receptor and D2-like re-
ceptor binding sites were significantly reduced in the stri-
atal complex (striatum proper, nucleus accumbens, olfac-
tory tubercle) of older (45 week) but not younger (16 week)
Hprt(CAG)146 mice (Table 3; Fig. 5). In the substantia
nigra, D1-like receptor binding sites were reduced simi-
larly in older Hprt(CAG)146 mice. In the nigra, the great
majority of D1-like receptor binding sites are on striatoni-
gral terminals, and this finding is likely to reflect either
reduced synthesis of D1-like receptors by striatal projec-
tion neurons or loss of striatal terminals within the sub-
stantia nigra. There was a trend toward increased sub-
stantia nigra D2-like receptor binding. Nigral D2-like

receptors are expressed by substantia nigra dopaminergic
neurons, and this increase could represent a concentrative
effect of loss of surrounding neuropil due to degeneration
of afferent striatal projection neuron terminals. VMAT2
binding, a measure of striatal dopaminergic terminals,
was markedly reduced in the striatal complex and sub-
stantia nigra of older Hprt(CAG)146 mice (Table 3; Fig. 5).
In the younger Hprt(CAG)146 mice, VMAT2 binding was
reduced in the striatum proper, and there was a trend
toward reduced VMAT2 binding in the nucleus accum-
bens, olfactory tubercle, and substantia nigra. Alterations
in VMAT2 binding were the only changes we detected
before the onset of behavioral changes or NII formation.
Striatal VMAT2 binding is usually interpreted as a func-
tion of striatal dopamine terminal integrity but altered
expression of VMAT2 is another possible explanation for
this finding.

Mitochondrial electron transport chain
activities

Complex I expression was assessed with [3H]DHR bind-
ing, whereas Complex II/III and Complex IV activities

Fig. 3. Hprt-immunoreactive neuronal intranuclear inclusions. Regions are cerebral cortex
(A–C), striatum (D–F), and parabrachial nucleus (G–I) at 15 weeks (A,D,G), 26 weeks (B,E,H), and 40
weeks (C,F,I). Arrows mark representative inclusions. Scale bar � 75 �m in I (applies to A–I).
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were assessed histochemically with succinate dehydroge-
nase (SDH) and cytochrome oxidase (CyOx) histochemistry,
respectively. [3H]DHR binding was measured in young
(16 week; n � 4) and older (45 week; n � 7) Hprt(CAG)146

mice. Controls were older (56 week; n � 12) Hprt(CAG)70

mice. In all regions evaluated of older Hprt(CAG)146 mice,
there was a nonsignificant trend toward increases in
[3H]DHR binding compared with Hprt(CAG)70 mice (Table
4; Fig. 6). Younger Hprt(CAG)146 mice were indistinguish-
able from Hprt(CAG)70 mice. Similar results were obtained
with SDH and CyOx histochemistry (Table 4; Fig. 6). In all

brain regions examined in all age groups, there was no
difference in SDH or CyOx activity between Hprt(CAG)146

and Hprt(CAG)70 mice.

Susceptibility to MPTP

To assess the vulnerability of Hprt(CAG)146 mice to mi-
tochondrial impairment, we chose the neurotoxin MPTP.
MPTP is a protoxin selective for dopaminergic neurons.
MPTP is converted to MPP� with the latter species selec-
tively accumulated in dopaminergic neurons where it in-
hibits Complex I. We chose this approach because of ease

TABLE 2. [3H]Flunitrazepam Binding1

Genotype n
Age in weeks

(	SEM) Striatum nAccumbens SNc TempCx FrPar Cx Hippo MlCblm GclCblm

HprtQ146 7 44.94 (1.0) 102.57 (18.46) 123.01 (10.22) 90.50 (9.34) 119.21 (5.16) 105.12 (5.42) 99.20 (11.49) 101.85 (16.54) 130.15 (35.35)
HprtQ146 4 16.5 (0.5) 94.48 (13.92) 108.88 (11.19) 95.18 (6.73) 98.11 (4.37) 83.50 (6.73) 91.55 (8.86) 95.65 (10.46) 112.98 (17.75)
HprtQ70 7 55.0 (1.5) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

1nAccumbens, nucleus accumbens; SNc, substantia nigra, pars compacta; TempCx, temporal cortex; FrPar Cx, frontoparietal cortex; Hippo, hippocampus; MlCblm, molecular layer
of the cerebellar cortex; GclCblm, granular cell layer of the cerebellar cortex. Data are percentage of regional specific binding of [3H]flunitrazepam (	 SEM) relative to
[3H]flunitrazepam specific binding in aged Q70 animals. Specific binding determined by receptor autoradiography with conversion of film optical density to bound radioactivity
using coexposed radioactive standards to generate a standard curve relating optical density to radioactivity. None of the comparisons reached significance at P � 0.05.

Fig. 4. Neuronal intranuclear inclusions in non–central nervous system tissues. Ubiquitin-
immunoreactivity in choroid plexus epithelium and liver of 30-week-old wild-type mouse (A,C) and
46-week-old Hprt(CAG)146 mouse (B,D). Arrows mark representative inclusions. Scale bar � 75 �m in D
(applies to A–D).
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of MPTP administration and ease of measurement of stri-
atal dopamine terminal density with the VMAT2 ligand
[3H]MTBZ. Expression of NIIs within substantia nigra
pars compacta neurons suggested that these neurons
might be more vulnerable to mitochondrial impairment
(Ordway et al., 1997). Hprt(CAG)146 mice at varying ages

(12–22 weeks, n � 3–5; 27–32 weeks, n � 5; 42–55 weeks,
n � 5–6) were evaluated after receiving 0 mg/kg, 20 mg/
kg, and 40 mg/kg of MPTP as described in the Materials
and Methods section. The control animals were
Hprt(CAG)70 mice. As described above, there was a decline
in VMAT2 binding in the vehicle-treated Hprt(CAG)146

TABLE 3. Striatal–Nigral Dopamine Receptors and Terminals1

Genotype n
Age in weeks

(	SEM) Striatum nAccumbens OT SN

D1 receptors
HprtQ146 7 44.9 (1.0) 63.05 (6.16) 66.90 (4.43) 52.80 (4.82) 73.93 (8.00)
HprtQ146 4 16.5 (0.5) 96.40 (8.07) 91.11 (14.61) 82.56 (13.48) 77.94 (9.97)
HprtQ70 8 55.1 (1.28) 100.00 100.00 100.00 100.00

D2 receptors
HprtQ146 7 44.9 (1.0) 52.00 (4.56) 61.16 (4.87) 61.03 (5.77) 178.02 (64.19)
HprtQ146 4 16.5 (0.5) 94.65 (4.05) 95.718 (7.12) 81.47 (8.43) 85.78 (28.79)
HprtQ70 7 54.6 (1.3) 100.00 100.00 100.00 100.00

Dopamine terminals
HprtQ146 7 44.9 (1.0) 30.92 (8.01) 37.81 (8.12) 38.83 (8.63) 58.11 (11.56)
HprtQ146 4 16.5 (0.5) 57.38 (7.11) 75.61 (8.68) 84.82 (6.75) 77.84 (9.46)
HprtQ70 8 55.4 (1.3) 100.00 100.00 100.00 100.00

1nAccumbens, nucleus accumbens; OT, olfactory tubercule; SN, substantia nigra. Data are percentage of specific binding of [3H]SCH23390 for D1 receptors, [3H]spiperone for D2
receptors, [3H]methoxytetrabenazine for dopamine terminals (	 SEM) relative to specific ligand binding in aged Q70 animals. Specific binding determined by receptor
autoradiography with conversion of film optical density to bound radioactivity using coexposed radioactive standards to generate a standard curve relating optical density to
radioactivity. Bold values are significantly different from control values (P � 0.05).

Fig. 5. Autoradiographs of type 2 vesicular monoamine trans-
porter (VMAT2) expression (a–c), D1 receptor expression (d–f), D2
receptor expression (g–i), and benzodiazepine/GABA-A receptor ex-
pression (j–l). Columns are 16-week-old Hprt(CAG)146 mice (a,d,g,j),
55-week-old Hprt(CAG)70 control mice (b,e,h,k), and 45-week-old

Hprt(CAG)146 mice (c,f,i,l). Striatal VMAT2 expression is reduced in
both young and older Hprt(CAG)146 mice. Striatal D1 receptor and D2
receptor expression are reduced in older Hprt(CAG)146 only.
Benzodiazepine/GABA-A receptor expression is unchanged in young
and old Hprt(CAG)146. Scale bar � 5 mm in i (applies to a–i).
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mice compared with Hprt(CAG)70 mice. In contrast to the
results described above, differences between Hprt(CAG)70

and Hprt(CAG)146 mice were not seen in the youngest mice.
This finding is probably because this experiment included
some younger animals (12 weeks) than the experiments
described above (16 weeks). A total of 40 mg/kg MPTP
treatment reduced striatal VMAT2 binding sites in both
Hprt(CAG)146 and Hprt(CAG)70 mice at young and older ages
(Table 5; Fig. 7). The magnitude of the reduction in stri-
atal VMAT2 binding, as measured by percentage loss of
striatal VMAT2 binding compared with vehicle-treated
controls was actually greater in Hprt(CAG)70 mice than in

Hprt(CAG)146 mice (Table 5). In the oldest Hprt(CAG)70

mice, the effect of MPTP appeared to be greater than in
the youngest Hprt(CAG)70 mice. Although the vehicle-
treated controls had very similar levels of striatal VMAT2
binding, the percentage decline in striatal VMAT2 binding
after 40 mg/kg treatment was approximately twice as
great in the older animals. Similarly, although the 20
mg/kg dose produced no effect in younger Hprt(CAG)70

mice, there was an effect in the oldest Hprt(CAG)70 mice.
There is no differential effect of MPTP between
Hprt(CAG)146 and Hprt(CAG)70 mice, and there may be an
age enhanced susceptibility to MPTP in Hprt(CAG)70 mice.

Fig. 6. Electron transport chain measures in young (16 weeks,
a,d,g), aged (45 weeks, c,f,i) Hprt(CAG)146, and aged (45 week, b,e,h)
Hprt(CAG)70 control mice. Top row (a–c) is [3H]dihydrorotenone bind-
ing to complex I; second row (d–f) is succinate dehydrogenase activity,

and third row (g–i) is cytochrome oxidase activity. There is no differ-
ence between young Hprt(CAG)146 mice, aged Hprt(CAG)146 mice, and
aged control Hprt(CAG)70 mice. Scale bar � 3 mm in i (applies to d–i);
4 mm in a–c.

TABLE 4. Electron Transport Chain Measures1

Genotype
Age

(weeks) n Region
DHR

Binding SDH CyOx

HprtQ146 12–22 3–4 Striatum 103.462 0.252 0.435
HprtQ146 12–22 3–4 Sensorimotor cortex 129.392 0.235 0.530
HprtQ146 45 5–7 Striatum 134.812 0.268 0.436
HprtQ146 45 5–7 Sensorimotor cortex 123.502 0.263 0.610
HprtQ70 12–22 4–12 Striatum 100 0.321 0.423
HprtQ70 12–22 4–12 Sensorimotor cortex 100 0.281 0.529
HprtQ70 45 4–12 Striatum 100 0.287 0.444
HprtQ70 45 4–12 Sensorimotor cortex 100 0.257 0.549

1DHR, [3H]dihydrotenone binding; SDH, succinate dehydrogenase activity; CyOx, cytochrome oxidase activity. DHR binding is expressed as percentage of specific [3H]Dihydro-
tenone binding in HprtQ70 animals. SDH and CyOx activity measured as optical density of regions on fresh frozen cryostat prepared sections with standard histochemical methods
(see Materials and Methods section for details). No difference found between young or aged HprtQ146 or HprtQ70 mice. Similar results found in other brain regions (data not
shown) and also after regional optical density was normalized to whole brain optical density. Hprt, hypoxanthine phosphoribosyl transferase locus.
2DHR binding is specific binding of [3H]dihydrotenone determined by receptor autoradiography with conversion of film optical density to bound radioactivity using coexposed
radioactive standards to generate a standard curve relating optical density to radioactivity.
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DISCUSSION

Age of onset of behavioral abnormalities

We showed previously that Hprt(CAG)146 mice develop
adult-onset behavioral abnormalities, have premature
mortality, and exhibit abundant NIIs (Ordway et al.,
1997). Consistent with prior data, cumulative behavioral
scores became abnormal at approximately 22 weeks of
age. Repeat length is an important determinant of age of
onset and penetrance (Stine et al., 1993; Rubinsztein et
al., 1996). Over some threshold, repeat number correlates
inversely with age of onset of clinical disease (Hunting-
ton’s Disease Collaborative Research Group, 1993; Rubin-
sztein et al., 1997) and accounts for approximately 50% of

the variance in age of onset. In murine genetic models,
repeat number and the amount of gene product have in-
fluenced age of onset (reviewed in Zoghbi and Botas,
2002). In transgenic models, expanded CAG repeats in
truncated constructs and/or high expression of transgenes
are required to produce a phenotype. With knockin models
of HD and SCA1, significant behavioral phenotypes de-
velop only with CAG repeat expansions greater than those
found typically in human patients (Lin et al., 2001; Me-
nalled et al., 2002; Wheeler et al., 2002; Zoghbi and Botas,
2002; Watase et al., 2002). The relatively short life span of
mice may limit the opportunity to observe the effects of
repeat lengths that are pathogenic in humans. Existing
methods of behavioral evaluation may also be insuffi-
ciently robust to detect earlier changes.

The amount of mutant protein produced may also affect
age of onset. The R6 transgenic HD lines developed by
Bates’ group vary in repeat number and levels of protein
expression (Mangiarini et al., 1996). Lines with higher
repeat numbers and higher levels of protein expression
have a more aggressive phenotype. In a transgenic yeast
artificial chromosome (YAC) model of HD with 43 repeats,
abnormalities are found only with supranormal expres-
sion levels of the mutant protein (Reddy et al., 1998). In
our knockin model of HD, mutant homozygous animals
develop behavioral abnormalities at an earlier age than
heterozygous animals (Lin et al., 2001). Similar effects of
homozygosity are found in a knockin model of SCA7 (Yoo
et al., 2003). Homozygous HD mutation carriers were re-
ported originally to have clinical disease indistinguishable
from heterozygotes, but recent data indicates that HD
homozygotes have a more aggressive clinical course than
heterozygotes (Wexler et al., 1987; Squitieri et al., 2003).
Earlier age of onset is reported in SCA3/MJD and DRPLA
homozygotes (Sato et al., 1995; Sobue et al., 1996).

TABLE 5. Effects of MPTP on Dorsal Striatal [3H]MTBZ Binding1

Group
Young

12–22 wk
Mid

27–32 wk
Old

42–55 wk

Q146, Q146/146
MPTP 0 100.2 (3) 60.8 (5) 73.1 (5)
MPTP 20 115.0 (3) 61.9 (5) 54.5 (5)
MPTP 40 66.5 (5) 34.1 (5) 40.6 (6)

Q70, Q70/70
MPTP 0 96.7 (5) 74.4 (1) 100.0 (4)
MPTP 20 111.3 (5) 90.0 (1) 66.2 (5)
MPTP 40 78.8 (5) 33.5 (1) 41.9 (4)

Q39, Q39/39
MPTP 0 97.3 (2) 90.7 (2) 155.8 (2)
MPTP 20 112.6 (2) 89.0 (2) 98.0 (2)
MPTP 40 86.1 (2) 42.0 (2) 56.5 (1)

1MPTP 0 � vehicle administered, MPTP 20 � 20 mg/kg MPTP, MPTP 40 � 40 mg/kg
MPTP. [3H]MTBZ binding to dorsal striatal dopamine terminals determined by recep-
tor autoradiography with conversion of film optical density to bound radioactivity using
coexposed radioactive standards to generate a standard curve relating optical density
to radioactivity. Values expressed as percentage of striatal specific [3H]MTBZ binding
in Q39 and Q146 relative to specific [3H]MTBZ binding in old Q70 MPTP 0 animals.
Numbers in parentheses after percent values are the number of each group. There is no
difference in the effects of MPTP on [3H]MTBZ binding between Q146, Q70, and Q39
animals. MPTP, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine.

Fig. 7. Effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
(MPTP) intoxication on Hprt(CAG)146 and Hprt(CAG)70 control mice of
different ages. Amounts administered are 0 mg/kg MPTP(a–d), 20
mg/kg MPTP (e–h), 40 mg/kg (i–l). First column (a,e,i) is 13-week
Hprt(CAG)70 mouse, second column (b,f,j) is 16-week Hprt(CAG)146

mouse, third column (c,g,k) is 45-week Hprt(CAG)70 mouse, fourth
column (d,h,l) is 45-week Hprt(CAG)146 mouse. There is no difference in
MPTP effects at any age or dose of MPTP. Scale bar � 1.5 mm in l
(applies to a–l).
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Time course of NII accumulation

The role of NIIs in neurodegeneration is controversial.
By analogy with other forms of insoluble protein pathol-
ogy, e.g., Lewy bodies and amyloid plaques, NIIs and
cytoplasmic inclusions are suggested to be proximate
causes of neurodegeneration in CAG repeat disorders (Da-
vies et al., 1997; Ross, 1997, 2002; Scherzinger et al., 1997;
Becher et al., 1998; Sisodia, 1998; Trojanowski and Lee,
2000). Alternative interpretations of the role of NIIs are
that they are epiphenomena or that they could be protec-
tive (Ordway et al., 1997; Sisodia, 1998; Ross, 2002; Zog-
bhi and Botas, 2002).

NIIs were first visualized at approximately the same
age as the development of behavioral abnormalities. In
almost all regions studied, there was a marked increase in
the percentage of neurons expressing NIIs in the 40 to 46
week age group, paralleling the ages at which mortality
accelerates. This type of analysis cannot, however, estab-
lish causal relations between NIIs and behavioral abnor-
malities. We relied on ubiquitin immunohistochemistry to
quantify the presence of NIIs. Aggregation of polyglu-
tamine repeat-containing protein fragments may occur
earlier than easily demonstrable ubiquination. In HD
knockin mice, nuclear localization of huntingtin is an
early event and emergence of huntingtin-immunoreactive
NIIs precedes the development of ubiquitin-
immunoreactive NIIs (Wheeler et al., 2000; Tallaksen-
Greene et al., unpublished data). With anti-Hprt antisera,
we found a similar time course for NII emergence but our
reliance on ubiquitin immunohistochemistry for quantifi-
cation may underestimate the age of occurrence of NIIs
and the apparent correlation with behavioral abnormali-
ties may be spurious.

We found one region where evidence of neuronal dys-
function is dissociated from NII occurrence, the substantia
nigra pars compacta (SNpc). Dorsal striatal [3H]MTBZ
binding was decreased before NII occurrence in the SNpc.
[3H]MTBZ binding is an excellent marker of nigrostriatal
dopaminergic afferents (Vander Borght et al., 1995a, b).
Diminished [3H]MTBZ binding is due to either loss of
nigrostriatal dopaminergic afferents or relative down-
regulation of VMAT2 expression. Decreased striatal
[3H]MTBZ binding is a likely marker of neuronal dysfunc-
tion. Dissociation of NII expression from [3H]MTBZ bind-
ing changes argues against a primary pathogenic role for
NIIs in neurodegeneration.

In vitro and in vivo experiments dissociated the toxic
effects of expanded CAG repeat-containing intranuclear
fragments from NII formation (Saudou et al., 1998; Kle-
ment et al., 1998; Kim et al., 1999; Cummings et al., 1999;
Simeoni et al., 2000; Mastroberardino et al., 2002; Me-
nalled et el., 2002; Watase et al., 2002). In HD, there is not
a good correlation between striatal neuron subpopulation
expression of NIIs and the pattern of striatal neuron sub-
population degeneration (DiFiglia et al., 1997; Kuemmerle
et al., 1999). In SCA2, NIIs are expressed sparsely and
without good correlation with the pattern of neurodegen-
eration (Huynh et al., 2000). NIIs are probably not key
mediators of pathogenesis in polyglutamine repeat disor-
ders. NIIs could play a protective role by acting as a “sink”
for toxic expanded CAG repeat-containing proteolytic
fragments, and neurons able to form NIIs may be rela-
tively protected against the effects of expanded CAG re-
peats. Oligomerization of polyglutamine-containing frag-

ments, however, may be a key step in pathogenesis.
Disruption of oligomerization with the azo-dye Congo Red,
extends life span and reduces NII burden in R6/2 mice
(Sanchez et al., 2003). The role of NIIs could be multifac-
torial. In our data set, abundant NIIs were found in all
regions examined around the period when mortality rates
accelerated. NIIs may act as a protective sink in the early
stages of neuronal injury but assume a pathogenic role
later in the course of the disease.

Nuclear inclusions in non-neuronal tissues

We found nuclear inclusions in two non-neuronal cell
populations: hepatocytes and choroid plexus epithelium.
The relative lack of nuclear inclusions in non-neuronal
cells is interesting in view of the widespread expression of
Hprt. In R6/2 mice, which have diabetes, nuclear inclu-
sions have been found in pancreatic islet cells, skeletal
and cardiac muscle fibers, adrenal cortical cells, and my-
enteric plexus neurons (Hurlbert et al., 1999; Sathasivam
et al., 1999). It is unknown why NIIs are expressed pref-
erentially in neurons and why neurons are particularly
susceptible to the toxic effects of polyglutamine expan-
sions. Neurons are unusually long lived postmitotic cells
with an essentially zero rate of turnover in almost all
brain regions. Even low rates of cell turnover might purge
cells accumulating toxic polyglutamine-containing frag-
ments. Some mitotically active cell populations express
NIIs in R6/2 mice, and we did find nuclear inclusions in
hepatocytes, a renewable cell type. Factors governing the
expression of NIIs are likely to be complex, possibly in-
cluding cell-specific differences in cell life span and me-
tabolism of expanded polyglutamine-containing proteins.

Neurotransmitter marker changes and
transcriptional dysregulation

We found differential effects on neurotransmitter mark-
ers in Hprt(CAG)146 mice. In both young and older
Hprt(CAG)146 mice, there was no effect on expression of
GABA/benzodiazepine receptor binding sites. Striatal D1-
like and D2-like receptor binding site expression was di-
minished in older animals. Dorsal striatal VMAT2 binding
was diminished significantly before the development of
behavioral abnormalities and the occurrence of NIIs. The
normal expression of GABA/benzodiazepine receptor bind-
ing sites argues against nonspecific loss of neurotransmit-
ter marker binding sites due to neurodegeneration or non-
specific neuronal dysfunction. A similar result was
described in the R6/2 model of HD (Cha et al., 1998;
Reynolds et al., 1999). Of interest, in this line, there is a
similar decline in striatal dopamine terminal markers
when markers of intrinsic striatal neurons are preserved
(Reynolds et al., 1999; Hickey et al., 2002). A likely expla-
nation for this pattern of findings is selective loss of spe-
cific neurotransmitter markers due to transcriptional dys-
regulation (Luthi-Carter et al., 2000).

Considerable evidence indicates that transcriptional
dysregulation is not merely an epiphenomenon but central
to the pathogenesis of neurodegenerative polyglutamine
repeat disorders (Perutz et al., 1994; Boutell et al., 1999;
Lin et al., 2000; Luthi-Carter et al., 2000; McCampbell et
al., 2000, 2001; Holbert et al., 2001; Nucifora et al., 2001;
Steffan et al., 2000, 2001; Chai et al., 2001, 2002; Zhang et
al., 2002; Dunah et al., 2002; Katsuno et al., 2002;
Takeyama et al., 2002; Kegel et al., 2002). Evidence from
in vitro models and genetic models indicates that nuclear
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localization of expanded polyglutamine-containing
polypeptides, possibly in the form of caspase-produced
fragments, is a crucial step in pathogenesis (Goldberg et
al., 1996; Wellington et al., 1998, 2002; Li et al., 2000; Kim
et al., 2001). For a dissenting view, however, see Dyer and
McMurray (2001). Expanded polyglutamine-containing
polypeptides may aggregate with and sequester proteins
involved in transcription (Boutell et al., 1999; McCamp-
bell et al., 2000, 2001; Holbert et al., 2001; Nucifora et al.,
2001; Steffan et al., 2000; Chai et al., 2001, 2002; Zhang et
al., 2002; Dunah et al., 2002; Kegel et al., 2002). Evidence
from both human postmortem tissue and murine genetic
models of HD, SCA1, and DRPLA indicates altered tran-
scription in these diseases. Overexpression of sequestered
transcriptionally active proteins reverses some of the ef-
fects of mutant huntingtin and atrophin in some model
systems (Shimohata et al., 2000; Nucifora et al., 2001;
Dunah et al., 2002).

Transcriptional dysregulation is a plausible mechanism
for explaining the regional and subregional specificity of
neurodegeneration characteristic of polyglutamine dis-
eases. Different populations of neurons express different
complements of proteins active in transcription. Differen-
tial affinity of these proteins for the different expanded
polyglutamine-containing protein fragments could explain
differential regional and subregional neurodegeneration.
This model is supported by results from a murine trans-
genic model of SCA7 where specific interference with the
homeobox protein CRX is suggested to underlie retinal
degeneration (La Spada et al., 2001). On the other hand,
recent data from a knockin model of SCA7 contradicts this
result (Yoo et al., 2003).

Mitochondrial dysfunction

One creditable proximate cause of neurodegeneration in
HD is excitotoxic injury. Acute N-methyl-D-aspartate
(NMDA) receptor agonist striatal excitotoxic lesions are
remarkable mimics of HD striatal pathology (Bazzett and
Albin, 2001). The most popular version of the excitotoxic
hypothesis suggests that mitochondrial dysfunction in-
creases neuronal susceptibility to NMDA receptor-
mediated excitotoxic injury, so-called indirect excitotoxic-
ity. Compounds that inhibit electron transport chain
activity cause striatal lesions with many features of HD
striatal pathology (Beal et al., 1993a, b; Greene and
Greenamyre, 1995; Bazzett et al., 1995). Several in vitro
and in vivo studies describe mitochondrial dysfunction in
HD or murine genetic models of HD (Jenkins et al., 1993;
Browne et al., 1997; Sawa et al., 1999, Tabrizi et al., 2000;
Panov et al., 2002). Guidetti et al. (2001), however, did not
find evidence of mitochondrial dysfunction in early post-
mortem HD material. The excitotoxic hypothesis predicts
that murine genetic models of HD should exhibit in-
creased susceptibility to mitochondrial toxins and/or
NMDA agonists. Conflicting data exist on this point (Bog-
danov et al., 1998; Hansson et al., 1999, 2001a, b; Levine
et al., 1999; Zeron et al., 2002). A large clinical trial based
on the indirect excitotoxicity hypothesis evaluated coen-
zyme Q10 (ubiquinone) as a mitochondrial function
booster and the NMDA receptor antagonist remacemide
(Huntington Study Group, 2001). There was no significant
effect of either compound or the combination, although
positive effects were seen in the R6/2 mouse model (Fer-
rante et al., 2002).

Our data do not support the notion of mitochondrial
dysfunction or increased susceptibility to mitochondrial
toxins. The indirect excitotoxic hypothesis is plausible, but
more evidence will be required to demonstrate its rele-
vance to polyglutamine diseases.

Knockin vs. transgenic models

A theoretical advantage of this model and other
“knockin” murine genetic models is that the expanded
CAG repeat sequences are expressed in the context of
their normal patterns of expression and regulatory genetic
elements. Transgenic murine models can have multiple
copies of transgenes, abnormal expression of polyglu-
tamine repeat-containing proteins, and transgene expres-
sion is not regulated by sequences that normally control
the pattern and level of expression. Transgenic models
provide considerable insight into the general processes
causing neurodegeneration but may not be close mimics of
specific human CAG repeat disorders. Knockin models of
HD, SCA1, and SCA7 exhibit somewhat different pheno-
types than seen in transgenic lines (Burright et al., 1995;
Mangiarini et al., 1996; La Spada et al., 2001; Lin et al.,
2001; Watase et al., 2002; Wheeler et al., 2002; Yoo et al.,
2003). Whereas knockin lines require very long repeat
numbers to produce a phenotype and the phenotype may
be less aggressive than seen in transgenic lines, the pat-
terns of pathology in knockin lines seem more similar to
the human diseases. Important factors influencing pheno-
type in murine genetic models of HD are the number of
repeats and the level of expression of mutant protein (see
discussion above; Zoghbi and Botas, 2002). Knockin lines
may have the virtue of disentangling the roles of repeat
number and level of protein expression. In knockin lines,
levels of expression are comparable from line to line and
differences in phenotype can be attributed to differences
in repeat number.

If transcriptional dysregulation is at the heart of patho-
genesis in polyglutamine disorders, then transgenic mod-
els with heightened levels of protein expression and non-
physiological distributions of gene expression may give
misleading impressions of key factors in the pathogenesis
of regional neurodegeneration. Comparison of CRX pro-
tein activity in transgenic and knockin models of SCA7
suggests that the diminished CRX protein activity found
in the transgenic model may be an artifact of abnormally
regulated expression of SCA7 mutant protein in the trans-
genic model (La Spada et al., 2001; Yoo et al., 2003).
Specific patterns of neurodegeneration may result from
neuron subpopulation-specific interactions between ex-
panded polyglutamine-containing protein fragments and
transcriptionally active proteins, and these specific pat-
terns of interaction may be distorted in transgenic models.
At least with respect to HD, however, the more aggressive
phenotypes exhibited by transgenic models are advanta-
geous for some purposes. Evaluating potential therapies is
easier in models with aggressive, early-onset phenotypes,
and it will be prohibitively expensive to evaluate all po-
tential therapies in HD knockin models. For all polyglu-
tamine disorders, a combination of results from both
transgenic and knockin models will likely be needed to
investigate pathogenesis and evaluate potential thera-
pies. Hprt(CAG)146 mice may be particularly useful in this
context. The wide expression of neuronal pathology in this
line allows study of polyglutamine toxicity in many brain
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regions with expression under the control of native ele-
ments.

LITERATURE CITED

Bazzett T, Albin RL. 2001. Huntington disease: a model excitotoxic chronic
neurodegeneration. In: Palomo T, Beninger RJ, Archer T, editors. Neu-
rodegenerative brain disorders. Madrid: Fundacion Cerebro y Mente. p
259–288.

Bazzett TJ, Falik RC, Becker JB, Albin RL. 1995. Chronic administration
of malonic acid produces selective neural degeneration and transient
changes in calbindin immunoreactivity in rat striatum. Exp Neurol
134:244–252.

Beal MF, Brouillet E, Jenkins B, Henshaw R, Rosen B, Hyman BT. 1993a.
Age-dependent striatal excitotoxic lesions produced by the endogenous
mitochondrial inhibitor malonate. J Neurochem 61:1147–1150.

Beal MF, Brouillet E, Jenkins BG, Ferrante RJ, Kowall NW, Miller JM,
Storey E, Srivastava R, Rosen BR, Hyman BT. 1993b. Neurochemical
and histologic characterization of striatal excitotoxic lesions produced
by the mitochondrial toxin 3-nitropropionic acid. J Neurosci 13:4181–
4192.

Becher MW, Kotzuk JA, Sharp AH, Davies SW, Bates GP, Price DL, Ross
CA. 1998. Intranuclear neuronal inclusions in Huntington’s disease
and dentatorubral and pallidoluysian atrophy: correlation between the
density of inclusions and IT15 CAG triplet repeat length. Neurobiol Dis
4:387–397.

Bogdanov MB, Ferrante RJ, Kuemmerle S, Klivenyi P, Beal MF. 1998.
Increased vulnerability to 3-nitropropionic acid in an animal model of
Huntington’s disease. J Neurochem 71:2642–2644.

Boutell JM, Thomas P, Neal JW, Weston VJ, Duce J, Harper PS, Jones AL.
1999. Aberrant interactions of transcriptional repressor proteins with
the Huntington’s disease gene product, huntingtin. Hum Mol Genet
8:1647–1655.

Browne SE, Bowling AC, MacGarvey U, Baik MJ, Berger SC, Muqit MM,
Bird ED, Beal MF. 1997. Oxidative damage and metabolic dysfunction
in Huntington’s disease: selective vulnerability of the basal ganglia.
Ann Neurol 41:646–653.

Burright EN, Clark HB, Servadio A, Matilla T, Feddersen RM, Yunis WS,
Duvick LA, Zoghbi HY, Orr HT. 1995. SCA1 transgenic mice: a model
for neurodegeneration caused by an expanded CAG trinucleotide re-
peat. Cell 82:937–948.

Cha JH, Kosinski CM, Kerner JA, Alsdorf SA, Mangiarini L, Davies SW,
Penney JB, Bates GP, Young AB. 1998. Altered brain neurotransmitter
receptors in transgenic mice expressing a portion of an abnormal hu-
man huntington disease gene. Proc Natl Acad Sci U S A 95:6480–6485.

Chai Y, Wu L, Griffin JD, Paulson HL. 2001. The role of protein composi-
tion in specifying nuclear inclusion formation in polyglutamine disease.
J Biol Chem 276:44889–44897.

Chai Y, Shao J, Miller VM, Williams A, Paulson HL. 2002. Live-cell
imaging reveals divergent intracellular dynamics of polyglutamine dis-
ease proteins and supports a sequestration model of pathogenesis. Proc
Natl Acad Sci U S A 99:9310–9315.

Cummings CJ, Reinstein E, Sun Y, Antalffy B, Jiang Y, Ciechanover A, Orr
HT, Beaudet AL, Zoghbi HY. 1999. Mutation of the E6-AP ubiquitin
ligase reduces nuclear inclusion frequency while accelerating
polyglutamine-induced pathology in SCA1 mice. Neuron 24:879–892.

Davies SW, Turmaine M, Cozens BA, DiFiglia M, Sharp AH, Ross CA,
Scherzinger E, Wanker EE, Mangiarini L, Bates GP. 1997. Formation
of neuronal intranuclear inclusions underlies the neurological dysfunc-
tion in mice transgenic for the HD mutation. Cell 90:537–548.

DiFiglia M, Sapp E, Chase KO, Davies SW, Bates GP, Vonsattel JP, Aronin
N. 1997. Aggregation of huntingtin in neuronal intranuclear inclusions
and dystrophic neurites in brain. Science 277:1990–1993.

Dragatsis I, Levine MS, Zeitlin S. 2000. Inactivation of Hdh in the brain
and testis results in progressive neurodegeneration and sterility in
mice. Nat Genet 26:300–306.

Dunah AW, Jeong H, Griffin A, Kim YM, Standaert DG, Hersch SM,
Mouradian MM, Young AB, Tanese N, Krainc D. 2002. Sp1 and
TAFII130 transcriptional activity disrupted in early Huntington’s dis-
ease. Science 296:2238–2243.

Dyer RB, McMurray CT. 2001. Mutant protein in Huntington disease is
resistant to proteolysis in affected brain. Nat Genet 29:270–278.

Ferrante RJ, Andreassen OA, Dedeoglu A, Ferrante KL, Jenkins BG,
Hersch SM, Beal MF. 2002. Therapeutic effects of coenzyme Q10 and

remacemide in transgenic mouse models of Huntington’s disease.
J Neurosci 22:1592–1599.

Ferrer I, Goutan E, Marin C, Rey MJ, Ribalta T. 2000. Brain-derived
neurotrophic factor in Huntington disease. Brain Res 866:257–261.

Fujigasaki H, Martin JJ, De Deyn PP, Camuzat A, Deffond D, Stevanin G,
Dermaut B, Van Broeckhoven C, Durr A, Brice A. 2001. CAG repeat
expansion in the TATA box-binding protein gene causes autosomal
dominant cerebellar ataxia. Brain 124:1939–1947.

Goldberg YP, Nicholson DW, Rasper DM, Kalchman MA, Koide HB, Gra-
ham RK, Bromm M, Kazemi-Esfarjani P, Thornberry NA, Vaillancourt
JP, Hayden MR. 1966. Cleavage of huntingtin by apopain, a proapop-
totic cystein protease, is modulated by the polyglutamine tract. Nat
Genet 13:380–382.

Gouw LG, Digre KB, Harris CP, Haines JH, Ptacek LJ. 1994. Autosomal
dominant cerebellar ataxia with retinal degeneration: clinical, neuro-
pathologic, and genetic analysis of a large kindred. Neurology 44:1441–
1447.

Greene JG, Greenamyre JT. 1995. Characterization of the excitotoxic po-
tential of the reversible succinate dehydrogenase inhibitor malonate.
J Neurochem 64:430–436.

Guidetti P, Charles V, Chen EY, Reddy PH, Kordower JH, Whetsell WO Jr,
Schwarcz R, Tagle DA. 2001. Early degenerative changes in transgenic
mice expressing mutant huntingtin involve dendritic abnormalities but
no impairment of mitochondrial energy production. Exp Neurol 169:
340–350.

Hansson O, Petersen A, Leist M, Nicotera P, Castilho RF, Brundin P. 1999.
Transgenic mice expressing a Huntington’s disease mutation are resis-
tant to quinolinic acid-induced striatal excitotoxicity. Proc Natl Acad
Sci U S A 96:8727–8732.

Hansson O, Castilho RF, Korhonen L, Lindholm D, Bates GP, Brundin P.
2001a. Partial resistance to malonate-induced striatal cell death in
transgenic mouse models of Huntington’s disease is dependent on age
and CAG repeat length. J Neurochem 78:694–703.

Hansson O, Guatteo E, Mercuri NB, Bernardi G, Li XJ, Castilho RF,
Brundin P. 2001b. Resistance to NMDA toxicity correlates with ap-
pearance of nuclear inclusions, behavioral deficits and changes in cal-
cium homeostasis in mice transgenic for exon 1 of the Huntington gene.
Eur J Neurosci 14:1492–1504.

Hickey MA, Reynolds GP, Morton AJ. 2002. The role of dopamine in motor
symptoms in the R6/2 transgenic mouse model of Huntington’s disease.
J Neurochem 81:46–59.

Higgins DS, Greenamyre JT. 1996. [3H]dihydrorotenone binding to NADH:
ubiquinone reductase (complex I) of the electron transport chain: an
autoradiographic study. J Neurosci 16:3807–3816.

Hodgson JG, Agopyan N, Gutekunst CA, Leavitt BR, LePiane F, Singaraja
R, Smith DJ, Bissada N, McCutcheon K, Nasir J, Jamot L, Li XJ,
Stevens ME, Rosemond E, Roder JC, Phillips AG, Rubin EM, Hersch
SM, Hayden MR. 1999. A YAC mouse model for Huntington’s disease
with full-length mutant huntingtin, cytoplasmic toxicity, and selective
striatal neurodegeneration. Neuron 23:181–192.

Holbert S, Denghien I, Kiechle T, Rosenblatt A, Wellington C, Hayden MR,
Margolis RL, Ross CA, Dausset J, Ferrante RJ, Neri C. 2001. The
Gln-Ala repeat transcriptional activator CA150 interacts with hunting-
tin: neuropathologic and genetic evidence for a role in Huntington’s
disease pathogenesis. Proc Natl Acad Sci U S A 98:1811–1816.

Holmberg M, Duyckaerts C, Durr A, Cancel G, Gourfinkel-An I, Damier P,
Faucheux B, Trottier Y, Hirsch EC, Agid Y, Brice A. 1998. Spinocere-
bellar ataxia type 7 (SCA7): a neurodegenerative disorder with neuro-
nal intranuclear inclusions. Hum Mol Genet 7:913–918.

Huntington’s Disease Collaborative Research Group. 1993. A novel gene
containing a trinucleotide repeat that is expanded and unstable on
Huntington’s disease chromosomes. Cell 72:971–983.

Huntington Study Group. 2001. A randomized, placebo-controlled trial of
coenzyme Q10 and remacemide in Huntington’s disease. Neurology
57:397–404.

Hurlbert MS, Zhou W, Wasmeier C, Kaddis FG, Hutton JC, Freed CR.
1999. Mice transgenic for an expanded CAG repeat in the Huntington’s
disease gene develop diabetes. Diabetes 48:649–651.

Huynh DP, Figueroa K, Hoang N, Pulst SM. 2000. Nuclear localization or
inclusion body formation of ataxin-2 are not necessary for SCA2 patho-
genesis in mouse or human. Nat Genet 26:44–50.

Iizuka R, Hirayama K. 1986. Dentato-rubro-pallido-luysian atrophy. In:
Vinken PJ, Brurn GW, Klawans HL, editors. Handbook of clinical
neurology 49. Amsterdam: Elsevier. p 437–444.

Ikeda H, Yamaguchi M, Sugai S, Aze Y, Narumiya S, Kakizuka A. 1996.

217BEHAVIOR AND PATHOLOGY OF Hprt(CAG)146 MICE



Expanded polyglutamine in the Machado-Joseph disease protein in-
duces cell death in vitro and in vivo. Nat Genet 13:196–202.

Jen JC. 2003. Spinocerebellar ataxia 2 (SCA2). In: Pulst S-M, editor.
Genetics of movement disorders. Amsterdam: Academic Press. p 81–
84.

Jenkins BG, Koroshetz WJ, Beal MF, Rosen BR. 1993. Evidence for im-
pairment of energy metabolism in vivo in Huntington’s disease using
localized 1H NMR spectroscopy. Neurology 43:2689–2695.

Jinnah HA, Gage FH, Friedmann T. 1991. Amphetamine-induced behav-
ioral phenotype in a hypoxanthine-guanine phosphoribosyltransferase-
deficient mouse model of Lesch-Nyhan syndrome. Behav Neurosci 105:
1004–1012.

Jinnah HA, Langlais PJ, Friedmann T. 1992. Functional analysis of brain
dopamine systems in a genetic mouse model of Lesch-Nyhan syndrome.
J Pharmacol Exp Ther 263:596–607.

Jinnah HA, Wojcik BE, Hunt M, Narang N, Lee KY, Goldstein M, Wamsley
JK, Langlais PJ, Friedmann T. 1994. Dopamine deficiency in a genetic
mouse model of Lesch-Nyhan disease. J Neurosci 14:1164–1175.

Katsuno M, Adachi H, Kume A, Li M, Nakagomi Y, Niwa H, Sang C,
Kobayashi Y, Doyu M, Sobue G. 2002. Testosterone reduction prevents
phenotypic expression in a transgenic mouse model of spinal and bul-
bar muscular atrophy. Neuron 35:843–854.

Kegel KB, Meloni AR, Yi Y, Kim YJ, Doyle E, Cuiffo BG, Sapp E, Wang Y,
Qin ZH, Chen JD, Nevins JR, Aronin N, DiFiglia M. 2002. Huntingtin
is present in the nucleus, interacts with the transcriptional corepressor
C-terminal binding protein, and represses transcription. J Biol Chem
277:7466–7476.

Kim M, Lee HS, LaForet G, McIntyre C, Martin EJ, Chang P, Kim TW,
Williams M, Reddy PH, Tagle D, Boyce FM, Won L, Heller A, Aronin N,
DiFiglia M. 1999. Mutant huntingtin expression in clonal striatal cells:
dissociation of inclusion formation and neuronal survival by caspase
inhibition. J Neurosci 19:964–973.

Kim YJ, Yi Y, Sapp E, Wang Y, Cuiffo B, Kegel KB, Qin ZH, Aronin N,
DiFiglia M. 2001. Caspase 3-cleaved N-terminal fragments of wild-type
and mutant huntingtin are present in normal and Huntington’s disease
brains, associate with membranes, and undergo calpain-dependent
proteolysis. Proc Natl Acad Sci U S A 98:12784–12789.

Klement IA, Skinner PJ, Kaytor MD, Yi H, Hersch SM, Clark HB, Zoghbi
HY, Orr HT. 1998. Ataxin-1 nuclear localization and aggregation: role
in polyglutamine-induced disease in SCA1 transgenic mice. Cell 95:41–
53.

Kuemmerle S, Gutekunst CA, Klein AM, Li XJ, Li SH, Beal MF, Hersch
SM, Ferrante RJ. 1999. Huntington aggregates may not predict neu-
ronal death in Huntington’s disease. Ann Neurol 46:842–849.

La Spada AR, Fu YH, Sopher BL, Libby RT, Wang X, Li LY, Einum DD,
Huang J, Possin DE, Smith AC, Martinez RA, Koszdin KL, Treuting
PM, Ware CB, Hurley JB, Ptacek LJ, Chen S. 2001. Polyglutamine-
expanded ataxin-7 antagonizes CRX function and induces cone-rod
dystrophy in a mouse model of SCA7. Neuron 31:913–927.

Levine MS, Klapstein GJ, Koppel A, Gruen E, Cepeda C, Vargas ME, Jokel
ES, Carpenter EM, Zanjani H, Hurst RS, Efstratiadis A, Zeitlin S,
Chesselet MF. 1999. Enhanced sensitivity to N-Methyl-D-aspartate
receptor activation in transgenic and knockin mouse models of Hun-
tington’s disease. J Neurosci Res 58:515–532.

Li H, Li SH, Johnston H, Shelbourne PF, Li XJ. 2000. Amino-terminal
fragments of mutant huntingtin show selective accumulation in stria-
tal neurons and synaptic toxicity. Nat Genet 25:385–389.

Lin X, Antalffy B, Kang D, Orr HT, Zoghbi HY. 2000. Polyglutamine
expansion down-regulates specific neuronal genes before pathologic
changes in SCA1. Nat Neurosci 3:157–163.

Lin CH, Tallaksen-Greene S, Chien WM, Cearley JA, Jackson WS, Crouse
AB, Ren S, Li XJ, Albin RL, Detloff PJ. 2001. Neurological abnormal-
ities in a knock-in mouse model of Huntington’s disease. Hum Mol
Genet 10:137–144.

Luthi-Carter R, Strand A, Peters NL, Solano SM, Hollingsworth ZR, Me-
non AS, Frey AS, Spektor BS, Penney EB, Schilling G, Ross CA,
Borchelt DR, Tapscott SJ, Young AB, Cha JH, Olson JM. 2000. De-
creased expression of striatal signaling genes in a mouse model of
Huntington’s disease. Hum Mol Genet 9:1259–1271.

Mangiarini L, Sathasivam K, Seller M, Cozens B, Harper A, Hetherington
C, Lawton M, Trottier Y, Lehrach H, Davies SW, Bates GP. 1996. Exon
1 of the HD gene with an expanded CAG repeat is sufficient to cause a
progressive neurological phenotype in transgenic mice. Cell 87:493–
506.

Mastroberardino PG, Iannicola C, Nardacci R, Bernassola F, De Laurenzi
V, Melino G, Moreno S, Pavone F, Oliverio S, Fesus L, Piacentini M.

2002. “Tissue” transglutaminase ablation reduces neuronal death and
prolongs survival in a mouse model of Huntington’s disease. Cell Death
Differ 9:873–880.

McCampbell A, Taylor JP, Taye AA, Robitschek J, Li M, Walcott J, Merry
D, Chai Y, Paulson H, Sobue G, Fischbeck KH. 2000. CREB-binding
protein sequestration by expanded polyglutamine. Hum Mol Genet
9:2197–2202.

McCampbell A, Taye AA, Whitty L, Penney E, Steffan JS, Fischbeck KH.
2001. Histone deacetylase inhibitors reduce polyglutamine toxicity.
Proc Natl Acad Sci U S A 98:15179–15184.

Menalled LB, Sison JD, Wu Y, Oliveri M, Li X-J, Li H, Chesselet MF. 2002.
Early motor dysfunction and striosomal distribution of huntington
microaggregates in Huntington’s disease knock-in mice. J Neurosci
22:8266–8276.

Nucifora FC Jr, Sasaki M, Peters MF, Huang H, Cooper JK, Yamada M,
Takahashi H, Tsuji S, Troncoso J, Dawson VL, Dawson TM, Ross CA.
2001. Interference by huntingtin and atrophin-1 with CBP-mediated
transcription leading to cellular toxicity. Science 291:2423–2428.

Ordway JM, Tallaksen-Greene S, Gutekunst CA, Bernstein EM, Cearley
JA, Wiener HW, Dure LS, Lindsey R, Hersch SM, Jope RS, Albin RL,
Detloff PJ. 1997. Ectopically expressed CAG repeats cause intranu-
clear inclusions and a progressive late onset neurological phenotype in
the mouse. Cell 91:753–763.

Ordway JM, Cearley JA, Detloff PJ. 1999. CAG-polyglutamine-repeat mu-
tations: independence from gene context. Philos Trans R Soc Lond B
Biol Sci 354:1083–1088.

Panov AV, Gutekunst CA, Leavitt BR, Hayden MR, Burke JR, Strittmater
WJ, Greenamyre JT. 2002. Early mitochondrial calcium defects in
Huntington’s disease are a direct effect of polyglutamines. Nat Neuro-
sci 5:731–736.

Paulson HL, Perez MK, Trottier Y, Trojanowski JQ, Subramony SH, Das
SS, Vig P, Mandel JL, Fischbeck KH, Pittman RN. 1997. Intranuclear
inclusions of expanded polyglutamine protein in spinocerebellar ataxia
type 3. Neuron 19:333–344.

Perutz MF, Johnson T, Suzuki M, Finch JT. 1994. Glutamine repeats as
polar zippers: their possible role in inherited neurodegenerative dis-
eases. Proc Natl Acad Sci U S A 91:5355–5358.

Pulst S-M. 2003. Spinocerebellar ataxia 2 (SCA2). In: Pulst S-M, editor.
Genetics of movement disorders. Amsterdam: Academic Press. p 45–56.

Reddy PH, Williams M, Charles V, Garrett L, Pike-Buchanan L, Whetsell
WO Jr, Miller G, Tagle DA. 1998. Behavioural abnormalities and
selective neuronal loss in HD transgenic mice expressing mutated
full-length HD cDNA. Nat Genet 20:198–202.

Reynolds GP, Dalton CF, Tillery CL, Mangiarini L, Davies SW, Bates GP.
1999. Brain neurotransmitter deficits in mice transgenic for the Hun-
tington’s disease mutation. J Neurochem 72:1773–1776.

Richfield EK, Young AB, Penney JB. 1989. Comparative distributions of
dopamine D-1 and D-2 receptors in the cerebral cortex of rats, cats, and
monkeys. J Comp Neurol 286:409–426.

Robitaille Y, Schut L, Kish SJ. 1995. Structural and immunocytochemical
features of olivopontocerebellar atrophy caused by the spinocerebellar
ataxia type 1 (SCA-1) mutation define a unique phenotype. Acta Neu-
ropathol (Berl) 90:572–581.

Ross CA. 1997. Intranuclear neuronal inclusions: a common pathogenic
mechanism for glutamine-repeat neurodegenerative diseases? Neuron
19:1147–1150.

Ross CA. 2002. Polyglutamine pathogenesis: emergence of unifying mech-
anisms for Huntington’s disease and related disorders. Neuron 35:819–
822.

Rubinsztein DC, Leggo J, Coles R, Almqvist E, Biancalana V, Cassiman JJ,
Chotai K, Connarty M, Crauford D, Curtis A, Curtis D, Davidson MJ,
Differ AM, Dode C, Dodge A, Frontali M, Ranen NG, Stine OC, Sherr
M, Abbott MH, Franz ML, Graham CA, Harper PS, Hedreen JC,
Jackson A, Kaplan JC, Losekoot M, MacMillan JC, Morrison P, Trottier
Y, Novelletto A, Simpson S, Theilman J, Whittaker JL, Folstein SE,
Ross CA, Hayden MR. 1996. Phenotypic characterization of individuals
with 30–40 CAG repeats in the Huntington disease (HD) gene reveals
HD cases with 36 repeats and apparently normal elderly individuals
with 36–39 repeats. Am J Hum Genet 59:16–22.

Rubinsztein DC, Leggo J, Chiano M, Dodge A, Norbury G, Rosser E,
Craufurd D. 1997. Genotypes at the GluR6 kainate receptor locus are
associated with variation in the age of onset of Huntington disease.
Proc Natl Acad Sci U S A 94:3872–3876.

Sanchez I, Mahlke C, Yuan J. 2003. Pivotal role of oligomerization in
expanded polyglutamine neurodegenerative disorders. Nature 421:
373–378.

218 S.J. TALLAKSEN-GREENE ET AL.



Sathasivam K, Hobbs C, Turmaine M, Mangiarini L, Mahal A, Bertaux F,
Wanker EE, Doherty P, Davies SW, Bates GP. 1999. Formation of poly-
glutamine inclusions in non-CNS tissue. Hum Mol Genet 8:813–822.

Sato K, Kashihara K, Okada S, Ikeuchi T, Tsuji S, Shomori T, Morimoto K,
Hayabara T. 1995. Does homozygosity advance the onset of
dentatorubral-pallidoluysian atrophy? Neurology 45:1934–1936.

Sato T, Oyake M, Nakamura K, Nakao K, Fukusima Y, Onodera O, Iga-
rashi S, Takano H, Kikugawa K, Ishida Y, Shimohata T, Koide R,
Ikeuchi T, Tanaka H, Futamura N, Matsumura R, Takayanagi T,
Tanaka F, Sobue G, Komure O, Takahashi M, Sano A, Ichikawa Y,
Goto J, Kanazawa I. 1999. Transgenic mice harboring a full-length
human mutant DRPLA gene exhibit age-dependent intergenerational
and somatic instabilities of CAG repeats comparable with those in
DRPLA patients. Hum Mol Genet 8:99–106.

Saudou F, Finkbeiner S, Devys D, Greenberg ME. 1998. Huntingtin acts in
the nucleus to induce apoptosis but death does not correlate with the
formation of intranuclear inclusions. Cell 95:55–66.

Sawa A, Wiegand GW, Cooper J, Margolis RL, Sharp AH, Lawler JF,
Greenamyre JT, Snyder SH, Ross CA. 1999. Increased apoptosis of
Huntington disease lymphoblasts associated with repeat length-
dependent mitochondrial depolarization. Nat Med 5:1194–1198.

Shelbourne PF, Killeen N, Hevner RF, Johnston HM, Tecott L, Lewandoski
M, Ennis M, Ramirez L, Li Z, Iannicola C, Littman DR, Myers RM.
1999. A Huntington’s disease CAG expansion at the murine Hdh locus
is unstable and associated with behavioural abnormalities in mice.
Hum Mol Genet 8:763–774.

Scherzinger E, Lurz R, Turmaine M, Mangiarini L, Hollenbach B, Hasen-
bank R, Bates GP, Davies SW, Lehrach H, Wanker EE. 1997.
Huntingtin-encoded polyglutamine expansions form amyloid-like pro-
tein aggregates in vitro and in vivo. Cell 90:549–558.

Schilling G, Becher MW, Sharp AH, Jinnah HA, Duan K, Kotzuk JA, Slunt
HH, Ratovitski T, Cooper JK, Jenkins NA, Copeland NG, Price DL,
Ross CA, Borchelt DR. 1999. Intranuclear inclusions and neuritic ag-
gregates in transgenic mice expressing a mutant N-terminal fragment
of huntingtin. Hum Mol Genet 8:397–407.

Shimohata T, Nakajima T, Yamada M, Uchida C, Onodera O, Naruse S,
Kimura T, Koide R, Nozaki K, Sano Y, Ishiguro H, Sakoe K, Ooshima
T, Sato I, Ikeuchi T, Oyake M, Sato T, Aoyagi Y, Hozumi I, Nagatsu T,
Takiyama Y, Nishizawa M, Goto J, Kanazawa I, Davidson I, Tanese N,
Takahashi H, Tsuji S. 2000. Expanded polyglutamine stretches inter-
act with TAFII130, interfering with CREB-dependent transcription.
Nat Genet 26:29–36.

Simeoni S, Mancini MA, Stenoien DL, Marcelli M, Weigel NL, Zanisi M,
Martini L, Poletti A. 2000. Motoneuronal cell death is not correlated
with aggregate formation of androgen receptors containing an elon-
gated polyglutamine tract. Hum Mol Genet 9:133–144.

Sisodia SS. 1998. Nuclear inclusions in glutamine repeat disorders: are
they pernicious, coincidental, or beneficial? Cell 95:1–4.

Sobue G, Doyu M, Nakao N, Shimada N, Mitsuma T, Maruyama H,
Kawakami S, Nakamura S. 1996. Homozygosity for Machado-Joseph
disease gene enhances phenotypic severity. J Neurol Neurosurg Psy-
chiatry 60:354–356.

Squitieri F, Gellera C, Cannella M, Mariotti C, Cislaghi G, Rubinsztein
DC, Almqvist EW, Turner D, Bachoud-Levi AC, Simpson SA, Delatycki
M, Maglione V, Hayden MR, Di Donato S. 2003. Homozygosity for CAG
mutation in Huntington disease is associated with a more severe clin-
ical course. Brain 4:946–955.

Steffan JS, Kazantsev A, Spasic-Boskovic O, Greenwald M, Zhu YZ, Gohler H,
Wanker EE, Bates GP, Housman DE, Thompson LM. 2000. The Hunting-
ton’s disease protein interacts with p53 and CREB-binding protein and
represses transcription. Proc Natl Acad Sci U S A 97:6763–6768.

Steffan JS, Bodai L, Pallos J, Poelman M, McCampbell A, Apostol BL,
Kazantsev A, Schmidt E, Zhu YZ, Greenwald M, Kurokawa R, Hous-
man DE, Jackson GR, Marsh JL, Thompson LM. 2001. Histone
deacetylase inhibitors arrest polyglutamine-dependent neurodegenera-
tion in Drosophila. Nature 413:739–743.

Stine OC, Pleasant N, Franz ML, Abbott MH, Folstein SE, Ross CA. 1993.
Correlation between the onset age of Huntington’s disease and length
of the trinucleotide repeat in IT-15. Hum Mol Genet 2:1547–1549.

Suzuki M, Desmond TJ, Albin RL, Frey KA. 2001. Vesicular neurotrans-
mitter transporters in Huntington’s disease: initial observations and
comparison with traditional synaptic markers. Synapse 41:329–336.

Tabrizi SJ, Workman J, Hart PE, Mangiarini L, Mahal A, Bates G, Cooper
JM, Schapira AH. 2000. Mitochondrial dysfunction and free radical
damage in the Huntington R6/2 transgenic mouse. Ann Neurol 47:80–
86.

Takiyama Y, Oyanagi S, Kawashima S, Sakamoto H, Saito K, Yoshida M,
Tsuji S, Mizuno Y, Nishizawa M. 1994. A clinical and pathologic study
of a large Japanese family with Machado-Joseph disease tightly linked
to the DNA markers on chromosome 14q. Neurology 44:1302–1308.

Takeyama K, Ito S, Yamamoto A, Tanimoto H, Furutani T, Kanuka H,
Miura M, Tabata T, Kato S. 2002. Androgen-dependent neurodegen-
eration by polyglutamine-expanded human androgen receptor in Dro-
sophila. Neuron 35:855–864.

Taylor JP, Hardy J, Fischbeck KH. 2002. Toxic proteins in neurodegenera-
tive disease. Science 296:1991–1995.

Tellez-Nagel I, Johnson AB, Terry RD. 1974. Studies on brain biopsies of
patients with Huntington’s chorea. J Neuropathol Exp Neurol 33:308–
332.

Trojanowski JQ, Lee VM. 2000. “Fatal attractions” of proteins. A compre-
hensive hypothetical mechanism underlying Alzheimer’s disease and
other neurodegenerative disorders. Ann N Y Acad Sci 924:62–67.

Vander Borght TM, Sima AAF, Kilbourn MR, Desmond TJ, Kuhl DE, Frey
KA. 1995a. [3H]Methoxytetrabenazine: a high specific activity ligand
for estimating monoaminergic neuronal integrity. Neuroscience 68:
955–962.

Vander Borght T, Kilbourn M, Desmond T, Kuhl D, Frey K. 1995b. The
vesicular monoamine transporter is not regulated by dopaminergic
drug treatments. Eur J Pharmacol 294:577–583.

Watase K, Weeber EJ, Xu B, Antalffy B, Yuva-Paylor L, Hashimoto K,
Kano M, Atkinson R, Sun Y, Armstrong DL, Sweatt JD, Orr HT, Paylor
R, Zoghbi HY. 2002. A long CAG repeat in the mouse Sca1 locus
replicates SCA1 features and reveals the impact of protein solubility on
selective neurodegeneration. Neuron 34:905–919.

Wellington CL, Ellerby LM, Hackam AS, Margolis RL, Trifiro MA, Singa-
raja R, McCutcheon K, Salvesen GS, Propp SS, Bromm M, Rowland KJ,
Zhang T, Rasper D, Roy S, Thornberry N, Pinsky L, Kakizuka A, Ross
CA, Nicholson DW, Bredesen DE, Hayden MR. 1998. Caspase cleavage
of gene products associated with triplet expansion disorders generates
truncated fragments containing the polyglutamine tract. J Biol Chem
273:9158–9167.

Wellington CL, Ellerby LM, Gutekunst CA, Rogers D, Warby S, Graham
BK, Loubser O, van Raamsdonk J, Singajara R, Yang YZ, Gafni J,
Bedesen D, Hersch SM, Leavitt BR, Roy S, Nicholson DW, Hayden MR.
2002. Caspase cleavage of mutant huntingtin precedes neurodegenera-
tion in Huntington’s disease. J Neurosci 22:7862–7872.

Wexler NS, Young AB, Tanzi RE, Travers H, Starosta-Rubinstein S, Pen-
ney JB, Snodgrass SR, Shoulson I, Gomez F, Ramos Arroyo MA, Pen-
chaszadeh GK, Moreno H, Gibbins K, Faryniarz A, Hobbs W, Anderson
MA, Bonilla E, Conneally PM, Gusella JF. 1987. Homozygotes for
Huntington’s disease. Nature 326:194–197.

Wheeler VC, White JK, Gutekunst CA, Vrbanac V, Weaver M, Li XJ, Li
SH, Yi H, Vonsattel JP, Gusella JF, Hersch S, Auerbach W, Joyner AL,
MacDonald ME. 2000. Long glutamine tracts cause nuclear localization
of a novel form of huntingtin in medium spiny striatal neurons in
HdhQ92 and HdhQ111 knock-in mice. Hum Mol Genet 9:503–513.

Wheeler VC, Gutekunst CA, Vrbanac V, Lebel LA, Schilling G, Hersch S,
Friedlander RM, Gusella JF, Vonsattel JP, Borchelt DR, MacDonald
ME. 2002. Early phenotypes that presage late-onset neurodegenerative
disease allow testing of modifiers in Hdh CAG knock-in mice. Hum Mol
Genet 11:633–640.

Yang Q, Hashizume Y, Yoshida M, Wang Y, Goto Y, Mitsuma N, Ishikawa
K, Mizusawa H. 2000. Morphological Purkinje cell changes in spino-
cerebellar ataxia type 6. Acta Neuropathol (Berl) 100:371–376.

Yoo S-Y, Pennesi ME, Weeber EJ, Xu B, Atkinson R, Chen S, Armstrong
DL, Wu SM, Sweatt JD, Zogbhi HY. 2003. SCA7 knockin mice model
human SCA7 and reveal gradual accumulation of mutant ataxin-7 in
neurons and abnormalities in short-term plasticity. Neuron 37:383–401.

Zeron MM, Hansson O, Chen N, Wellington CL, Leavitt BR, Brundin P,
Hayden MR, Raymond LA. 2002. Increased sensitivity to N-methyl-D-
aspartate receptor-mediated excitotoxicity in a mouse model of Hun-
tington’s disease. Neuron 33:849–860.

Zhang S, Xu L, Lee J, Xu T. 2002. Drosophila atrophin homolog functions
as a transcriptional corepressor in multiple developmental processes.
Cell 108:45–56.

Zoghbi H, Botas J. 2002. Mouse and fly models of neurodegeneration.
Trends Genet 18:463.

Zuccato C, Ciammola A, Rigamonti D, Leavitt BR, Goffredo D, Conti L,
MacDonald ME, Friedlander RM, Silani V, Hayden MR, Timmusk
T, Sipione S, Cattaneo E. 2001. Loss of huntingtin-mediated
BDNF gene transcription in Huntington’s disease. Science 293:493–
498.

219BEHAVIOR AND PATHOLOGY OF Hprt(CAG)146 MICE


