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ABSTRACT

A procedure to obtain a topology of an optimal structure considering flexibility is presented. The methodo-
logy is based on a mutual energy concept for formulation of flexibility and the homogenization method.
A multi-objective optimization problem is formulated as an application of compliant mechanism design.
Some examples of the design of compliant mechanisms for plane structures are presented. ( 1998 John
Wiley & Sons, Ltd.
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INTRODUCTION

In general, the stiffest structure has been considered optimal. Most structural optimization
problems are formulated by minimizing the compliance of a structure as an objective function.
However, it is possible that better performance can be obtained with a flexible structure rather
than the stiffest structure if flexibility is efficiently implemented in the structure. Moreover,
flexible parts can offer mechanical function to the structure. An example of structure with
mechanical function is a compliant mechanism. Compliant mechanisms are a relatively new breed
of jointless mechanisms which utilize elastic deformation as source of motion. They are designed
to be intentionally flexible, and this flexibility allows the structure to function as a mechanism. As
noted by Midha et al.,1 compliant mechanisms are desirable since they require fewer parts, and
have less wear, noise, and backlash than their rigid-body counterparts. Hence, the design of
compliant mechanisms is an example of how flexible structures can provide better performance
than stiff structures.

There are two approaches for compliant mechanism design, a kinematic synthesis approach
and a continuum synthesis approach, as explained by Frecker et al.2 Midha1 and his associates
were pioneers in developing the kinematic approach for compliant mechanism synthesis. This
method is based on traditional rigid-body kinematics. The basic configuration of the mechanism
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design is obtained by knowledge from kinematics, and is converted to a partially compliant
mechanism with flexural segments or a fully compliant mechanism with lumped compliance.
For example, Her and Midha3 discussed kinematic properties of compliant mechanisms such
as degree of compliance using this rigid body mechanism analysis, and presented a methodo-
logy for deriving all possible compliant mechanisms from a given rigid-body kinematic chain.
Murphy et al.4 extended a topological synthesis approach for rigid-body mechanisms to
compliant mechanism synthesis using graph theory. This approach determines the number of
flexural segments, connection type and kinematic inversions. Howell and Midha5 developed
a pseudo-rigid-body model to aid in the design of compliant mechanisms composed of
small flexible pivots and relatively rigid links, and constructed a design method6 using this
model. Moreover, they improved this model in order to deal with large deflections.7 These
procedures, however, are limited to compliant mechanisms with lumped compliance such as
flexible pivots.

The second major approach for the design of compliant mechanisms is a continuum synthesis
for the design of distributed compliant mechanisms. This method is based on topology optimiza-
tion methods for structures. Sigmund8 proposed a modified approach using microstructure
design of materials based on optimal configuration of an elastic truss. He presented the compliant
mechanism design by solving an optimization problem in which the objective function is to
minimize the total volume with prescribed output motions. Larsen et al.9 developed another
approach based on microstructure design. In this method, the mechanism design is obtained by
solving a different optimization problem in which the objective function is to minimize the error
in obtaining prescribed values of the geometrical and mechanical advantages. However, it is
difficult to design compliant mechanisms that provide the flexibility required for kinematic
function and the rigidity required for structural function simultaneously, since the output
constraint must be specified beforehand.

Another topology optimization approach is based on the homogenization method. This
method was proposed by Bendsøe and Kikuchi.10 Prior to this, Cheng and Olhoff11 reported
important characteristics about the optimal design of solid elastic plates. They pointed out that
a global optimal solution generally does not exist within the class of smooth functions, or within
the class of smooth functions with a finite number of discontinuities. This result led to a series of
works on optimal design problems using a microstructure. Kohn and Strang12 introduced
a ‘relaxation’ concept to deal with an ill-posed variational problem that can be formulated for
optimal design. This concept implies that the introduction of microstructure and use of the
homogenization method allow an optimal solution. Rozvany et al.13 investigated the implication
of this relaxation concept with the design of perforated elastic plates. Bendsøe and Kikuchi10
constructed a methodology for topology optimization using the homogenization method. This
new optimization approach created a paradigm shift in the structural optimization field. Suzuki
and Kikuchi14 established a static optimization problem in which the objective is to minimize the
mean compliance. This approach was also extended to dynamic problems. Dı́az and Kikuchi15
proposed an eigenvalue optimization method in which the objective function is to maximize
a single eigenvalue. Ma et al.16 constructed a multi-eigenvalue optimization method with the
convex approach in the optimization process. They also extended this approach to a frequency
response optimization problem.17 Ananthasuresh18 extended this approach to the design of
compliant mechanisms at first. However, his results seem to be rather the maximum stiffness
design than the mechanism design. That is, the optimal structures do not have sufficient flexibility
as the compliant mechanism because of the formulation of the multi-objective optimization
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problem. Thus, this optimization method for the design of flexible structures like compliant
mechanisms has not been established using the homogenization method.

This paper describes a topology optimization method considering flexibility using the hom-
ogenization method. This method is applied to the concept to the design of compliant mecha-
nisms. First, mutual mean compliance is introduced in order to define the flexibility using
a mutual energy concept. The sensitivity of the mutual mean compliance with respect to the
design variables required in optimization procedure is formulated with variational calculus.
Formulation of the rigidity is also derived in a way similar to the derivation of the flexibility.
Next, a new multi-objective problem is constructed for the design of compliant mechanisms,
along with verification of the characteristics of the multi-criteria objective function. Three
examples are presented in order to examine the configuration of optimal solutions. These confirm
that the concept of flexible structure design can be used to design compliant mechanisms.

FORMULATION OF MUTUAL MEAN COMPLIANCE AND SENSITIVITY ANALYSIS

Mutual mean compliance is introduced to formulate the flexibility of a structure using a mutual
energy concept.19,20 Consider a linear elastic body occupying a two-dimensional domain, ), as
shown in Figure 1. Suppose that the body is subjected to boundary traction t1 at boundary !t1 in
case (a), and boundary traction t2 at boundary !t2 in case (b). Body forces applied to the elastic
body are ignored for simplicity in the formulation. The displacement field is u1"Mu1

1
, u1

2
N in

case (a), and u2"Mu2
1
, u2

2
N in case (b). The mutual mean compliances of the structures, ¸1 (u2) and

¸2 (u1), are defined by the following load linear forms:

¸1(u2)"P!t1
t1 · u2 d!"P!t1

t1
i
u2
i
d! u23» (1)

¸2(u1)"P!t2
t2 · u1 d!"P!t2

t2
i
u1
i
d! u13» (2)

where » is the admissible linear space such that

»"Mv"v
i
e
i
:v

i
3H1 ()) with v"0 on !

d
i"1,2N

Figure 1. An elastic body subjected to two different tractions
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Assuming that boundary traction t1 in case (a) is an applied force, and boundary traction t2 in
case (b) is a unit dummy load, equation (2) shows the measurement of deformation at !t2 along
a specified direction defined by t2 when t1 is applied at !t1. Here, the flexibility is defined by how
much the elastic body deforms at !t2 when t1 is applied at !t1. The formulation of the mutual
mean compliance is interpreted as the measurement of flexibility between !t1 and !t2. Hence,
sufficient flexibility can be obtained by maximizing the mutual mean compliance. The bilinear
form is introduced as

a (u, v)"P)
e(v)TEe (u) d)"P)

E
ijkl

e
kl
(u)e

ij
(v) d) (3)

with linearized strains

e
ij
(u)"

1

2A
Lu

i
Lx

j

#

Lu
j

Lx
i
B (4)

where E
ijkl

is the elasticity tensor of the linear elastic body.
Each displacement field satisfies the principle of virtual work in the sense of mutual energy,

a (u1, v2)"¸1(v2) for u13» ∀v23» (5)

a (u2, v1)"¸2(v1) for u23» ∀v13» (6)

The total potential energy in the sense of mutual energy is defined by

F (v1, v2)"1
2
a (v1, v2)!1

2
¸1(v2)!1

2
¸2 (v1) (7)

Since the following relation is obtained at equilibrium:

¸2 (u1)"a (u2, u1)"a (u1 , u2)"¸1(u2) (8)

the total potential energy satisfies at equilibrium,

F(u1, u2)"1
2
a (u1, u2)!1

2
¸1(u2)!1

2
¸2(u1)"!1

2
¸2 (u1) (9)

Let A be the design variable, and consider F a function of u1, u2, and A. Taking the first variation
of F with respect to u1, u2, and A at equilibrium:

dF(u1, u2, A)"DF(u1) (du1)#DF (u2)(du2)#DF (A)(dA) (10)

where DF(u)(v) is the G-differential such that

DF(u)(v)"lim
m?0

L
Ln

F(u#nv)

The first variation of F yields

dF(u1, u2, A)"
1

2
aAu1,

Lu2

LA
dA#du2B!

1

2
¸1A

Lu2

LA
dA#du2B#

1

2
aAu2,

Lu1

LA
dA#du1B

!

1

2
¸2A

Lu1

LA
dA#du1B#

1

2P)
e (u2)T

LE

LA
e(u1) d)dA (11)
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Since v2 in equation (5) and v1 in equation (6) are arbitrary variables, the first four terms in
equation (11) cancel by setting v2"(Lu2/LA)LA#du2 and v1"(Lu1/LA)dA#du1. Therefore, the
sensitivity of F with respect to A is given by

LF

LA
"

1

2 P)
e(u2)T

LE

LA
e (u1) d) (12)

Using equation (8), the sensitivity of the mutual mean compliance ¸2 (u1) is obtained as follows:

L¸2(u1)

LA
"!P)

e (u2)T
LE

LA
e (u1) d) (13)

We will now consider the ordinary mean compliance. If only case (a) (in Figure 1) is considered,
ordinary mean compliance is also expressed as

¸1(u1)"P!t1
t1 · u1 d!"P!t1

t1
i
u1
i

d! u13» (14)

Here, the rigidity is defined by how little the elastic body deforms at !t1 when t1 is applied at !t1.
The formulation of the ordinary mean compliance is interpreted as the measurement of the
rigidity at !t1. Hence, sufficient rigidity can be obtained by minimizing the mean compliance.
Following the same procedure as above, the sensitivity of ¸1(u1) with respect to A is obtained by

L¸1(u1)

LA
"!P)

e(u1)T
LE

LA
e(u1) d) (15)

This formulation is identical to the sensitivity of the mean compliance which Suzuki and
Kikuchi14 introduced when constructing the minimal mean compliance design problem.

HOMOGENIZATION METHOD

Topology optimization using the homogenization method is briefly discussed in this section. The
original idea was introduced by Bendsøe and Kikuchi.10 The problem is posed as optimizing the
material distribution in a perforated structure with infinite microscale voids. In the optimization
process, the portions of the perforated structure that are filled with the material can be identified
as a solid structure. On the other hand, the portions that are filled with voids can be identified as
no structure. Using the homogenization method, the design domain can be relaxed to deal with
the nonsmooth characteristics of optimal configurations like the perforated structure that Kohn
and Strang12 discussed.

Consider the unit cell of a microstructure shown in Figure 2. For simplicity, a two- dimensional
problem is considered. It is assumed that this microstructure is formed inside an empty rectangle
in a unit cell, where a, b, and h are regarded as the design variables. In order to develop a complete
void, both a and b should be 1, whereas a and b should be 0 for solid material. The variable
h represents the rotation of the unit cell.

The elasticity tensor of perforated structures, Ee, is given by equation (16). The parameter
e represents the periodicity and is assumed to be small:

Ee (x)"E(x, y), y"x/e (16)
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Figure 2. A unit cell of a microstructure

The homogenized elasticity tensor, EH, can be computed by solving the characteristic deforma-
tions s satisfying the following equation:

P
Y

e
y
(v)TE(x, y)e

y
(s (x, y)) d½"P

Y

e
y
(v)TE (x, y) d½ ∀v3»

y
(17)

where

e
y
( )"G

L
Ly

1

L
Ly

2

L
Ly

2

#

L
Ly

1
H

»
y
is the admissible space defined in the cell ½,

»
y
"Mv"v

i
e
i
:v

i
3H1 (½) Dv is ½ - periodic in the unit cell ½N

After obtaining characteristic deformations, s, the homogenized elasticity tensor, EH, with respect
to the principle coordinate axes of the material, is computed by

EH"
1

DY DPY

E (x, y)(I!e
y
(s)) d½ (18)

where DY D stands for the area of ½.
Furthermore, when the unit cell is rotated by the angle h as shown in Figure 2, the homogen-

ized elasticity tensor, EG, is computed by the following equation:

EG"R(h)TEHR(h), (19)

where R is the rotation matrix.
One can see that EG is a function of the microscopic design variables a, b, and h, and that the

optimization problem can be posed in terms of these microscopic variables using EG .

MULTI-OBJECTIVE OPTIMIZATION FOR COMPLIANT MECHANISM DESIGN

Compliant mechanism design requires two different functions, a kinematic function and a struc-
tural function, as shown in Figure 3. The compliant mechanism must have a kinematic function,
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Figure 3. Compliant mechanism

or motion, which is provided by the sufficient flexibility between !t1 and !t2. That is, the
compliant mechanism must deform along a direction specified by a dummy load t2 at specified
region !t2 (case (a)). Here, the mechanism is subjected to an applied traction t1 at !t1. It is noted
that the compliant mechanism may deform considerably in its use. However, it is possible to
ignore the effect of large deformation in the topology design phase, if our goal in this design phase
is that the compliant mechanism must qualitatively deform in the desired direction of motion. In
other words, the small deformation/rotation assumption is appropriate only if we take into
account the qualitative characteristics of the mechanism function. Conversely, if the quantitative
performance of the deformation in the designed mechanism is the purpose of design optimization,
we must include large deformation analysis in compliant mechanism design. Since our goal is to
seek the optimum design that qualitatively provides the initial motion of the mechanism in the
specified direction, the topology of the compliant mechanism can be determined under the small
deformation/rotation assumption. However, it is also noted that the designed configuration must
be subsequently examined to determine whether it generates the motion that we originally
intended after the topology design phase, since the design here shall be determined in the context
of small deformation linear elasticity. In the following section, the designed configuration will
be examined using the large displacement finite element analysis. Based on this argument,
the kinematic function can be achieved by maximizing the mutual mean compliance between !t1
and !t2 .

The compliant mechanism must also have a structural function which is provided by sufficient
rigidity at !t2 in order to resist reaction forces posed by a workpiece (case (b)). That is, after the
compliant mechanism contacts the workpiece, it must be stiff enough to resist the reaction force
that is exerted by the workpiece once it has been secured. This rigidity allows the compliant
mechanism to maintain its shape to hold the workpiece. This structural function is obtained by
minimizing the mean compliance posed by the traction t2 while !t1 is fixed, since the compliant
mechanism should maintain the deflection while it is subjected to traction t1 at !t1.

The kinematic function can be obtained by solving the following optimization problem:

maximize
a,b, !/$ h

¸2 (u1)"P!t2
t2 · u1d! (20a)
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subject to a (u1, v1)"¸1 (v1) for u13»(a)∀v13»(a) (20b)

a(u2, v2)"¸2 (v2) for u23»(a) ∀v23»(a) (20c)

0)a)a
611

(1 (20d)

0)b)b
611

(1 (20e)

g(a, b)"P)$

(1!ab) d)!)
4
)0 (20f )

where V (a)"Mv"v
i
e
i
:v

i
3H1()) with v"0 on !

$
N, a

611
and b

611
are the upper bounds of the

microscopic variables, a and b, respectively. These are specified in order to avoid the singularity in
the structural analysis. )

$
is the design domain of the compliant mechanism, and )

4
is the total

volume constraint of the solid material forming the porous structure. Note that equation(20c) is
required in order to obtain the sensitivity of the objective function in the optimization process
even though u2 does not appear explicitly in the formulation of the optimization problem. This
implies that this optimization problem requires equation (20c) as a constraint.

The structural function can be obtained by solving the following optimization problem:

minimize
a,b, !/$ h

¸3 (u3)"P!t2
t3 · u3 d! (21a)

subject to t3"!t2 (21b)

a(u3, v3)"¸3(v3) for u33»(b) ∀v33»(b) (21c)

0)a)a
611

(1 (21d)

0)b)b
611

(1 (21e)

g(a, b)"P)$

(1!ab) d)!)
4
)0 (21f )

where »(b)"Mv"v
i
e
i
:v

i
3H1()) with v"0 on !

$
and !

t1
N.

Equations (20b), (20c) and (21c) are the principle of virtual work. In each case, the displacement
field satisfies the equilibrium equation. Equations (20f) and (21f) are the volume constraint of the
design domain.

Maximizing ¸2 (u1) and minimizing ¸3 (u3) simultaneously requires that multi-objective opti-
mization be used. One way to deal with the multi-objective optimization problem is the weighting
method formulated as follows:

maximize
a,b !/$ h

f
1
"w

1
¸2(u1)#w

2
(!¸3(u3)) (22a)

subject to t3"!t2 (22b)

a(u1, v1)"¸1(v1) for u13»(a) ∀v13» (a) (22c)
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a(u2, v2)"¸2(v2) for u23»(a) ∀v23» (a) (22d)

a(u3, v3)"¸3(v3) for u33»(a) ∀v33» (b) (22e)

0)a)a
611

(1 (22f)

0)b)b
611

(1 (22g)

g(a, b)"P)$

(1!ab) d)!)
4
)0 (22h)

where w
1

and w
2

are given weighting coefficients such that w
1
*0, w

2
*0, w

1
#w

2
"1.

Since it is possible that ¸2 (u1) can go to infinity, and ¸3(u3) must have a finite value, f
1

may
also go to infinity if w

1
and w

2
are fixed during the optimization process. To overcome this

ill-conditioned problem, weighting coefficients must be adequately adjusted during this process.
A proper alternative way to formulate the multi-objective function is using a ratio rather than

linear combination of the two objective functions:

maximize
a,b !/$ h

f
2
"

¸2 (u1)

¸3 (u3)
(23a)

subject to t3"!t2 (22b)

a(u1, v1)"¸1 (v1) for u13»(a) ∀v13» (a) (23c)

a(u2, v2)"¸2 (v2) for u23»(a) ∀v23» (a) (23d)

a(u3, v3)"¸3 (v3) for u33»(") ∀v33» (") (23e)

0)a)a
611

(1 (23f)

0)b)b
611

(1 (23g)

g(a, b)"P)$

(1!ab) d)!)
4
)0 (23h)

Equation (23a) can be interpreted as the measurement of the efficiency of the compliant
mechanisms based on the strain energy. If this value is large, it means that this compliant
mechanism can work well and have sufficient rigidity. However, even if one compliant mechanism
has two times as much mutual mean compliance and mean compliance as another compliant
mechanism, we interpret both of them as having the same efficiency based on the measurement of
the strain energy.

The variations of the multi-objective functions f
1

and f
2

are described in the following
equations:

df
1
"w

1
d¸2(u1)#w

2
(!d¸3(u3)) (24)

d f
2
"

1

¸3(u3)
d¸2(u1)#

¸2 (u1)

¸3(u3)2
(!d¸3(u3)) (25)
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Comparing equation (24) with equation (25), the equivalent weighting coefficients wJ
1

of the
kinematic function ¸2(u1) and wJ

2
of the structural function ¸3(u3), with respect to the small

perturbation of the objective functions, are obtained by

wJ
1
"

¸3(u3)

¸2 (u1)#¸3 (u3)
, wJ

2
"

¸2 (u1)

¸2(u1)#¸3(u3)
(26)

Note that equivalent weighting coefficients wJ
1

and wJ
2

are normalized by 1, and that they are
equivalent to the weighting coefficient of equation (22a) in the sense of the derivative of the
objective function, or within the small perturbation of the objective function. Equation (26)
implies that the equivalent weighting coefficient wJ

2
of the structural function ¸3 (u3) becomes

larger as ¸2(u1) increases; if ¸2 (u1) tends to infinity, its equivalent weighting coefficient wJ
1

automatically decreases and prevents the problem from being ill-conditioned.
The Lagrangian, L

1
, of the multi-optimization problem defined by equations (22a)—(22h) is

formulated as

L
1
"!Mw

1
¸2(u1)#w

2
(!¸3 (u3))N#j

1
g (a, b)#j

10
(!A)#j

11
(A!A

611
) (27)

where j
1
, j

10
, and j

11
are the Lagrange multipliers, A is either a or b and A

611
is the upper bound

of either a or b. Note that the negative sign is assigned to the objective function to derive the
standard KKT-conditions in which the objective function is to be minimized. The KKT-condi-
tions in this case are written as follows:

LL
1

LA
"!w

1

L¸2(u1)

LA
!w

2A!
L¸3 (u3)

LA B#j
1

Lg (a, b)

LA
!j

10
#j

11
"0 (28a)

LL
1

Lh
"!w

1

L¸2 (u1)

Lh
!w

2A!
L¸3(u3)

Lh B"0 (28b)

g(a, b))0 (28c)

0)A)A
611

(28d)

w
1
*0 (28e)

w
2
*0 (28f)

j
1
*0 (28g)

j
10
*0 (28h)

j
11
*0 (28i)

j
1
g (a, b)"0 (28j)

j
10

(!A)"0 (28k)

j
11

(A!A
611

)"0 (28l)
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Similarly, the Lagrangian, L
2
, of the multi-optimization problem defined by equations

(23a)—(23h) is formulated as

L
2
"!

¸2 (u1)

¸3 (u3)
#j

2
g (a, b)#j

20
(!A)#j

21
(A!A

611
) (29)

where j
2
, j

20
and j

21
are the Lagrange multipliers, A is either a or b, and A

611
is the upper bound

of either a or b. Note that in this case the negative sign is also assigned to the objective function to
derive the standard KKT-conditions. The KKT-conditions are written as follows:

LL
2

LA
"!

1

¸3(u3)

L¸2(u1)

LA
!

¸2 (u1)

¸3(u3)2 A!
L¸3(u3)

LA B#j
2

Lg(a, b)

LA
!j

20
#j

21
"0 (30a)

LL
2

LA
"!

1

¸3 (u3)

L¸2 (u1)

Lh
!

¸2(u1)

¸3(u3)2 A!
L¸3 (u3)

Lh B"0 (30b)

g(a, b))0 (30c)

0)A)A
611

(30d)

j
2
*0 (30e)

j
20
*0 (30f)

j
21
*0 (30g)

j
2
g (a, b)"0 (30h)

j
20

(!A)"0 (30i)

j
21

(A!A
611

)"0 (30j)

In general, one optimal solution is obtained in the case of the single objective problem.
However, in the case of the multi-objective problem, there exists a series of optimal solutions

which is called a set of Pareto optima, or noninferior solutions. On the curve of the Pareto
optimal set, any further improvement in any objective function requires a worsening of at least
one other objective function. As Koski21 explained, if x is the design vector belonging to the
feasible set, the Pareto optima is defined as follows:

‘x* is Pareto optimal if there exists no feasible vector x which would decrease some criterion
without causing a simultaneous increase in at least one criterion. In scalar optimization, one
optimal solution is usually characteristic of the problem, whereas there generally exists a set of
Pareto optima as a solution to a multi-objective problem’.

The necessary conditions for Pareto optimality of the multi-objective function defined by
equation (22a) and the multi-objective function defined by equation (23a) are, respectively,
equations (28a)—(28l) and equations (30a)—(30j). Furthermore, equations (28a)—(28l) and equa-
tions (30a)—(30j) are identical for some weighting coefficients in equation (22a) if inequality (31) is
satisfied. Therefore, if an optimal solution is obtained by equation (23a), this is also one of the
optimal solutions of the objective function defined by equation (22a) with some weighting
coefficients. This implies that the optimal solution of the objective function defined by equation
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(23a) is one of the noninferior solutions of the objective function defined by equation (22a).

1

¸3(u3)
*0,

¸2(u1)

¸3(u3)2
*0 (31)

Thus, the optimality condition for the multi-objective problem defined by equations (23a)—(23h)
is confirmed.

Moreover, the optimization problem for only the structural function is considered. If the only
design variables a and b are taken into account, the Lagrangian, L

3
, is defined by

L
3
"¸3(u3)#j

3
g(a, b) for 0(A(A

611
(32)

where j
3
is the Lagrange multiplier, A is either a or b, and A

611
is the upper bound of either a or b.

Ma17 studied the characteristics of the minimum mean compliance problem for the structural
function, and noted that the volume constraint of equation (21f) is active at the optimum, and
j
3

is positive at the optimum in equation (33),

j
3
"

L¸3(u3)/LA

Lg (a, b)/LA
'0 for 0(A(A

611
(33)

where A is either a or b, and A
611

is the upper bound of either a or b.
If ¸2 (u1)<¸3(u3)'0 at the optimum, using equations (30a) and (33), we have

j
2
"!

1

¸3 (u3)2
M!L3(u3)L¸2(u1)/LA#¸2 (u1)L¸3 (u3)/LAN

Lg(a, b)/LA
'0 for 0(A(A

611
(34)

where A is either a or b, and A
611

is the upper bound of either a or b.
Since the Lagrange multiplier j

2
is also positive at the optimum, the volume constraint of

equation (23h) is also active in the case of the multi-objective optimization problem formulated as
in equations (23a)—(23h). This condition guarantees that some compliant mechanism solutions
can be obtained. Thus, the multi-objective optimization problem is formulated by equations
(23a)—(23h).

Figure 4 shows a flowchart of the optimization procedure. There are four main steps in the
per-iteration loop of the optimization. First, the homogenized coefficients are calculated. For
interpolation of the microscopic design variables a and b, Bezier curves are used. Next, FEM is
used to calculate the sensitivities of the objective function and constraints with respect to a and
b in the unit cell of the microstructure (Figure 2). In the FEM, two-dimensional four-node
isoparametric and full integration elements with bilinear shape functions are used. These sensi-
tivities are used in the optimization phase.

The optimality criteria method has been successful in many structural optimal design prob-
lems. However, Ma17 pointed out that it is difficult to construct the heuristics for a general
optimization problem to evaluate optimality if the objective function is not convex. To overcome
this problem, Ma employed a convex approximation. However, it is also difficult to construct the
updating scheme for the complicated objective function since this updating scheme is more or less
based on the heuristics. On the other hand, Sequential Linear Programming (SLP) is easily
implemented even in the case of the complicated objective function, and can be said to be the
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Figure 4. Flowchart of optimization procedure

simplest convex approximation. Based on this reason, SLP is used to solve the optimization
problem. An advantage of using SLP is that it can handle over 10 000 design variables, although
fast convergence cannot be expected. SLP is used to solve for microscale variables a and b. In the
linearized optimization procedure, the simplex method is used. There are several methods22,23 to
set the move limits for SLP. Since the topology optimization problem has many simple con-
straints, the move limits are usually set to 5 to 15% of the original values of design variables. In
this study, the move limits are set to 10% of the original values, and are decreased to lower limits
when the objective function reaches the proximity of the optimal value. In the linearized optimiza-
tion problem, a package of the simplex method, DSPLP from the SLATEC library,24 is used.

The angle h in the unit cell must be updated to maximize the multi-objective function (23a) as
well. However, h is practically updated to minimize the objective function (21a) because the
principal direction of the stress is almost the same as the direction in which the objective function
(23a) is maximized. This principal direction is identical to the direction in which the objective
function (21a) is minimized based on Suzuki and Kikuchi14 and Pedersen.25 If the convergence
criteria is satisfied, then the process is terminated.
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The sensitivities of the objective function, f
2
, and the volume constraint, g (a, b), required in

SLP are obtained by

L f
2

LA
"

!P)
e(u2)T

LE

LA
e (u1) d)a (u3, u3)#P)

e(u3)T
LE

LA
e (u3) d) a (u1, u2)

a (u3, u3)2
(35)

where A is either a or b, and

Lg(a, b)

La
"P)$

(!b) d) (36)

Lg(a, b)

Lb
"P)$

(!a) d) (37)

Checkerboard patterns often appear in the optimal configuration when using the homogeni-
zation method with the displacement-based finite element method. As Dı́az and Sigmund26

explained, if four-node isoparametric elements with bilinear shape functions are used, the pattern
of checkerboard shown in Figure 5(b) is artificially stiffer than the pattern in which each element
has the uniform density of 1/2 as shown in Figure 5(c). To overcome this problem, the modified
filtering scheme based on Bendsøe’s method27 is developed. The algorithm of this filtering scheme
is described as follows:

(1) Construct one group consisting of the four contiguous finite elements as shown in Fig-
ure 5(a). The shape of all four contiguous finite elements is assumed to be the same. The
microscopic variables a and b of the ith element (i"1, . . . , 4) are described as a

i
and b

i
,

respectively. The density of the ith element is calculated by

o
i
"1!a

i
b
i

(i"1, . . . , 4) (38)

(2) Search for the maximum value and the minimum value of o
i
(i"1, . . . , 4). The maximum

value is set to o
.!9

, and the minimum value is set to o
.*/

.

Figure 5. A checkerboard pattern
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(3) Calculate the filtered density o6
i
(i"1, . . . , 4) using the following equations:

oN
1
"1

4
(3o

1
#o

2
#o

3
!o

4
) (39a)

o6
2
"1

4
(o

1
#3o

2
!o

3
#o

4
) (39b)

o6
3
"1

4
(o

1
!o

2
#3o

3
#o

4
) (39c)

o6
4
"1

4
(!o

1
#o

2
#o

3
#3o

4
) (39d)

(4) Search for the maximum value and the minimum value of o6
i
(i"1, . . . , 4). The maximum

value is set to o6
.!9

, and the minimum value is set to o6
.*/

.
(5) If the following inequalities are satisfied in each group consisting of the four contiguous

finite elements, replace the density of each element with o6
i
. Otherwise, the density is not

filtered.

oN
.!9

(o
.!9

and o
.*/

'o
.*/

(40)

Note that only if these equalities are satisfied, this group will have a checkerboard pattern.
(6) In the elements in which the density is filtered, calculate the equivalent microscopic

variables, a6
i
and b1

i
as follows:

a6
i
"cN

i
a
i

(41a)

b1
i
"c6

i
b
i

(41b)

where

c6
i
"A

1!o6
i

a
i
b
i
B
1@2

If severe checkerboard patterns are recognized in the optimal configuration, this filtering
scheme is used to eliminate them. In the flowchart of the optimization procedure shown in
Figure 4, the filtering scheme is executed after the SLP procedure.

EXAMPLES

Three examples are presented here to examine the configuration of the optimal solutions. In all
the examples, the properties of the isotropic material correspond to Young’s modulus"100 and
Poisson’s ratio"0)3, and two-dimensional elements are used for the finite element analysis. In all
cases, the applied force is assumed to be a unit load.

Example 1. Effect of mesh size

The first example is used to verify the uniqueness of optimal topology configuration when finite
element meshes are uniformly refined, while other conditions are fixed in this example. Figure
6 shows the design domain specified as a 240 by 120 rectangle with a fixed support boundary on
the left-hand side. The deflection at point B in the direction of the dummy load is to be maximized
when the external force is applied at point A, while the mean compliance at point B is to be
minimized.
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Figure 6. Design domain for Example 1

Three finite element models are utilized for the verification. One is a coarse mesh using 40]20
finite elements, another is an intermediate mesh using 60]30 finite elements, and the third is
a fine mesh using 80]40 finite elements. The total volume constraint of the material )

4
is

considered to be 5760, which is 20 per cent of the volume of the whole design domain. The initial
value of microscopic design variables a and b is 0)95, and that of h is 0)0 in all elements.

Figure 7 illustrates the convergence history of the optimization process in the case of 60]30
finite elements. Notice that the mutual mean compliance defined by equation (20a) increases and
the mean compliance defined by equation (21a) decreases simultaneously (Figure 7(a)), while the
objective function is maximized (Figure 7(b)). Also note that the volume constraint is active at the
optimal point (Figure 7(b)), and that the equivalent weighting coefficient, wJ

1
, of the mutual mean

compliance is close to zero when the objective function is maximized (Figure 7(c)).
Figure 8 shows the results of the optimal configurations with respect to the various meshes. It is

clear that the optimal topology configurations using three different mesh sizes are similar, though
slight differences in shape are observed in some portions. This means that the optimal topology
configuration is not affected by the size of meshes.

Example 2. Compliant gripper and effect of volume constraint

This example illustrates the design of a compliant gripper, and is used to examine the relation
between the optimal topology configurations and the total volume constraint of material )

4
.

Figure 9 shows a half-view of the design domain where boundary conditions and specifications
are as indicated. The function of the gripper is to (1) deform along the direction of the dummy
force in order to grasp a workpiece at point B when the external force is applied at point A, and (2)
hold the workpiece while the external force is continuously applied. The mutual mean compliance
between points A and B is maximized while the mean compliance at point B is minimized in order
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Figure 7. Convergence history (60]30): (a) mean compliance; (b) objective function and total volume; (c) equivalent
weighting coefficients normalized by 1
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Figure 8. Optimal configurations using different meshes: (a) optimal configuration (40]20); (b) optimal configuration
(60]30); (c) optimal configuration (80]40)

Figure 9. Design domain for compliant gripper

to satisfy the required function. The left side boundary of the design domain is fixed for support of
the gripper. The symmetric boundary condition is posed at the bottom side boundary. In this
problem, 1600 finite elements are used. The initial value of microscopic design variables a and b is
0)9, and that of h is 0)0 in all elements. Three values of the total volume constraint )

4
, 160, 240

and 400, are examined.
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Figure 10 shows the convergence history of the optimization process in the case of )
4
"240.

The mutual mean compliance defined by equation (20a) increases and the mean compliance
defined by equation (21a) decreases simultaneously (Figure 10(a)), while the objective function is
maximized (Figure 10(b)) in the case of the complex structural design. The volume constraint is
active when the objective function has been maximized (Figure 10(b)).

Figure 11 shows the optimal topology configurations for the case of )
4
"160, 240 and 400.

Comparing the case of )
4
"240 with the case of )

4
"160, the topology configurations near point

A are different. However, the topology configurations in the cases of )
4
"240 and 400 are almost

the same, although a slight difference in the optimal shape is observed.
The material density near point B increases as the total volume constraint increases because the

mean compliance defined by equation (21a) decreases. This implies that it is necessary to have
sufficient material in order to obtain the rigidity required to hold a workpiece. On the other hand,

Figure 10. Convergence history ()
4
"240): (a) mean compliance; (b) objective function and total volume
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Figure 11. Optimal configurations with different total volume constraints: (a) optimal configuration ()
4
"160);

(b) optimal configuration ()
4
"240); (c) optimal configuration ()

4
"400)

the topology configuration on the left side which connects to the fixed boundary portions does
not change with respect to the total volume constraint. This implies that this configuration is
required for the flexibility of the gripper. In summary, it is likely that the optimal topology
configuration is affected by changing the total volume constraint.

Example 3. Compliant clamp and performance of optimal configuration

This example illustrates the design of a compliant clamp, and is used to examine whether the
optimal topology configuration matches the performance of compliant mechanism design.
Ordinary nonlinear FEM is used for this analysis. Figure 12 shows a half view of the design
domain where boundary conditions are as indicated. The function of the clamp is to (1) hold
a workpiece at point B while the external force at point A is not applied, and (2) deform to release
the workpiece when the external force at point A is applied. The mean compliance at point B is
minimized while the mutual mean compliance between points A and B is maximized in order to
satisfy the required function. The bottom side boundary of the design domain is fixed since the
clamp is supported at this boundary. The design domain is discretized using 1760 finite elements.
The initial value of microscopic design variables a and b is 0)90, and that of h is 0)0 in all elements.
The total volume constraint of the material )

4
is considered to be 352 which is 20 per cent of the

volume of the whole design domain.
Figure 13 shows the optimal topology configuration of the compliant clamp. Since checker-

board patterns are observed in this optimal configuration, the filtering scheme is employed to
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eliminate them. Figure 14 illustrates the convergence history of the optimization process of the
clamp design when the filtering scheme is used. The mutual mean compliance defined by equation
(20a) increases, and the mean compliance defined by equation (21a) decreases simultaneously
(Figure 14(a)), even though the filtering scheme is used. The volume constraint is active when the
objective function has been maximized (Figure 14(b)). Figure 15 shows the optimal topology
configuration of the compliant clamp using the filtering scheme.

The ordinary finite element model is constructed based on this optimal topology configuration
in order to verify the function of the compliant clamp. This model is discretized to 2001 elements
with 2318 nodes as shown in Figure 16. The properties of the isotropic material correspond to
Young’s modulus"100 and Poisson’s ratio"0)3. Non-linear commercial code ABAQUS with
large displacement option is used for the non-linear analysis.

Figure 12. Design domain for compliant clamp

Figure 13. Optimal configuration of compliant clamp
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Figure 14. Convergence history of compliant clamp design (Filtering scheme is used): (a) mean compliance; (b) objective
function and total volume

Figure 17 shows the deformation, and Figure 18 shows the von-Mises stress distribution of the
compliant clamp where an external force of 0)1 unit is applied at point A. It is clear that the
compliant clamp deforms according to the problem specifications. That is, the portion around
B is rising in order to release a workpiece when the external force is applied. Note that the stress
concentrations are near the midspan of the left-diagonal member and the support positions of the
right-diagonal member. The higher stress concentration occurs near support positions of the
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Figure 15. Optimal configuration of compliant clamp (Filtering scheme is used)

Figure 16. Finite element model

Figure 17. Deformed shape for non-linear analysis
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Figure 18. Distribution of von-Mises stress (The darker scale describes the higher stress concentration)

right-diagonal member. This implies that there is a lower probability of fracture except in these
positions even though the compliant clamp deforms non-linearly. Therefore, the design of
compliant mechanisms can be accomplished with the method proposed in this research.

CONCLUSION

A topology optimization method considering flexibility has been developed using the homogeniz-
ation method and applied to the design of compliant mechanisms. Mutual mean compliance was
introduced in order to formulate the flexibility of structures, and its sensitivity was obtained for
the structural optimization. A new formulation of multi-objective optimization was introduced
for the design of compliant mechanisms. An optimization algorithm was constructed using the
homogenization method and Sequential Linear Programming (SLP). It has been shown that the
optimal topology configuration obtained by the multi-objective formulation is unique, regardless
of the number of finite elements. It has also been shown that the optimal topology configuration
is affected by a change in the total volume constraint of materials. The additional finite element
analysis proved that the final compliant mechanism design satisfies the problem specifications.
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