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SUMMARY

A class of parallel multiple-front solution algorithms is developed for solving linear systems arising from
discretization of boundary value problems and evolution problems. The basic substructuring approach
and frontal algorithm on each subdomain are �rst modi�ed to ensure stable factorization in situations
where ill-conditioning may occur due to di�ering material properties or the use of high degree �nite
elements (p methods). Next, the method is implemented on distributed-memory multiprocessor systems
with the �nal reduced (small) Schur complement problem solved on a single processor. A novel algo-
rithm that implements a recursive partitioning approach on the subdomain interfaces is then developed.
Both algorithms are implemented and compared in a least-squares �nite-element scheme for viscous
incompressible �ow computation using h- and p-�nite element schemes. Copyright ? 2003 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

In analysis applications using �nite-element schemes, much of the computational cost is asso-
ciated with solving sparse linear systems. Domain decomposition has proven to be an e�ective
and robust strategy to exploit parallelism across subdomains [1–6]. There are many classes
of problems for which iterative methods converge slowly, are unreliable, or breakdown and
parallel elimination methods are more reliable and e�cient. However, partial elimination on
subdomains can also pose signi�cant di�culties. Gunzburger and Nicolaides [7] have shown,
for instance, that in the standard mixed Galerkin formulation for the incompressible Navier–
Stokes problem with discontinuous pressure subspaces, each subdomain block matrix will have
a single local pressure null vector and therefore will be singular with a one-dimensional null
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space. To circumvent this di�culty, they propose a complex algorithm using pseudo-inverses
and many matrix manipulation steps. In other cases such as the least-squares mixed for-
mulation of the incompressible Navier–Stokes equations with equal interpolation bases for
pressure, velocity and stresses, the subdomain block matrices are non-singular. However,
depending on the choice of element basis functions and the particular problem, these block
matrices may not be completely factorizable because of ill-conditioning that can be attributed
to the presence of very small pivots arising from the basis functions.
In the present work, we �rst adopted the multiple-front approach [8] with subdomain and

element reordering to address some of the above di�culties. We then added an intermediate
step of load balancing via weighted vertices based on the p-levels of the element basis func-
tions, to the existing capabilities of Metis [9] to achieve our subdomain partitioning for parallel
elimination. An element-by-element frontal LU factorization with threshold pivoting [10] is
then applied to element matrices of each subdomain. This results in some of the internal un-
knowns in each subdomain remaining in the equations yet to be eliminated and therefore they
become part of the resulting Schur complement problem. For non-element problems, Mallya
et al. [11] also addressed the problem of pivoting within each block. Solution of the entire
Schur complement problem on one processor presumes that the reduced problem is small and
hence, only allows coarse granularity of the present algorithm. Recently, Scott [12] introduced
a message passing interface (MPI)-based multiple-front solution method (part of the Harwell
Subroutine Library or HSL) in which the reduced Schur complement problem from subdo-
mains are solved on a single host via a frontal algorithm. The host performs a reordering of
these matrices (similar to element reordering schemes) before using the HSL module MA42
(the original frontal solver) for frontal solution of the interface problem. The multiple-front
algorithm in Reference [12] is applied to �nite-element meshes. In a modi�ed algorithm which
we consider the major contribution of the present work, we introduce recursive partitioning of
the interface and consequently, the global Schur complement problem. This leads to improved
scalability properties as shown in the supporting numerical experiments.
The outline of the discussion is as follows: We �rst describe the basic domain decom-

position and substructuring problem from a linear algebra standpoint. The key contribution
concerning our approach for recursively partitioning the interface is then described in detail
via an illustrative example. Supporting numerical experiments for p-�nite-element solution of
viscous �ow problems and parallel performance studies conclude the treatment.

2. PARALLEL MULTIPLE-FRONT ALGORITHM

In this section, we brie�y describe the multiple-front algorithm with partial pivoting as a
motivation of our present work. More information on multiple-front algorithms can be found
in References [8, 13]. Consider a mesh de�ned on a domain � and a partition to a set of
k open subdomains �=

⋃k
i=1 �i with associated subdomain meshes such that �i ∩�j=0

and common interfaces �i ∩�j=�ij for 16i; j6k. Using this decomposition, the discretized
problem can be expressed as a partitioned algebraic system with the partitioning de�ned by
the subdomains. To �x the main ideas related to the subdomain interface treatment, let us
consider the part of the algebraic linear system corresponding to a subdomain �s written as

Ju= r+ � (1)
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Here J is the assembled Jacobian matrix from individual elemental matrices of the subdomain,
r is likewise the assembled residual for the subdomain �s and � corresponds to the remaining
contributions from the adjacent subdomains. (We have suppressed the subdomain index for
notational simplicity). Next, let us introduce another local ordering of the subdomain nodal
unknowns so that those eliminated by the action of the incomplete frontal factorization are
numbered �rst as ue. The remaining unknowns uf correspond to those that are left in the
front for the subdomain. This simple reordering of the nodal components can be represented
using a permutation matrix QT by ũ=QTu, where ũ=[ue uf ] and QT is de�ned by elemen-
tary operations on the identity matrix. In the same way, the components of the vector r in
(1) can be reordered to r̃ with r̃=PTr, where PT denotes the e�ect of row interchanges.
(Matrices P and Q re�ect the order of row and column pivoting, respectively, during the
frontal factorization of J). Under this reordering, Equation (1) becomes

J̃ũ= r̃+ �̃ (2)

where �̃ has zeros in those entries corresponding to all interior degrees of freedom and
J̃=PTJQ. The elimination process induces a corresponding block partitioning

Jeeue + Jef uf = re

Jfeue + J� uf = rf + �f
(3)

where the non-zero entries in �f correspond to all unknowns on the interface.
Formally, the �rst equation in (3) can be used to express ue in terms of uf so that the

remaining equation in (3) reduces to the Schur complement problem for the subdomain in-
terface

S�uf = bf (4)

with S� =J� − JfeJ−1ee Jef , bf = rf + �f − JfeJ−1ee re. Of course, this system cannot be set up
explicitly because the unknowns de�ning uf are not known a priori. Moreover, even if the
system were set up, it obviously could not be solved because entries in �f are not known.
However, the associated operations can be conveniently expressed for our purposes in terms
of the block factorization[

Jee Jef

Jfe J�

]
=

[
Lee 0

Lfe S�

][
Uee Uef

0 I

]
(5)

and the resulting problem for (3) can be rewritten as the pair of systems[
Lee 0

Lfe S�

][
ye

yf

]
=

[
re

rf

]
+

[
0

�f

]
(6)

and [
Uee Uef

0 I

][
ue

uf

]
=

[
ye

yf

]
(7)

Next, let Bs denote the boolean matrix specifying the global connectivity for subdomain s.
Then the local subdomain matrix Js can be mapped into the global system by BTs JsBs. Here
Js is of size ns×ns and Bs is an ns×nG matrix where ns, nG are the number of local and global
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degrees of freedom, respectively. Similarly, rs, �s map to BTs rs and BTs �s. Then the assembled
global system for uG can be expressed as the sum of mapped subdomain contributions

S∑
s=1
(BTs JsBs)uG=

S∑
s=1
BTs rs +

S∑
s=1
BTs �s (8)

The last term in (8) reduces to the global sum of interface �ux jumps, and
S∑
s=1
BTs �s=

I∑
i=1
[�i]= 0 (9)

follows from the weak variational statement in the Galerkin method and from Co approxima-
tion of the �uxes in the least-squares method in Section 4.
Hence, we need not explicitly treat �f and can proceed with a parallel factorization step as

follows: The interface variables for each subdomain are �rst �agged in a pre-front routine.
The block matrices Lee, Lfe, Uee, Uef and S� are then generated in parallel across subdomains
by an element-by-element frontal solution scheme with threshold pivoting within the front.
The remaining front contains not only the interface variables but also those remaining internal
variables that did not pass the threshold pivoting criterion. Since conditioning depends upon
the choice of element basis (as well as other factors such as subdomain mesh size), it is not
surprising that di�erent bases will lead to di�erent front sizes. In some of our numerical test
cases we �nd that a signi�cant fraction of the interior unknowns still remain in the front at
the end of the subdomain factorization step.
For clarity of exposition, let us �rst assume that the global Schur complement problem

(SFgF= bF) has been assembled from subdomain contributions onto a single processor (e.g.
processor zero) and solved to determine the global vector gF. From gF we can extract the
subdomain front solution vectors {usf}; s=1; 2; : : : ; S by use of a parallel subdomain back-
substitution step in (7).
For a given LU-decomposition of the subdomain Jacobian matrix J̃, we can rewrite bf from

(4) and (6) as
bf = rf + �f − JfeJ−1ee re= rf + �f − Lfeye (10)

to obtain a forward substitution step for calculation of the Schur complement vector bf .
Since the subdomain elimination is local, the above steps can be made concurrently across
the processors in a distributed environment. For purposes of overlapping computation with
communication, the subdomain Schur complement matrix S� may be sent to processor zero
via a non-blocking ‘send’ call while the computation for vector bf is in progress:

Algorithm (parallel multiple-front algorithm)
for s= 0 to S subdomains in parallel
if s= 0 then [processor zero ]
Construct matrices Lee, Lfe, Uee, Uef , S� using subdomain frontal factorization.
Generate permutation matrices P and Q from row and column pivoting sequences
during frontal factorization.
Receive S� and bf from processors {1; 2; : : : ;S} and assemble
the global Schur complement problem.

Solve the global assembled Schur complement system.
Extract and send subdomain solution ye to each subdomain.
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else
Construct matrices Lee, Lfe, Uee, Uef , S� using subdomain frontal factorization.
Generate permutation matrices P and Q from row and column pivoting sequences
during frontal factorization.

Send subdomain Schur complement matrix S� to processor zero using a
non-blocking data transfer protocol such as MPI Isend.

Compute bf← rf − Lfeye using forward substitution.
Send subdomain Schur complement right-hand side bf to processor
zero using MPI Isend.

Receive ye from processor zero using a blocking receive call
such as MPI recv. [forces synchronization with global Schur complement
solution step]

Solve for internal variables ue.
endif

endfor

Remarks
As shown above, processor zero can be used for one of the subdomain problems as well as
for solving the assembled Schur complement problem. At the time of writing the software
for this algorithm, the authors were limited to the small memory size of a Cray T3E system.
Both the subdomain and the assembled Schur complement problems could not be allocated
on processor zero. As a result, the implementation assumed a number of subdomains one
less than the number of requested processors, and processor zero was set aside to solve the
assembled Schur complement problem only. Furthermore, for some of the example problems,
solving the entire problem on a single processor was not possible due to memory constraints.
For other distributed-shared memory systems this is not a problem.
The only signi�cant serial part of the above algorithm is the �nal solution of the global

reduced Schur complement problem. Clearly, this step may dramatically degrade performance
and e�ciency of the parallel algorithm as the problem scales since increasing the number of
subdomains results in a large number of interface variables (see Reference [8]); and the size
of the assembled Schur complement problem increases accordingly [14]. This algorithm is
therefore best suited for coarse grain parallelism. Of course, one can also solve the resulting
global Schur complement problem in parallel using a parallel dense direct or iterative solution
algorithm. A more interesting approach for very large problems is to continue the parallel
partitioning idea to the interface as described next.

3. INTERFACE TREATMENT

Since we adopt a graph theoretical approach to describe the interface partitioning problem,
a few basic concepts from graph theory are �rst presented. A graph G=(V; E) consists of
a set V of vertices along with a set E of edges where an edge is a pair (v1; v2) of distinct
vertices in V . A subgraph G̃=(Ṽ ; Ẽ) of G=(V; E) is a graph which consists of some or all
vertices of G and some of the edges of G : Ṽ ⊆V; Ẽ⊂E. The subgraph is a section graph
when Ṽ consists of only some of the vertices of G and Ẽ consists of all edges (v1; v2) that
are in Ṽ : Ṽ ⊂V , Ẽ= {(v1; v2)∈E ‖ v1 ∈ Ṽ and v2 ∈ Ṽ}. A graph is connected if every pair of
vertices is connected by a path. Otherwise, the graph is disconnected. Usually a disconnected
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Figure 1. Partitioning of a �nite element mesh to six subdomains.

graph consists of two or more connected components. We only consider connected graphs of
�nite elements for the present study. However, the proposed algorithm can be extended to
the case of a disconnected graph with two or more connected components. A separator is a
set of vertices that renders a connected graph disconnected when that set of vertices along
with their incident edges are removed from the graph. A vertex is called a cutvertex when
it is itself a separator. For our purposes, we de�ne degree of a cutvertex as the number of
subdomains incident to it and denote it as deg(Ci) of a cutvertex Ci.

3.1. Partitioning the interface

Now let us consider a partitioning of a �nite-element mesh to subdomains. We wish to rep-
resent the global interfaces among the neighbouring subdomains in terms of interface graphs.
Depending on the partitioning scheme used for the subdomains, there will be a number of
interfaces joining only at certain points in 2D and along lines in 3D. For clarity of exposi-
tion, we will restrict our discussion, examples and implementation details to 2D domains for
this study. However, the basic ideas can be extended to 3D geometries as well, although the
implementation will clearly be more complicated. To illustrate the main ideas, let us consider
the partitioning in Figure 1. It should be noted that the point at which two interfaces intersect
in 2D coincides with a physical node of a �nite element sharing these two interface segments.
This node then becomes a cutvertex or a separator in the interface graph; i.e. if a connectivity
graph is constructed out of all interface vertices, this node will become a separator of this
graph. For example, the separators of the graph of global interfaces for the partitioning in
Figure 1 are shown in Figure 2. The degree of any cutvertex can be calculated from the num-
ber of subdomains incident to it, e.g. deg(C4)=2, deg(C5)=3, etc. The interface segment
between any two end separators consists of nodes of �nite-elements incident to that interface.
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Figure 2. Separators in the connectivity graph of global interfaces.
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Figure 3. Vertices of interface graphs for subdomains 1, 2 and 4.

Let us denote the set of all nodes between two separators i and j along an interface by vij.
Using these de�nitions, we can represent all the vertices of an interface graph as shown in
Figure 3 for subdomains 1, 2 and 4.
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The interface partitioning strategy can then be most clearly explained using an example. Let
us assume that the interfaces incident with subdomains 1; 2 and 4 in Figure 3 belong to the
same partition. Obviously, not all of the unknowns on these interface segments can be solved
independently of the other partitions. The following rules, however, are always satis�ed in
2D:

1. If either of the cutvertices i or j of an interface graph can be eliminated, then the
intermediate set of vertices vij is also a candidate for elimination.

2. A separator or cutvertex can be eliminated only when its degree has been reduced to 2
by merging incident subdomains for a particular interface partition.

We should point out that the above rules speci�cally apply to 2D geometries. Similar
rules can be formulated for the case of 3D geometries as well. The graph of the interface
for subdomain 1 can be represented as G(1) = (V (1); E(1)) where the set of all vertices on
the interface is V (1) = {C1; v12; C2; v23; C3; v34; C4}. Note that the degree of any interface nodal
subset vij is always 2. However, the cutvertices Ci have di�erent degrees depending on the
original decomposition of the �nite-element mesh.
The entire set of vertices V (1) is non-reducible; i.e. they cannot be eliminated indepen-

dently of the other partitions. Now consider the set of vertices on the interface of subdo-
main 2, V (2) = {C4; v34; C3; v310; C10} and make V (2) part of the set of vertices that cannot
be eliminated. Next, we search for common separators of V (1) and V (2); i.e. C3 and C4.
The separator C4 can be readily eliminated (following Rule 2 above) since its degree is
2. Then, by Rule 1, the intermediate vertices given by the set v34 can also be eliminated.
Since deg(C3)=3, the separator C3 cannot be eliminated at this stage. However, once sub-
domains 1 and 2 are merged, we can reduce the degree of C3 by one so that deg(C3)=2.
For example, it can be eliminated if subdomain 4 is also merged with subdomains 1
and 2.
After subdomains 1 and 2 are merged, the sets of internal and boundary unknowns on the

resulting interface are: I = {C4; v34}, N = {C1; v12; C2; v23; C3; v310; C10}, respectively. The inter-
nal vertices given by the set I can be readily eliminated and a resulting Schur complement
problem can be written in terms of the unknowns corresponding to the vertices in N . We
describe the implication for the matrix problem in a later section. A merging of the inter-
face of subdomain 4 to the current sets will then result in a new list for both I and N as
follows: I = {C4; v23; v34; C3; v310; C10}, N = {C1; v12; C2; v25; C5; v56; C6; v67; C7}.
The above example assumes that the interfaces of subdomains 1, 2 and 4 form one single

partition of the global interface problem. If one wishes to solve the global interface problem
on two interface partitions or interface subregions in parallel, the rest of the interface segments
incident with subdomains 3, 5 and 6 will be part of the second interface subregion and can
be treated in the same manner as above. For both interface subregions, we can eliminate the
respective internal unknowns and write the resulting Schur complement problem in terms of
the remaining unknowns. The resulting �nal ‘reduced’ Schur complement problem can then be
assembled and solved on one processor. Clearly, the above approach involves two partitioning
and elimination cycles, the �rst for subdomains with interfaces and the second for interface
subregions. The �nal ‘reduced’ Schur complement problem involves only a very small sub-
set of the original problem. In an ideal case it would involve only the remaining corner
vertice.
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The algorithm for creating lists I and N for each interface partition in a two-dimensional
geometry follows:

Algorithm (Interface list construction for 2D geometries)
for k=1 to n interface partitions
generate a list of m subdomains (S(k)) for partition k
for i=1 to m subdomains

N(k)←N(k) ∪V (i) (initialization)
if i¿1 then (merging of subdomains)
�nd s minimal separators between sets N(k) and V (i)

for j=1 to s separators
if deg(Cj)=2 then (eliminate)
I (k)← I (k) ∪Cj ∪ vjl (jl: connected vertices)
remove Cj and vjl from N(k)

else
deg(Cj)=deg(Cj)− 1

endif
endif
endfor

endfor
endfor

Remark
For a given number of subdomains, the number of interface partitions to be divided among
processors for the solution of the global Schur complement problem is not �xed. For elimina-
tion of common vertices, at least two subdomains must be merged for each interface segment.
Benner et al. [15] present an algorithm based on nested dissection in which two subdomains
are merged in parallel to eliminate the incident interface in n-steps for 2n subdomains. How-
ever, in this approach the parallelism is progressively reduced and their scheme is best suited
to structured meshes. Moreover, computing n nested-dissection steps in the multifrontal algo-
rithm on a distributed-memory multiprocessing system using message passing requires many
communication cycles and may not scale well beyond a few subdomains.
Even though our presentation of the proposed algorithm addresses only 2D geometries, the

most promising application of this algorithm is for the case of 3D geometries in which the
size of the interface is likely to grow and the need for interface partitioning becomes almost
essential. It should be noted that for the case of 3D, the interface is no longer a line. Instead,
it may be represented by a parametric surface with two parameters in a local co-ordinate
system. The separators in the graph of global interfaces will not be simple end-points along
interfaces, rather they will be a set of vertices along the tangential directions of an interface.
The degree of each of these vertices will still be the number of subdomains incident to it;
and all interface vertices that are enclosed within this set of separators can be eliminated by
merging subdomains. For 3D, the two rules and the algorithm for interface list construction
need to be modi�ed accordingly.
Recently, a family of linear solvers based on selective orderings have been proposed.

Notably, SPOOLES [16] from Boeing Phantom Works employs multilevel nested dissection
and multisection (a hybrid algorithm of nested dissection and minimum degree ordering) to
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�nd an ordering in the graph of the matrix to be factored. Subsequently, the vertices in the
elimination graph are grouped together to form fundamental supernode trees which can be
solved in parallel. This approach requires renumbering the vertex labels of the entire graph
and therefore, may not be convenient for the type of large distributed �nite-element graphs we
consider here. Another recent publication [17] explores the notion of unsymmetric supernodes
to perform most of the numerical computation in dense matrix kernels. The multi-threaded
version of the solver known as SuperLU runs on shared-memory machines and employs a
depth-�rst search along with symmetric structural reductions to speed up the symbolic factor-
ization and improve cache performance. Later, we present a number of examples to illustrate
the e�ect of partitioning of the Schur complement problem over di�erent processor con�gu-
rations for a given number of subdomains using the new algorithm described here.
In closing this section, we note that both the subdomain and interface partitioning problems

can be combined into a single partitioning problem in which a given geometry is partitioned
into a number of subdomains with the constraint that the resulting minimum interfaces can
be merged for maximum overlap. Such a constrained partitioning problem may prove to
be di�cult for complex unstructured �nite-element meshes. However, by using iterative and
heuristic methods, locally optimal solutions for the combined partitioning problem may be
possible, certainly for structured meshes.

3.2. Merging subdomain interfaces

The speci�c problem of merging adjacent subdomain interfaces and the resulting ‘reduced
Schur complement’ problem is considered next. This section does not depend on our speci�c
treatment of 2D geometries as shown above, and therefore is more general in treating both
2D and 3D meshes. For the time being, let us assume that only interface unknowns contribute
to the Schur complement problem for any subdomain. Consider two neighbouring subdomains
�(p) and �(q) sharing an interface segment �pq. The subdomain Schur complement problems
are

S(p)u(p) = b(p) + r(p)

S(q)u(q) = b(q) + r(q)
(11)

corresponding to the interfaces @�(p) and @�(q), respectively. The interface unknowns are
denoted as u(p) and u(q). The subdomain Schur complement matrices S(p) and S(q) are generated
using a frontal algorithm in each of the subdomains p and q. Note that both subdomains
p and q may have interfaces shared with other neighbouring subdomains. The contribution
of the neighbouring interfaces is represented by the vectors r(p) and r(q) in Equations (11).
Let us assume that these two subdomain interfaces are merged to form a global interface
partition. The algorithm shown earlier can be employed to generate the necessary lists N and
I for merging the interfaces. The unknowns corresponding to the shared interface �pq will be
part of I and the rest of the unknowns part of N. This induces a block representation of
the Schur complement problem (11) in each subdomain. First, we introduce a local ordering
of the subdomain interface nodal unknowns so that those on �pq are numbered as ue. The
remaining unknowns on each subdomain interface are labelled as u(p)f and u(q)f , respectively.
In the absence of any other subdomain interfaces, the lists I and N can then be expressed
as I = {ue}, N={u(p)f ; u(q)f }.
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This reordering of the interface unknowns can be represented using a permutation matrix
Q(:) as

(ue; u
(p)
f )

T = QT
(p)u

(p)

(ue; u
(q)
f )

T = QT
(q)u

(q)
(12)

respectively, for the two subdomains. Under these reorderings, Equations (11) become

S̃(p)ũ(p) = b̃(p) + r̃(p)

S̃(q)ũ(q) = b̃(q) + r̃(q)
(13)

respectively, for subdomains p and q where

S̃(p) =QT
(p)S

(p)Q(p); b̃(p) =QT
(p)b

(p); r̃(p) =QT
(p)r

(p) (14)

and

S̃(q) =QT
(q)S

(q)Q(q); b̃(q) =QT
(q)b

(q); r̃(q) =QT
(q)r

(q) (15)

Matrices S̃(p) and S̃(q) then have the following block structure:

S̃(p) =

[
S(p)ee S(p)ef

S(p)fe S(p)�

]
(16)

and

S̃(q) =

[
S(q)ee S(q)ef

S(q)fe S(q)�

]
(17)

Note that the matrices S(p)ee and S(q)ee represent the respective contributions of subdomains
p and q for the interface unknowns on the common interface segment �pq to the global Schur
complement matrix. We now perform a summation of these two matrices, i.e. we compute
See=S

(p)
ee +S

(q)
ee . This step requires inter-processor communication between subdomains p and q.

This is also the assembled Schur complement matrix corresponding to the unknowns ue ∈ I
on �pq. Let us denote the unknowns associated with the list N by u� as a result of merging
the interfaces of subdomains p and q. As a result, the ‘merged’ Schur complement matrix
can be expressed as [

See Se�

S�e S��

][
ue

u�

]
=

[
be

b�

]
+

[
0

r�

]
(18)

where the blocks Se�, S�e and S�� consist of contributions from subdomain interfaces other
than p and q, and hence cannot be eliminated at this stage. However, the matrix block See
corresponding to the unknowns ue is fully summed since �pq consists of only the interface
between subdomains p and q. The vector r� corresponds to the �ux term contribution of u�
and unassembled interface unknowns from neighbouring subdomains. Finally, the unknowns
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ue can be eliminated from (18) and the ‘reduced’ Schur complement problem for the ‘merged’
subdomain interfaces can be expressed as

[S�� − Se�S−1ee S�e]u�= b� + r� − Se�S−1ee be (19)

The subdomain interfaces can be partitioned into a number of global interface segments by
merging neighbouring subdomains. Each global interface partition generates a ‘reduced’ Schur
complement problem as given in (19) which consists of only a fraction of the original Schur
complement problem. These ‘reduced’ Schur complement matrices may now be easily assem-
bled onto one processor and solved for the global cutvertices.

3.3. Implementation

The schemes have been implemented in a general purpose p-adaptive �nite-element program
termed ‘P�nics’. A given �nite-element mesh is divided into a speci�ed number of subdomains
using Metis [9] and a set of pre-processing tools available in P�nics. This pre-processing phase
performs the following tasks:

(1) prepare a graph of element connectivity with element centroids as vertices,
(2) partition element graph using a multilevel k-way partitioning scheme via Metis,
(3) reorder the subdomains (output of Metis) to minimize the front width of the global

assembled Schur complement matrix,
(4) for each subdomain in the mesh: �nd internal and interface element numbers; reorder

local subdomain elements [18] to reduce the front width of subdomain frontal factor-
ization; generate send=receive lists of local nodes for each neighbouring subdomain;
�nd local boundary conditions from global �nite-element mesh; prepare input �le for
P�nics solver,

(5) each subdomain mesh is then assigned to a processor within a portable distributed
object-oriented framework for clusters of workstations and distributed memory super-
computers.

Communication among processors is handled using the standard MPI [19] protocols; e.g.
all data are sent to processors using a non-blocking protocol called MPI Isend. This allows
a processor to proceed to the next level of computation without waiting for the receiving
processor to read the data. To prevent bottlenecks, all processors receive data using a blocking
MPI recv call. The resulting software is portable from workstation clusters to supercomputers
and current MPP architectures. A nested linked list (PEList) keeps track of neighbouring
processor numbers (PE’s) for each processor in the system and local interface node numbers
shared with each neighbour. Another linked list (ElemList) maintains internal and interface
element numbers for each subdomain. This information is used in the subdomain frontal solver
to indicate which unknowns are fully summed. A novel memory management model is used in
P�nics, resulting in dynamic memory allocation and deletion as required for adaptive p-�nite-
element methods. More information on data structure and an object-oriented implementation
can be found in Reference [20]. Although the object-oriented framework of P�nics is general
enough to accommodate 2D and 3D elements, the code has only been implemented for solving
2D geometries so far, and therefore, only 2D �ow problems are presented in the section for
numerical examples.
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4. NUMERICAL EXPERIMENTS

As a representative application to demonstrate the ideas, we consider steady �ow of a viscous
incompressible �uid. The global laws of conservation of mass and momentum in a region
(�) of isothermal �ow may be written in dimensionless form as

∇ · v=0 (20)

v · ∇v=−∇p+∇ · �+ g
Wg

(21)

where p; v; � and g denote a scalar pressure �eld, velocity vector, stress tensor and body
force vector, respectively, at a spatial point x∈� and Wg (= v02=gol) is an inertial-buoyancy
�ow parameter. The constitutive equation for a Newtonian �uid is taken in the form

�= 1
Re
(∇v+∇vT) (22)

for Re=�vol=� the Reynolds number. The parameters �, �, v0 and l are density, viscosity, a
characteristic velocity and length scale, respectively.
The boundary @� consists of non-overlapping parts @�d and @�n such that @�d ∪ @�n= @�.

The typical boundary conditions are: v= v0 on @�d, � · n= t0 on @�n.
Here we employ a least-squares �nite-element formulation for Equations (20)–(22) but

emphasize that the parallel multiple-front algorithm can be employed to solve the discretized
matrix problem arising out of other weak formulations such as Galerkin’s method. A least-
squares minimization functional for admissible �elds v, p and stress components (�xx; �xy; �yy)
in � can be constructed by introducing the corresponding residuals Rf for Equations (20)–
(22) as follows:

F= ‖Rf‖2L2(�) (23)

where the residuals Rf (Re¿O(1)) for admissible approximation �elds vh, ph, �h in the
�nite-element spaces are simply

Rf=




∇ · vh

vh · ∇vh +∇ph −∇ · �h − g
Wg

�h − 1
Re

(
∇vh +∇vhT

)


 (24)

Taking variations leads to a non-linear algebraic system to be solved for the nodal solution
values of velocities, pressure and stresses. The usual consistency conditions associated with
the Galerkin approach do not have to be enforced. (It is well known that the mixed Galerkin
method is not stable for certain basis combinations. For example, ‘locking’ to vh=0 occurs
for the linear velocity, constant-pressure triangle and spurious pressure modes can occur for
other choices of bases [21]. These restrictions on the bases do not apply to the least-squares
mixed �nite-element formulation.) Consequently, in the results presented later we use Co

equal order bases for all variables for convenience (although other choices are possible and
may be preferable).

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 56:1569–1592



1582 A. BOSE, G. F. CAREY AND V. F. DE ALMEIDA

1

10

100

1000

4 6 8 10 12 14 16

C
P

U
 T

im
e 

(s
ec

)

PE Numbers

Mesh I (100 elements)
Mesh III (400 elements)

Figure 4. CPU time for Meshes I and III with quadratic basis functions for 4, 8, 16 processors.

We �rst consider a common two-dimensional viscous �ow benchmark problem of isothermal
driven cavity �ow. A unit tangential velocity is applied at the top wall with no slip on the sides
and bottom. Our purpose is to study the e�ects of h- and p-re�nement on the performance
and do a parallel scalability study. All numerical experiments were performed on a CRAY
T3E system at the advanced computing facility of the University of Texas at Austin.
We show results for two di�erent uniform discretizations, namely 10×10 and 20×20 grids

denoted as Meshes I and III, respectively, in all subsequent discussion. Other experiments on
an intermediate mesh (Mesh II) were also carried out but the results are similar and hence
are not included here. The respective meshes are partitioned into 3 and 15 subdomains. Since
we use processor zero in the communication group for solving the assembled global Schur
complement problem, we therefore run the above cases on 4 and 16 processors, respectively.
We �rst present timing results using the single-processor Schur complement solution algorithm.
Figure 4 shows timing results on 4, 8 and 16 processors of the T3E for the two meshes
with quadratic basis functions (p=2). The base parallel algorithm does well for up to 8
processors for these two cases but does not scale beyond 8 processors. In Table I, we see
that for 16 processors, the size of the assembled global Schur complement problem is larger
than the maximum number of unknowns in any subdomain (denoted within brackets in the
table). The total CPU time in this case is dominated by the time required to solve the
global Schur complement problem serially. Clearly, for good scaling with increasing number
of processors, the size of the global Schur complement problem must remain small. With
p-enrichment of the element basis functions on a �xed mesh, the ratio of eliminated to
remaining unknowns increases progressively. Now the time required for subdomain Jacobian
matrix factorization and forward=back-solve steps is again more than that required for the
assembled global Schur complement problem. This results in better timing results as seen
in Figure 5 which compares CPU times for Mesh I with polynomial orders of 2 and 7,
respectively.
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Table I. Sizes of global Schur complement and subdomain
problems (in brackets) for Meshes I and III (p=2).

Number of processors (PEs)

PEs= 4 PEs= 8 PEs= 16

Mesh I 234 480 834
(978) (474) (282)

Mesh III 462 918 1578
(822) (1614) (822)
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Figure 5. CPU time for mesh I (p=2 and 7).

The e�ect of increasing problem size on a �xed number of processors is shown in
Figure 6. Note that for p equal to 2, both the 8 and 16-processor cases take approximately the
same amount of time. However, as the polynomial order is increased, the timing results with
16-processors improve substantially. Obviously, the subdomain solution time for frontal factor-
ization, and for forward and backward solution steps scales well as the number of processors
is increased as shown in Figure 7, for Mesh I and polynomial order p=5. However, because
of the increasing number of interface unknowns, the frontal solver for the assembled global
Schur complement problem takes more time as the number of processors is increased. This
bottleneck can be signi�cantly reduced by the algorithm for parallel solution of the interface
problem as demonstrated later.
As the polynomial degree of the basis is raised, matrix conditioning deteriorates and

the rate of convergence of iterative solvers is adversely a�ected [22]. Matrix conditioning in
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Figure 6. E�ect of increasing polynomial orders (Mesh I) on 8 and 16 processors.
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Figure 7. Frontal solver performance for mesh I (p=5, 17 820 equations).

direct solvers can also be a problem; e.g. this can signi�cantly a�ect the stability of a matrix
factorization, owing to the presence of very small pivots along fully assembled rows or
columns. This is a more serious issue for substructuring since only a small submesh is used
in each subdomain factorization and the number of assembled rows or columns in each sub-
domain is much smaller than that in the fully assembled global domain (details in Reference
[23]).

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 56:1569–1592



A CLASS OF PARALLEL MULTIPLE-FRONT ALGORITHMS 1585

Table II. Schur complement problem size for Mesh I on 8 processors, percentage shown in terms of
subdomain size (Lagrange polynomials).

Processor number (PE)

p PE=0 PE=1 PE=2 PE=3 PE=4 PE=5 PE=6 PE=7

2 480 114 162 114 102 162 216 126
25.7% 34.2% 26.1% 22.1% 36.9% 46.8% 27.3%

5 3249 545 773 420 545 572 823 807
23.2% 30.6% 17.9% 21.8% 24.4% 34.4% 33.5%

7 7263 1055 1714 746 1049 1302 1292 1821
23.6% 35.8% 16.7% 22.1% 29.2% 28.6% 40.0%

Table III. Schur complement problem size for Mesh I on 8 processors, percentage shown in terms
of subdomain size (Legendre polynomials).

Processor number (PE)

p PE=0 PE=1 PE=2 PE=3 PE=4 PE=5 PE=6 PE=7

2 480 114 162 114 102 162 216 126
25.7% 34.2% 26.1% 22.1% 36.9% 46.8% 27.3%

5 1200 276 396 276 246 396 540 306
11.7% 15.7% 11.8% 9.9% 16.9% 22.6% 12.7%

7 1680 384 552 384 342 552 756 426
8.6% 11.5% 8.6% 7.2% 2.4% 16.8% 9.4%

The choice of polynomial basis functions for a particular �nite-element formulation also af-
fects the condition number of the element matrices and as a result, the subdomain
Jacobian matrix. e.g. Consider the previous example involving a �nite-element formulation
of the incompressible Navier–Stokes equations based on least-squares minimization using hi-
erarchic Lagrange and Legendre polynomials.
The data in Table II are from a partition of Mesh I to seven subdomains. We consider

tensor-product polynomial basis functions for elements in the mesh. The numbers in the second
row for each p-level denote the percentage of Schur complement unknowns with respect to
total number of unknowns in a typical subdomain. Although the software can handle non-
uniform p-re�nement, for simplicity, the polynomial order for this study is uniform over
all subdomains. This also facilitates load balancing among processors. Notice that for p=2,
both Tables II and III show the same number of Schur complement unknowns u((i)f for all
subdomains. However, for higher p-levels, Lagrange polynomials contribute many internal
unknowns to the subdomain Schur complement problem, whereas hierarchical basis functions
constructed from Legendre polynomials contribute none. Therefore, for Legendre polynomials,
the Schur complement problem for each subdomain consists of only interface unknowns. This
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Figure 9. Fifteen-subdomain partition of the 4:1 contraction geometry.

is evident from the above table. For Lagrange polynomials, the size of the Schur complement
problem grows exponentially with polynomial order, resulting in poorer e�ciency of the
algorithm. Moreover, the percentage of Schur complement unknowns with respect to total
number of unknowns in any subdomain decreases as the order of the basis functions increases,
when Legendre polynomials are used.
Before we present the performance of the distributed Schur complement solution algorithm

for the driven cavity problem, let us consider another widely used numerical experiment as a
second example: least-squares �nite-element solution of channel �ow into a planar 4:1 con-
traction. Our objective is to show the limitations of the current approaches for both numerical
examples and compare them with our distributed Schur complement solution algorithm. We
refer to Reference [24] for the �nite-element formulation and related issues. Owing to symme-
try, only one-half of the planar contraction is modeled. Complete details of the �ow problem
and graphs of the solution �eld are given in Reference [25]. Here we focus on the comparative
performance and parallel scaling of the new recursive interface partitioning algorithm relative
to the previous algorithm. Representative samples of partitionings of the original domain to
subdomains are given in Figures 8 and 9.
Figure 10 shows timing results for parallel computations with uniform p-re�nement on

a �xed mesh. Note that for p=2 i.e. quadratic basis functions, the parallel multiple-front
algorithm does not scale beyond 9 processors. For higher p-orders, however, we get better
performance. For example, the bottleneck in the Schur complement solution step does not
appear for p=5 up to 15 processors. For polynomial enrichment using hierarchical bases,
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Figure 10. CPU time for di�erent polynomial orders.

most of the extra unknowns are added in the interior of an element. Therefore, for coarse
granularity systems and uniform p-re�nement on a �xed mesh, the size of the subdomain
matrix problem is large compared to that of the global Schur complement problem. For
this reason, solving the entire global Schur complement problem on one processor is still
acceptable. However, for a �xed mesh and �xed p-degree distribution, as the number of
subdomains and processors is increased, the size of the interface problem becomes large; and
eventually an unacceptable bottleneck occurs.
Figure 11 shows the performance of the new distributed Schur complement solution algo-

rithm embedded within the parallel multiple-front solution scheme for p=6. A linear speedup
curve based on the �rst data point is provided for comparison. The time required for solution
of the Schur complement problem is also presented. The improvement in parallel e�ciency
for the present algorithm can be explained from the relatively bounded curve for the Schur
complement solution time for the processor con�gurations we have tested so far. Figure 12
compares the solution time for the Schur complement problem for the two algorithms. Note
that the size of the Schur complement problem is too large to solve on one processor because
of memory limitation when the number of subdomains is su�ciently large (e.g. 18 for this
example). This is further motivation for solving the Schur complement problem distributively
across a number of processors using either the present scheme or a parallel iterative scheme.
Next, we comment on the partitioning of the Schur complement problem across a number

of processors. Since the global interface segments are eliminated via merging of subdomain
interfaces, the greater the number of subdomain interfaces that are put on the same interface
partition (for the Schur complement solution step), the fewer the number of unknowns in
the reduced Schur complement problem. The minimum number of subdomains that must be
merged to form a global interface partition is 2 and therefore, one can employ half the
number of original processors for solution of the Schur complement problem. However, this
increases the size of the reduced Schur complement problem, and indeed it may be e�cient
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Figure 11. Performance of distributed Schur complement solution (p=6, 4:1 contraction).
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Figure 12. Serial and parallel Schur complement solution timings (p=6, 4:1 contraction).

to employ just a few processors for solving the Schur complement problem as evidenced in
Figure 13 for an original �nite-element mesh (p=6) divided into 31 subdomains. Note that
as the number of interface partitions is increased, the reduced Schur complement problem
gets larger since fewer subdomains are merged for each interface partition. For the problem
sizes we have considered in the present study, it was su�cient to employ only four or �ve
processors for the Schur complement solution step as indicated by the local minimum. It is
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Figure 13. Performance of parallel Schur complement algorithm (p=6, 4:1 contraction).

not straightforward to decide upon an optimum number of interface partitions for the Schur
complement problem. However, the objective is to balance the time required for solving the
merged interface problems in parallel with the time required for solution of the reduced Schur
complement problem on one processor. Note that the timings presented in Figure 13 are still
better than that required for solution of the Schur complement problem on one processor even
though we get optimum performance when only three or four partitions are used.
Finally, the parallel Schur complement solution algorithm is applied to our �rst �ow prob-

lem, i.e. isothermal cavity �ow. We show a representative partition to 31 subdomains of
the original domain of 20×20 elements with a uniform polynomial order of 5 as shown in
Figure 14. For this partitioning, we present the performance of the parallel algorithm in
Figure 15 on 5 processors (i.e. four interface partitions). It should be noted that the idle pro-
cessors during the parallel Schur complement solution step may be returned to the resource
pool for other processes. Such dynamic resource management is necessary for distributed
systems based on networks of workstations and is an active area of research. Overall, these
two numerical experiments demonstrate an order of magnitude of improvement in parallel
e�ciency and scalability over the serial Schur complement solution algorithm.

5. CONCLUSION

We have presented a multiple-front elimination algorithm based on domain decomposition
for parallel direct solution of algebraic systems resulting from discretization of boundary
value problems in continuum mechanics. The basic algorithm concludes with a serial Schur
complement solve and therefore is suitable for coarse grain parallelism, e.g. for tightly cou-
pled workstation clusters and low-end multi-processor systems. Its e�ciency improves with
p-re�nement on a given mesh provided the size of the global Schur complement problem
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Figure 14. Thirty-one-subdomain partition of the lid driven cavity problem.

is kept small compared with the average size of the subdomain problems. The solution of
this global Schur complement problem, a bottleneck for increasing number of subdomains,
can be signi�cantly improved by partitioning the subdomain interfaces and distributing them
among neighbouring processors as shown in our examples. This leads to a scalable algorithm
that employs a graph theoretical representation of the subdomain interfaces. The separators
of the global interface graph are identi�ed and a list of subdomains per global interface par-
tition is generated. Only neighbouring subdomains are merged onto a partition so that local
neighbour-to-neighbour communication is required. Once the common vertices of subdomain
interfaces are eliminated, one is left with a reduced Schur complement problem de�ned over
only a fraction of the original interface unknowns. The procedure can be continued recursively
until the �nal reduced problem is su�ciently small. This �nal very small system can then be
assembled onto a single processor and solved. The performance of the algorithm in terms of
total CPU time closely follows the linear speed-up curve for up to 32 processors for the test
problems considered.
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Figure 15. Performance of parallel Schur complement algorithm (p=5, lid driven cavity).
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