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Variational multiscale methods to embed the macromechanical
continuum formulation with �ne-scale strain gradient theories
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SUMMARY

A variational basis is presented to link �ne-scale theories of material behaviour with the classical,
macromechanical continuum theory. The approach is based on the weak form of the linear momentum
balance equations, and a separation of the weighting function and displacement �elds into coarse and
�ne-scale components. Coarse and �ne-scale weak forms are de�ned. The latter is used to introduce a
strain gradient theory that operates at �ner scales of deformation. Attention is focused upon applications
requiring the enhanced physical accuracy of the �ne-scale strain gradient theory, without the computa-
tional cost of discretization that spans the range from coarse to �ne scales. A variationally consistent
method is developed to embed the �ne-scale strain gradient theory in the macromechanical formulation.
The embedding is achieved by eliminating the �ne-scale displacement �eld from the problem. Two ex-
amples demonstrate the numerical e�ciency of the method, while retaining physical and mathematical
properties of the �ne-scale strain gradient theory. Copyright ? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The mechanical behaviour of solid materials demonstrates response over a range of length
scales. For polycrystalline solids, macromechanical continuum theories (linear or non-linear
elasticity, continuum plasticity, damage degradation, etc.) are su�cient when the deformation
phenomena of interest occur at length scales upward of about 10�m. As deformation phenom-
ena approach the length scales of grains (1 �m and lower in most polycrystalline solids), the
interactions between defects and the e�ects of their elastic �elds begin to play increasingly
important roles. Restricting attention to polycrystalline solids, it is observed that dislocations,
microvoids and microcracks have a pronounced in�uence upon material response when the
deformation varies at the micron and submicron scale. Conventional macroscopic continuum
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theories of inelasticity—such as plasticity or damage—fail at resolving this e�ect. A treatment
of interactions between individual defects is, however, ruled out; their densities are too high
to warrant such an approach even at these �ner scales. On the other hand, the hardening
e�ects at crack tips, results of nanoindentation tests [1–6], microtorsional and microbending
experiments [7, 8], and response in the presence of microvoids, inclusions and microcracks
[9] can be explained with notable success by various classes of strain gradient plasticity the-
ories. The observed �nite width of shear bands is also represented by these theories since
they introduce a length scale to the problem in contrast with classical continuum theories.
Several examples of such strain gradient theories have appeared recently [10–17]. A separate
approach to incorporating the in�uence of microstructure is seen in the treatment of con�gu-
rational microforces [18–21]. Related work [22] treats crystal plasticity in the framework of
microforces and encompasses plastic strain gradient e�ects.
The �ne-scale e�ects of the above models manifest themselves when the deformation varies

in the submicron range, thereby inducing su�ciently large strain gradients. In application to
boundary-value problems, each class of models outlined above prevails in domains whose
dimensions are in the near micron and submicron-range. While using numerical techniques,
the �nest scales of the discretization must then be in the submicron range. This does not
pose a large computational cost if the size of the solid domain over which the boundary-
value problem is to be solved is also in the micron range. This would be the case while
investigating a crack-tip region, a small region enclosing a micron-sized shear band or the
e�ect of submicron-sized voids in a micron-sized specimen. On the other hand, a wide range
of applications require the inclusion of �ne-scale physics associated with such microscopic
features in macroscopic domains. Loading conditions could include wear, fatigue, impact and
penetration. They might involve high strain rates and temperatures. Such considerations arise
in naval/marine structures, defence and civilian aerospace structures and in industrial settings.
These applications place increasingly stringent demands of physical accuracy on material
models, thus requiring the incorporation of some of the above microstructural theories. Yet, the
overall physical dimensions of the problems remain on the order of 1–10m and computational
e�ciency cannot be forsaken while employing the microstructural theories. This di�culty
would seem to suggest the approach of embedding �ne-scale models in macroscopic ones as
an alternative. As another option, a microforce theory may be used. In either case the approach
should give rise to mathematical models in which deformations at di�erent scales are coupled.
Computational e�ciency is served if such multiscale models can then be posed solely in terms
of the macroscopic coarse-scale deformations. Physical accuracy of the multiscale models will
depend upon the �delity with which microstructural �ne-scale physics is represented, and the
degree to which it in�uences the coarse scales.
The approach proposed here is termed the variational multiscale method. The method has

previously been applied to the localization of deformation by the author and co-workers
[23, 24]. Subsequently, the approach was extended to embed a simple �ne-scale traction-
separation law in the macromechanical formulation [25, 26]. The method assumes a decom-
position of the displacement into coarse and �ne-scale components. Within the context of the
ideas being proposed here the arguments are as follows:

(i) If one were working with an independent �ne-scale law, it would be postulated that
the �ne-scale displacement component is governed by this law and resolves the micro-
scopic variations of the solution that are absent from the coarse-scale displacement. The
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method is variationally based and involves the elimination of �ne-scale displacements,
resulting in a multiscale model that has microscopic �ne scales projected on to the
macroscopic coarse scales. The procedure results in an embedding—in the macrome-
chanical formulation—of the �ne-scale law that governs the �ne-scale physics.

(ii) For a microforce theory, the coupling between scales already exists by way of constitu-
tive laws, micro- and macrobalance laws. In such a case the �ne-scale displacement can
be exploited to resolve the �ne-scale kinematics while the coarse-scale displacement
resolves the coarse-scale kinematics. The elimination of the �ne-scale displacement re-
sults in a multiscale formulation with the microbalance law and �ne-scale constitutive
law embedded, and the tight coupling of scales being preserved.

The speci�c �ne-scale theory adopted for this article is a phenomenological strain gradient
plasticity theory developed by Fleck, Hutchinson and co-workers [11, 27]. It departs from
classical plasticity theory when the deformation varies at scales of the order of a micron and
below. Under the present view, therefore, it is a �ne-scale theory.
The variational basis of the multiscale method presented here results in formulations to

which a wide range of discretization techniques can be applied. Speci�cally, both �nite ele-
ment and meshless methods can be employed. In this article the focus is upon �nite-element
methods.
The variational multiscale method described here, while related to mathematical homog-

enization theory, stands apart in that a constitutive �ne-scale character is assumed of the
material. The constitutive laws for �ne-scale physics are complemented by a �ne-scale bal-
ance law. This is to be contrasted with certain (traditional) applications of homogenization
theory (see References [28–32] and references therein) where the constitutive model remains
that of conventional elasticity while the multiscale character arises from inhomogeneities.
The rest of this paper is organized as follows: The method is developed for the Fleck–

Hutchinson strain gradient theory in Section 2. An integration algorithm is presented for
this strain gradient plasticity theory in Section 3. The spatial discretization is discussed in
Section 4. Two numerical examples appear in Section 5. A summary and long-term scope of
this approach are outlined in Section 6.

2. FLECK–HUTCHINSON STRAIN GRADIENT PLASTICITY THEORY
AND THE VARIATIONAL MULTISCALE METHOD

The development in this paper assumes small deformations. At the outset a scale separation
is introduced on the displacement: u= �u+ u′, into coarse- and �ne-scale components, respec-
tively. Direct and indicial notation will be used for tensors as appropriate. As discussed in
Section 1 the multiscale method will be developed in a variational setting. In this context
a displacement weighting function (variation on the displacement), w, arises. It inherits the
multiscale decomposition: w= �w + w′. Using the coarse-scale variation �w, the stress �, the
body force f , and the traction t, the weak form of the classical (non-gradient) theory is

∫
�
( �wi; j�ij) dV =

∫
�
�wkfk dV +

∫
@�
�wktk dS (1)
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where the domain of integration, �, is to be thought of as a macroscopic solid body. The
coarse-scale displacement, �u, and its variation, �w, are taken to vary on macroscopic scales, say,
greater than 102 �m. Thus, Equation (1) can be interpreted as a projection of the macroscopic
balance law (stress equilibrium) on these coarse-scale functions. We will refer to this equation
as the coarse-scale weak form. The �ne-scale �elds, u′ and w′, however, vary on much smaller
scales: in the micron and submicron range. Thus, if Equation (1) were rewritten with the
�ne-scale variation, w′, replacing its coarse-scale counterpart, �w, it would admit the obvious
interpretation of projecting the macroscopic balance law on these �ne-scale functions. Suppose
now that there exists a subdomain, �′ ⊂�, in which it is of interest to take the �ne-scale
view. Furthermore, let the microstructural nature of �′ be such that the �ne-scale physics
discussed in Section 1 comes into play in this subdomain. It would then be of interest to
abandon the classical continuum theory in favour of one that can resolve this �ne-scale physics.
In the present discussion, we would replace the classical theory with the Fleck–Hutchinson
strain gradient plasticity theory. On �′, therefore, we use the following �ne-scale weak form,
obtained from the Fleck–Hutchinson strain gradient plasticity theory:

∫
�′
(w′

i; j�ij + w
′
k; ij�ijk) dV =

∫
�′
w′
kfk dV +

∫
@�′
w′
k tk dS +

∫
@�′
(Dw′

k)rk dS +
∑
i

∮
C′
i

w′
kpk ds

(2)

Observe that the �ne-scale displacement variation, w′, is used. In addition to the �elds in-
troduced with Equation (1), � is the higher-order stress that is conjugate to strain gradients,
�ijk = uk; ij (further described below) and r is the couple stress traction. The normal surface
gradient operator is D(•)=∇(•)n, where n is the unit normal to the surface in question. The
last term on the right-hand side arises when the surface @�′ has edges that are closed curves,
C ′
i ; i=1; : : : ; n. In this setting, p represents a line load. On comparing Equation (2) with the
standard weak form for the classical (non-gradient) theory (see Equation (1)), the di�erence
lies in the second term on the left-hand side and the last two terms on the right. The strain
gradient, W, its conjugate higher-order stress, �, the couple stress traction, r and the line load,
p, are viewed as �ne-scale quantities. This is reasonable, since they appear only with the
�ne-scale strain gradient plasticity theory and their in�uence diminishes if the deformation
varies at larger scales. Further details and background [11] are omitted here; instead, attention
is turned toward the variational multiscale approach for this theory.

2.1. Embedding the �ne-scale strain gradient theory

Given the two weak forms, we consider the following set of constitutive relations for �ij and
�ijk :

�ij=Cijkl �ekl; �ijk =Aijklmn�elmn

�kl= �ekl + �
p
kl; �lmn= �elmn + �

p
lmn

f(�; �)60; U̇p = � @f
@� ; �̇p = �

@f
@�

(3)
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In Equation (3), �ekl and �
e
lmn are the elastic strain and strain gradient, respectively. The

usual fourth-order elasticity tensor is denoted Cijkl, and is given by Cijkl=��ij�kl+�(�ik�jl+
�il�jk − 2

3�ij�kl), where � and � are, respectively, the bulk and shear modulus. The ten-
sor Aijklmn is of sixth order; a material constant, with dimensions of stress×length2, relat-
ing the higher-order stress, �ijk and elastic strain gradient, �elmn. Wei and Hutchinson use
Aijklmn=2E

∑4
I=1 L

2
IT

(I)
ijklmn, where E is the Young’s modulus, LI is a material length scale and

T (I)ijklmn, I =1; : : : ; 4 are orthogonal projection tensors. A strain gradient �ow theory of plasticity
is also assumed by these authors [27]. The third line of Equation (3) shows the yield criterion
and the associative �ow rules for rates of plastic strain, U̇p, and plastic strain gradient, Ẇp,
respectively.
Up to this stage the decompositions, u= �u+ u′ and w= �w+w′ are general. They are made

precise by requiring that u′ and w′ vanish outside �′. This gives

�ij := 1
2 (ui; j + uj; i) =




1
2 ( �ui; j + �uj; i) in �\�′

1
2 ( �ui; j + �uj; i) + 1

2(u
′
i; j + u

′
j; i) in �′

(4)

�ijk := uk; ij =



�uk; ij in �\�′

�uk; ij + u′k; ij in �′
(5)

Since the strain gradient theory is applied only over the microstructural subdomain, �′,
it is implied that in �\�′, the classical, non-gradient theory provides a su�ciently accurate
description of deformation phenomena and material response, and that strain gradients play
no role. The kinematics associated with W show that the second gradient of the coarse-scale
�eld, �uk; ij, does not necessarily vanish in �\�′; however, we will assume that this term plays
no role in the material response over this subdomain.
Furthermore, boundary conditions must be imposed upon @�′. This is achieved by requiring

that u′; ∇u′ n= 0 on @�′. Using (4) and (5), this translates to the requirement that u; ∇u n
calculated by the strain gradient theory (in �′) equal u; ∇u n calculated by the coarse-scale
macromechanical formulation (in �\�′) at the �ne-scale/coarse-scale interface, @�′.
The weak form of the �ne-scale problem (Equation (2) in this case), will be used to

express u′ in terms of the remaining �elds in �′. The yield condition and �ow rule in
Equation (3) render the stress, �, and higher-order stress, �, non-linear and history depen-
dent in U and W, respectively. In order to have U and W appear explicitly in Equation (2),
� and � must be expanded up to terms of �rst order in �U and �W, where �(•) denotes
an incremental quantity. The following substitutions are made in Equation (2): �ij=�0ij +
C epijkl��kl + B

ep
ijklm��klm, �ijk = �

0
ijk + D

ep
ijklm��lm + A

ep
ijklmn��lmn. The terms �

0
ij and �

0
ijk are of ze-

roth order while C epijkl; B
ep
ijklm; D

ep
ijklm and A

ep
ijklmn are the associated elastoplastic tangents, which

upon contraction with �U and �W provide the corresponding �rst-order corrections. This ex-
pansion anticipates the cross-coupling between � and W, and between � and U that emerges
from the Fleck–Hutchinson strain gradient plasticity theory (see Section 3 below). Employ-
ing Equations (4) and (5) the following integral relation arises for the incremental �ne-scale
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displacement:

∫
�′
[w′
i; j(C

ep
ijkl�u

′
k; l + B

ep
ijklm�u

′
m; kl) + w

′
k; ij(D

ep
ijklm�u

′
l;m + A

ep
ijklmn�u

′
n; lm)] dV

=
∫
�′
w′
kfk dV +

∫
@�′
w′
k tk dS +

∫
@�′
(Dw′

k)rk dS +
∑
i

∮
C′
i

w′
kpk ds−

∫
�′
(w′

i; j�
0
ij + w

′
k; ij�

0
ijk) dV

−
∫
�′
[w′
i; j(C

ep
ijkl� �uk; l + B

ep
ijklm� �um; kl) + w

′
k; ij(D

ep
ijklm� �ul;m + A

ep
ijklmn� �un; lm)] dV (6)

Observe that (6) expresses �u′ in terms of the coarse-scale �eld, ��u, and the remaining
micro- and macromechanical �elds. As is the practice in computational plasticity, an iterative
scheme based upon some variant of the Newton–Raphson method is involved in determining
the updated �elds:

u′i+1 = u′i + �u′; �ui+1 = �ui + ��u

i= i + 1
(7)

until convergence is obtained (see Remark (i)). (In Equation (7), i is the iteration number.)
In order to solve Equation (6) for �u′, we adopt �nite-dimensional approximations of u′; �u,

denoted u′h; �uh, and the corresponding variations:

u′h=
∑
A
N ′AQA; w′h=

∑
A
N ′AXA; �uh=

∑
A

�N
A
dA; �wh=

∑
A

�N
A
cA (8)

Substituting (8) in (6), the latter equation can be solved for �Q, and a functional expressing
�u′h in terms of the other �ne- and coarse-scale terms is obtained:

�u′h=U′h[��uh; �h0; �h0;Cep;Bep;Aep;Dep; t; r; p] (9)

Further details on the interpolation functions used in (8), and to determine the discretized
form of (9) are presented in Section 4.
Using �hij=�

h0
ij +C

ep
ijkl[sym(� �u

h
k; l)+sym(�u

′h
k; l)]+B

ep
ijklm[�u

′h
m; kl+� �u

h
m; kl] over �

′ in the coarse-

scale weak form (1), and substituting the functional (9) for �u′h, the �ne-scale �eld is elimi-
nated from the variational formulation. This will result in a single weak form for the multi-
scale method with the strain gradient theory (which governs the �ne-scale physics) embedded
in the classical macromechanical continuum formulation. The resulting weak form of the vari-
ational multiscale method is speci�c to the chosen model �ne-scale physics; in this case, the
Fleck–Hutchinson strain gradient plasticity theory.
Since a partial di�erential equation [the �ne-scale weak form, Equation (2)] is solved to

obtain �u′h=U′h[��uh; �h0; �h0;Cep;Bep;Aep;Dep; t; r; p], the functional, U′h, is of integral form.
On eliminating �u′h from the coarse-scale weak form (1), the resulting multiscale weak form
is therefore non-local in ��uh.
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Remarks

(i) A typical check for convergence could be speci�ed by requiring that the magnitude of
the residual in Equation (6) be less than TOL, where the residual consists of all terms
not involving �rst-order corrections and TOL is a chosen numerical tolerance related
to the machine precision. Another check could be |��uh + �u′h|¡TOL.

(ii) The incremental solution scheme outlined above requires integration algorithms for the
strain gradient plasticity model. Such an algorithm is discussed in Section 3. The mul-
tiscale method and the integration algorithm are both applicable, with minor changes,
to the recent improvements proposed in a mechanism-based strain gradient plasticity
theory [12, 33], and to the reformulated strain gradient plasticity theory of Fleck and
Hutchinson [34].

(iii) The development in this section has been presented as an enhancement of the macro-
scopic continuum formulation by embedding a �ne-scale material law, thus leading
to coarse-scale solutions that are more physically accurate. However, it is of some
importance to note that the �ne-scale solution can also be recovered from the coarse
scale: Given the solution �uh, use of the functional, U′, gives u′h. This is a simple post
processing step in the numerical setting.

3. AN INTEGRATION ALGORITHM FOR THE STRAIN GRADIENT
PLASTICITY THEORY

A phenomenological extension of classical J2-�ow theory has been proposed to include the
plastic strain gradient and higher order stress tensors [11, 27]. This form has been adopted
here. A summary follows; details are available in the papers cited immediately above.

3.1. Flow theory of strain gradient plasticity

The third-order stress tensor, � can be decomposed into a hydrostatic term, �H, and three devi-
atoric terms, �I, I = 1; 2; 3. These four components are mutually orthogonal. Additionally, three
plasticity-related length scales, lI, are identi�ed with the plastic strain gradient, Wp. Denoting
the deviatoric standard stress by S := dev[�], and scaled deviatoric higher-order stresses by
�̃I := �I=lI, the generalization of the von Mises yield function with isotropic hardening is

�(�; �;Ep) :=

√
3
2
S :S+

3∑
I=1
�̃I
... �̃I − Y (Ep) (10)

Here, (•)...(•) denotes contraction of three indices between the corresponding tensors, and Ep

is the modi�ed equivalent plastic strain given by

Ė
p
:=

√
2
3
U̇p : U̇p +

3∑
I=1

˙̃WpI
... ˙̃WpI (11)
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As with the higher-order stress, W̃pI = lIW
p
I ; I = 1; 2; 3, denotes the three deviatoric plastic

strain gradient tensors, that are mutually orthogonal, scaled by lI. Associative �ow rules are
speci�ed as

U̇p = 	@�
@� ;

˙̃Wp = 	@�
@�̃I
; I = 1; 2; 3 (12)

Writing the current yield stress as Y (Ep)=Y0+K(Ep) and de�ning q :=−K(Ep), the evolution
law for Ep can also be cast as an associative �ow rule:

Ė
p
= 	

@�
@q

(13)

The form of the higher-order elastic modulus, A, introduced in Section 2 gives �̃Iijk =(2EL2I =l
2
I )

�̃eIijk , where E is the Young’s modulus and LI, I = 1; 2; 3, are length scales introduced from
dimensional considerations (also see Section 2.1). Wei and Hutchinson require these length
scales to be chosen su�ciently small so that they have no in�uence upon problems where the
plastic strain gradients dominate the elastic strain gradients [27].
Given a time-stepping procedure for the initial-boundary value problem, it is assumed that

all �eld values are known at time tn. With the displacement known at tn+1, the integration
algorithm must give �n+1; �n+1; Uen+1; U

p
n+1; Wen+1; W

p
n+1. In the form presented below the integration

algorithm is an extension of those for classical plasticity.

3.2. The trial state

The trial or predictor step is based upon the assumption that the plastic �ow-dependent vari-
ables do not evolve during the step [tn; tn+1]. The total strain and strain gradient are obtained
from un+1 as Un+1 := sym(@un+1=@x) and Wn+1 := @2un+1=@x@x, respectively. The corresponding
trial elastic values are de�ned as

Ue;TRn+1 := Un+1 − Upn; We;TRn+1 := Wn+1 − Wpn (14)

and the corresponding deviatoric trial stresses are

STRn+1 :=2� dev[U
e;TR
n+1 ]; �̃TRIn+1 := 2E

L2I
l2I
W̃e;TRIn+1 (15)

The trial equivalent plastic strain is de�ned as

E
p;TR
n+1 :=Epn (16)

The trial yield condition is examined by evaluating

�(�TRn+1; �TRn+1;E
p;TR
n+1 )=

√
3
2
STRn+1 :S

TR
n+1 +

3∑
I=1
�̃TRIn+1

... �̃TRIn+1 − Y (E
p;TR
n+1 ) (17)

If �(�TRn+1; �TRn+1;E
p;TR
n+1 )60, the state obtained by freezing plastic �ow in the time interval

(tn; tn+1) is admissible, and the time step is incrementally elastic. All quantities at tn+1 are
equal to their trial values. The elastoplastic tangents are Cepn+1 =C and A

ep
n+1 =A.
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3.3. The plastic multiplier and update of variables

If �(�TRn+1; �TRn+1;E
p;TR
n+1 )¿0, the trial state is inadmissible. Plastic �ow must be considered in

[tn; tn+1]; i.e. the plastic multiplier, 	 in Equations (12) and (13), must be determined. A
return mapping algorithm is constructed by adopting the backward Euler integration algorithm
for �rst-order ordinary di�erential equations. With this choice 	 is determined at tn+1 and the
consistency condition for plastic �ow, �̇=0, translates to �n+1 =0. The �ow rules are written
in discretized form as

Upn+1 = U
p
n + 	n+1�t

@�
@�n+1

; W̃pIn+1 = W̃
p
n + 	n+1�t

@�
@�̃In+1

; E
p
n+1 =Epn + 	n+1�t

@�
@qn+1

(18)

Since the yield function is non-linear in (�; �̃I;Ep), the condition �n+1 =0 is obtained by an
iterative procedure—usually the Newton–Raphson method. Denoting the kth iterate of any
�eld at tn+1 by (•)kn+1 we have

�k+1n+1 =�
k
n+1 +

@�k

@�n+1
: �� kn+1 +

3∑
I = 1

@�k

@�̃In+1
...��̃kI; n+1 +

@�k

@qn+1
�qkn+1 (19)

Observe that � is parameterized by �̃I instead of �I in (19). The deviatoric stress and scaled
higher-order stress are

Skn+1 =S
TR
n+1 − 2�	kn+1�t

@�k

@�n+1
; �̃kIn+1 = �̃

TR
In+1 − 2

EL2I
l2I
	kn+1�t

@�k

@�̃In+1
(20)

Since the hydrostatic stress, pn+1 := tr[�n+1], is independent of plastic strain, we have

pn+1 =pTRn+1 =�tr
[
Ue;TRn+1

]
(21)

From Equations (20) and (21),

(
I+ 2�	kn+1�t

@2�k

@�@�n+1

)
︸ ︷︷ ︸

�

: ��kn+1 =−2��	kn+1�t
@�k

@�n+1

=⇒ ��kn+1 =−2��	kn+1�t�−1 :
@�k

@�n+1
(22)

where I is the fourth-order symmetric identity tensor. Similarly,

(
I+ 2

EL2I
l2I
	kn+1�t

@2�k

@�̃I@�̃In+1

)
︸ ︷︷ ︸

XI

: ��̃kIn+1 =−2 EL
2
I

l2I
�	kn+1�t

@�k

@�̃In+1

=⇒ ��̃kIn+1 =−2 EL
2
I

l2I
�	kn+1�t�I−1 :

@�k

@�̃In+1
(23)
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where I is a sixth-order identity tensor satisfying Iijklmn=Iikjlmn=Iijklnm. The increment
�qkn+1 is (see the paragraph preceding (13)):

�qkn+1 =−K ′(Ep; kn+1)�	
k
n+1�t

@�k

@qn+1
(24)

On substituting the second line of Equations (22) and (23), and Equation (24) in (19), and
requiring �k+1n+1 =0,

�	kn+1�t =
�kn+1

@�k =@�n+1 : 2��−1 : @�k =@�n+1 +
∑3
I = 1 @�k =@�̃In+1

... 2 (EL2I =l
2
I )�I−1

...@�k =@�̃In+1 + K ′(Ep; kn+1)

(25)

The plastic multiplier is updated as 	k+1n+1 = 	
k
n+1 + �	

k
n+1.

The elastoplastic tangents are obtained as follows:

��n+1 =C : (�Un+1 −�Upn+1) (26)

where

�Upn+1 = 	n+1�t
@2�k

@�@�n+1
:��n+1 +�	n+1�t

@�k

@�n+1
(27)

This yields the relation

��n+1 =Cn+1 :
[
�Un+1 −�	n+1�t @�

k

@�n+1

]
(28)

where the algorithmic modulus is de�ned as

Cn+1 =
[
C−1 + 	n+1�t

@2�
@�@�n+1

]−1
(29)

Likewise, for the modi�ed, deviatoric higher-order stresses, we have

��̃In+1 =A
... (�W̃In+1 −�W̃pIn+1) (30)

where

�W̃pIn+1 = 	n+1�t
@2�

@�̃I@�̃In+1
...��̃In+1 + �	n+1�t

@�
@�̃In+1

(31)

This yields the relation

��̃In+1 =An+1
...
[
�W̃I; n+1 −�	n+1�t

@�
@�̃In+1

]
(32)
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where the algorithmic modulus is de�ned as

An+1 =
[
A−1 + 	n+1�t

@2�
@�̃I@�̃In+1

]−1
(33)

For the stress-like variable, q, we have

�qn+1 =−�	n+1�tK ′
n+1

@�
@qn+1

(34)

Next, the algorithmic consistency condition, ��(�n+1; �n+1;Epn+1)=0, gives

@�
@� :��n+1 +

3∑
I=1

@�
@�̃I
...��̃In+1 +

@�
@q
�qn+1 =0 (35)

On substituting relations (28), (32) and (34) into (35) we have

�	n+1�t=
@�=@�n+1 :Cn+1 :�Un+1 +

∑3
I=1 @�=@�̃In+1

...An+1
...�W̃In+1

@�=@�n+1 :Cn+1 : @�=@�n+1 +
∑3

I=1 @�=@�̃In+1
...An+1

...@�=@�̃In+1 + K ′
n+1

(36)

Finally, from (28), (32) and (36) we have

Cepn+1 :=
@�
@Un+1

=Cn+1 −Nn+1 ⊗Nn+1 (37)

Bepn+1 :=
@�
@W̃In+1

=−Nn+1 ⊗M In+1 (38)

Dep
n+1 :=

@�̃I
@Un+1

=−M In+1 ⊗Nn+1 (39)

Aepn+1 :=
@�̃I
@W̃In+1

=An+1 −M In+1 ⊗M In+1 (40)

where

Nn+1 :=
Cn+1 : @�=@�n+1√

@�=@�n+1 :Cn+1 : @�=@�n+1 +
∑3

I=1 @�=@�̃In+1
...An+1

...@�=@�̃In+1 + K ′
n+1

(41)

M In+1 :=
An+1

...
@�
@�̃In+1√

@�=@�n+1 :Cn+1 : @�=@�n+1 +
∑3

I=1 @�=@�̃In+1
...An+1

...@�=@�̃In+1 + K ′
n+1

(42)

Attention is drawn to the coupling between second- and third-order tensors under plasticity,
evident in the generalized tangent relationships, and anticipated in Section 2.1. The plastic
multiplier, 	, is driven by U and W. This leads to a dependence of �� upon �W̃I and of ��̃I
upon �U, which is absent under purely elastic deformation.
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4. FINITE-ELEMENT DISCRETIZATION

The discretized form of the variational multiscale method hinges upon the �ne-scale interpo-
lation functions. A test of consistency must be imposed upon the method in order to restrict
the form of N ′ in (8). For uniform material properties, Cijkl and Aijklmn, uniform stress �,
vanishing body force and boundary traction, and if further, LI=lI�1 [11, 27], the incremental
�ne-scale �eld in (6) must vanish. This translates to the requirement∫

�′
w′
i; j dV =0 (43)

For the boundary-value problem considered in Section 4, �′=�e for a particular element e.
In this case (43) reduces to ∫

�e
∇N ′A dV =0; ∀A (44)

This test has been described previously [24] for the variational multiscale method applied to
strain localization problems.
For the boundary value problem solved in Section 5, the �ne scale, strain gradient the-

ory is applied over �′, which contains a narrow, materially inhomogeneous region of width
2k¡meas(�′). Additionally, meas(�′)=meas(�e)= h, and the length scales l1; l2; l3 = l for
the boundary-value problem. In terms of the natural co-ordinate, 
∈ [−1; 1], the �ne-scale
interpolation function is:

N ′(
)=




1
4 (1− ( h2l)3)
3 − 3

4 (1− h
2l)
; |
|6k=h

1
4

3 − 3

4
− 1
2 ; −16
6−k=h

1
4

3 − 3

4
+
1
2 ; k=h6
61

(45)

(see Figure 1). The �ne-scale interpolation function, thus de�ned, satis�es (44), and deter-
mines functional (9)–(6). The coarse-scale shape functions, �N are the usual linear Lagrange
polynomials.

1
2

-1
2

-1 10

2k

Figure 1. Fine-scale interpolation function, N ′.
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Remark

(iv) The strain gradient plasticity theory is of fourth order. Therefore, higher-order inter-
element continuity requirements must be imposed upon the numerical scheme. This
has been attempted previously via a combination of C1-continuous interpolations and
mixed methods [35]. Success has been mixed, at best, and numerical analysis of these
methods is also absent. The discretization for the boundary-value problem solved in
Section 4, and for which a �ne-scale interpolation function has been presented in this
section, circumvents this issue by using �′=�e for some element. Thereby, inter-
element continuity is avoided, since N ′ in (45) is a C∞ function. The author and co-
workers have recently developed a class of continuous/discontinuous Galerkin methods
[36] that allows the use of C0 interpolations for such strain gradient theories. Thus,
no new degrees of freedom need be introduced, and numerical e�ciency is assured. A
complete numerical analysis of the continuous/discontinuous Galerkin methods for the
higher-order strain gradient theory has also been presented in that work—an important
contribution that was hitherto missing in the literature.

5. NUMERICAL EXAMPLES

To demonstrate the embedding of this strain gradient theory a bimaterial shear layer is con-
sidered. We wish to embed, in turn, a soft material and a hard material within a ‘matrix’. The
strain gradient plasticity theory will be applied to the neighbourhood, �′, of the embedded
layer, in an attempt to better represent the �ne-scale physics. The embedded layer is contained
in �′. The domain and boundary-value problem are shown schematically in Figure 2. The
domain is assumed to be in�nite in the vertical direction, allowing the problem to be reduced
to one dimension. Of interest are the vertical displacement, u2, the corresponding shear strain,
�12 = 1

2u2;1, the strain gradient, u2;11, and the shear stress, �12. Also relevant is the higher-order
stress �112.

u′

Ω′

u

Figure 2. Schematic of shear layer with the �ne-scale region.
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Figure 3. Localized strain in a softening �ne-scale region.
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Figure 4. Stress concentrations at the edge of a hardening �ne-scale region.

The embedded layer in each case is 2×10−6 m in width. The material length scales
L1; L2; L3; l1; l2; l3 which enter the constitutive law for the strain gradient plasticity theory
have each been speci�ed to be 1×10−6 m.
Figure 3 is a plot of the strain when the embedded layer is subject to plastic softening.

Localization of strain is observed within the softening layer. The width of the localized band
is related to the material length scale. In this example it is ≈ 2×10−6 m in width.
The shear stress distribution for a hardening embedded layer appears in Figure 4. Attention

is drawn to the stress concentrations located at the edges of the hardening layer. It is pointed
out that, with a classical (non-gradient) plasticity theory, the shear stress remains constant over
the domain. This is shown by the points labelled ‘C’. For the strain gradient plasticity theory,
however, this is not the case. The equilibrium equation involves the conventional stress � and
the higher-order stress �, and in the presence of a hard inclusion, a stress concentration is
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seen. What appears as a discontinuity in the shear stress, �12, for the strain gradient plasticity
theory (the points labelled ‘SG’) is actually a high gradient at the boundary of the hard layer.
The shear stress diminishes away from the boundaries; both within the embedded layer and
in the matrix.
Both characteristics represented in the numerical examples: a softening band width deter-

mined by the material length scale, and the stress intensi�cation near a hard inclusion, are
hallmarks of a strain gradient theory. The �ne-scale physics is represented by the multiscale
model which was constructed by embedding the �ne-scale strain gradient theory in the macro-
scopic formulation. Importantly, this was done without re�ning the mesh size down to the
scales of the embedded layer. A uniform mesh size of 1 m was used throughout. The region
�′ was taken to be the element containing the embedded layer (of width 2×10−6 m) and the
strain gradient plasticity theory speci�ed as the �ne-scale physics model over all of �′.
Microforce theories of the class mentioned in Section 1 can also be treated in this frame-

work.

6. CONCLUSION

The treatment of �ne-scale physics envisaged in this article encompasses �ne-scale theories
that prevail at length scales of a micron. The long-term goal of this work is to build a broad
formalism by which to embed—potentially any—such theories in macromechanical continuum
formulations. As seen with the treatment of the Fleck–Hutchinson strain gradient theory,
and earlier work with traction-separation laws [26] some of these �ne-scale models require
a vehicle like the multiscale method proposed here to make the notion of this embedding
meaningful. Others, such as microforce theories naturally incorporate such coupling between
micro- and macroscale response. In such cases, the methods proposed here will serve as
computational formulations to preserve the tight coupling of scales needed to realize the
potential of these theories.
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