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A new scheme for e�cient and direct shape optimization of
complex structures represented by polygonal meshes
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SUMMARY

In this paper, a new shape optimization approach is proposed to provide an e�cient optimization
solution of complex structures represented by polygonal meshes. Our approach consists of three main
steps: (1) surface partitioning of polygonal meshes; (2) generation of shape design variables on the
basis of partitioned surface patches; and (3) gradient-based shape optimization of the structures by
reducing a weighted compliance among all load cases. The main contributions of this paper include (i)
that our approach can be directly applied on polygonal meshes with the reduction of design variables or
decision variables by 10 to 1000 times, compared to the conventional design variable scheme of using
each mesh node; (ii) our perturbation scheme is mathematically proven with respect to maintaining the
smoothness of each surface patch, except on its boundary; and (iii) overall, our approach can be used
to automate time-consuming shape optimization of polygonal meshes to a greater extent. Numerical
experiments have been conducted and the results indicate the e�ectiveness of the approach. Copyright
? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Shape optimization is a process to seek an optimal geometric con�guration under given con-
straints without changing the topology of structures. A considerable amount of work in this
area has been conducted in the past and can be categorized as follows:

(1) Objective functions: minimum stress [1], minimum compliance [2], uniform stress [3],
etc.

(2) Optimization methods: gradient-based method [4, 5], genetic method [6], dynamic sim-
ulation [7], heuristic evolution [3], etc.

(3) Geometry: mesh-based [8], CAD-based [9, 10].
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(4) Design variables: basis vector [11–15], parametric representation [16–19], natural
design variable [20–22].

Finite element mesh is one of the most commonly used data formats in engineering anal-
ysis and optimization. Even though many �nite element meshes are generated from their
corresponding CAD models, in practice analysts may face situations in which only polygonal
meshes are available without knowing any information about their underlying geometry in
CAD formats. These situations include (1) meshes are generated from a mesher that does not
need a CAD input model; (2) meshes are generated by digital sensing systems such as laser
scanning equipment used in reverse engineering. If the meshes contain some surface noises,
we assume that a certain surface smoothing algorithm can be applied to these meshes; and (3)
analysts get meshes from a third party or from a set of legacy meshes without a corresponding
CAD model, etc. Lack of underlying geometric information imposes the following di�culties
on shape optimization of these types of meshes:

(1) Since we have very little information about the geometric con�guration of a structure,
if each �nite element node is used as a design variable [23], a large-scale shape opti-
mization of complex structures becomes computationally too expansive due to a great
number of design variables.

(2) If each �nite element node is used as a design variable, it is very di�cult to maintain a
smooth shape boundary during a shape optimization process [24]. Automatic conversion
from polygonal meshes with sharp edges to B-spline patches is a very hard problem
to solve.

(3) Even though commercial software (OptistructTM and GenesisTM) provide interactive
tools to assist the process of creating design variables, the functionality is quite limited,
because these tools rely entirely on users to manually select a number of elements for
each design variable. With complex structures, this process is time-consuming and
error-prone. Optistruct is the trademark of Altair Engineering Inc. and Genesis is the
trademark of Vanderplaats Research & Development Inc.

To address the above problems, in this paper we propose a new scheme to facilitate a shape
optimization directly on �nite element meshes of complex structures. Our scheme consists of
three main steps. First, surface partitioning is automatically carried out on �nite element mesh
models. Secondly, each partition can be assigned as a design variable. But users have an option
to choose which partition will be a design variable in the current shape optimization setting.
A special perturbation scheme is applied to each design variable such that the smoothness of
the original surface patches is maintained. Lastly, a shape optimization is conducted.
In this study, we used only a gradient-based commercial optimizer in OptistructTM and

restricted the objective function of the optimization to the weighted compliance (i.e. strain
energy) of the structure with the total volume of the structure being unchanged. However,
our approach can also be applied to other objective functions and optimization algorithms.
The main contribution of this paper is to propose a new approach to e�cient and direct

shape optimization on �nite element meshes of complex structures. This paper is organized as
follows. In Section 2, some notations and de�nitions are introduced. Our surface partitioning
scheme is given in Section 3. A new approach to automatic and direct shape optimization
on �nite element meshes is presented in Sections 4 and 5, and the results of numerical
experiments are given in Section 6. Finally, some conclusions are drawn in Section 7.
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2. NOTATIONS AND DEFINITIONS

De�nition 1
A polygonal mesh M ({vi}; {tj}) is de�ned by a set of vertices {vi} and a set of elements {tj},
i.e. polygons. Each vertex has three co-ordinates in R3, [xi yi zi]T. Each element represents
a �at face bounded by straight line segments, i.e. edges, and is speci�ed by an m-tuple of
vertices, (v0; v1; : : : ; vm).

De�nition 2
The normal angle change between two adjacent elements means the angle formed by surface
normals of two faces that share a common edge. Directional normal curvature is the normal
curvature in the direction perpendicular to an element edge. Nodal curvature is a curvature
at a vertex in M . Element curvature is an average of nodal curvatures of all vertices in an
element. k12 is a new curvature index proposed in this paper to assist a surface partitioning
process.

De�nition 3
Propagation refers to a traverse process of a breath-�rst search over a surface mesh. Current
vertex means the vertex at which the propagation front is located. Current element denotes
the element in which the propagation front is located. Similarly, next vertex and next element
refer to the location where the propagation front will visit next.

De�nition 4
Compliance refers to the strain energy within the domain of a structure. Weighted compliance
means a weighted summation of compliance among a number of load cases. Design element
is a �nite element whose shape can be changed in an optimization process, while the shape
of non-design elements remain �xed. Design variables are the variables used in a shape
optimization, and are also called decision variables in operation research. Design domain is a
domain that contains all design elements of the structure.

3. AN ALGORITHM FOR SURFACE PARTITIONING OF POLYGONAL MESHES

Even though there are many surface partitioning algorithms in computational geometry [25–31]
and in parallel computation [32–40], the focus of these algorithms is to obtain a set of convex
entities or to generate equally sized subregions with minimized boundaries, which are not
suited for the shape optimization. In the proposed surface partitioning, we divide the entire
task into three main steps in a hierarchical manner as follows:

Algorithm 1: surface partitioning

(1) surface partitioning by G1 discontinuity‡

(2) identi�cation of �at regions
(3) surface partitioning by discontinuity of curvatures

‡G1 discontinuity means that the �rst-order derivative is geometrically discontinuous.
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3.1. Surface partitioning by G1 discontinuity and identi�cation of �at regions

We �rst partition the area on the basis of G1 discontinuity lines. The algorithm proceeds in
the following steps:

Algorithm 1.1: surface partitioning by G1 discontinuity

(1) set up an element neighbour list for each surface element
(2) calculate the normal angle change between adjacent elements
(3) perform a breath-�rst search

(3.1) initiate from an arbitrary surface element
(3.2) propagate over the surface until a G1 discontinuity line is encountered, which is

identi�ed by a condition: the normal angle change is greater than a user-speci�ed
angular threshold.

(3.3) go back to step (3.1) and repeat this breath-�rst search over unprocessed regions
until all surface elements are covered by a partition.

In our numerical experiments, 50◦ was found to be a reasonable value for the threshold of
normal angle change in most cases. However, this threshold should be adjusted in some special
situations. The magnitude of normal angle change re�ects the discontinuity of surface normal
of two adjacent elements. If an input surface is a non-manifold, special treatment is required
for the above propagation. The rule of such treatment is that the propagation proceeds to the
neighbouring element that has the smallest magnitude of normal angle change with the current
element, if there are two or more neighbouring elements that share the same edge with the
current element.

3.2. Identi�cation of �at regions

The purpose of this step is to locate all �at regions within each surface patch generated by
the algorithm in Section 3.1 such that the task of surface partitioning by curvature in Section
3.4 could be reduced. It proceeds in a similar way as the method given in Section 3.1:

Algorithm 1.2: identi�cation of �at regions

(1) loop over each surface patch generated by Algorithm 1.1

(1.1) perform a breath-�rst search

(1.1.1) initiate from an surface element that has, w.r.t. each neighbouring ele-
ment, a normal angle change that is less than a user-speci�ed angular
threshold for �at planes.

(1.1.2) propagate over the surface until a boundary line of a �at plane is en-
countered, which is identi�ed by a condition: the normal angle change is
greater than a user-speci�ed angular threshold for �at planes.

(1.1.2) go back to step (1.1.1) and repeat this breath-�rst search over unprocessed
regions until all surface elements are processed.

(1.2) group the remaining elements that do not belong to �at regions into one or more
di�erent surface patches by means of their connectivity.
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The angular threshold for �at planes is set to a very small value, 1◦. Similar to the threshold
in Section 3.1, readers have an option to change it at their disposal.

3.3. Estimation of nodal curvatures

In order to conduct step 3 in Algorithm 1, estimation of surface curvatures is required. Since
a polygonal mesh is an approximation to an underlying surface, surface curvatures can be
estimated in either nodal or element formats, depending upon the requirement of how the
approximated surfaces will be used in related computation. In this study, only nodal curvatures
are used.
The procedures for determining surface curvatures at each vertex of M are as follows:

Algorithm 1.3: nodal curvatures

(1) Loop over each vertex P in M

(1.1) Determine a set of neighbouring vertices for vertex P.
The rule for selecting neighbouring vertices is to choose at least six di�erent
points. We �rst loop over all adjacent vertices that share an edge with P, and
then look at the remaining vertices that are in a same element with P. If the
number of vertices is still less than 6, as often in the case in which P is on a
boundary, the centroid and the middle edge points of each neighbouring element
are added into the set of neighbouring vertices for vertex P.

(1.2) Determine a tangent plane at vertex P.
The principal component method [41] is used to determine the tangent plane at
vertex P. The covariance matrix of the set of neighbouring vertices is

CV=
∑

q∈Nbhd(P)
(q − P)⊗ (q − P) (1)

where Nbhd(P) is the set of neighbouring vertices at vertex P and ⊗ is outer
product operator of vectors. A Jacobi transformation [42] can be used to deter-
mine eigenvectors (v1; v2; v3) and eigenvalues (�1¿�2¿�3) of the CV. v3 repre-
sents the normal direction of the tangent plane, v1 and v2 are the base vectors
of orthogonal parameter co-ordinates in the tangent plane.

(1.3) Determine a local quadric co-ordinate patch.
In the local co-ordinate system (v1; v2; v3), a quadric co-ordinate patch:

z=f(x; y)= a1x2 + a2xy+ a3y2 + a4x + a5y + a6 (2)

is used to approximate the surface in the neighbourhood of vertex P. Here,
co-ordinates (x; y) are measured along (v1; v2) directions, and z co-ordinate is
measured in the v3 direction. The least-squares estimation of six coe�cients ai
is expressed as

BA=Z (3)
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in which

B=




x21 x1y1 y21 x1 y1 1:0

x22 x2y2 y22 x2 y2 1:0

· · ·
x2n xnyn y2n xn yn 1:0



; Z=




z1

z2

· · ·
zn



; A=




a1

a2

· · ·
a6




(4)

where n is the number vertices of Nbhd(P). If we solve this equation by using
A=(BTB)−1BTZ, BTB may be ill-conditioned. Thus, singular value decomposi-
tion [42] is used to solve BA=Z.

(1.4) Calculate curvatures at vertex P.
By di�erential geometry [43], the curvatures at vertex P can be expressed as

K =4:0a1a3 − a22 and H = a1 + a3 (5a)

where K and H are Gaussian and mean curvatures, respectively. The maximum
and minimum principle curvatures are then determined by

k1 =H +
√
H 2 − K and k2 =H −

√
H 2 − K (5b)

The above procedures for calculating surface curvatures are supported by the following
lemma and propositions.

Lemma 1
Suppose a surface with a point P on the surface. If x and y are orthogonal co-ordinates in
the tangent plane at P and z is the co-ordinate in the normal direction to the surface at P,
the local quadric co-ordinate patch: z=f(x; y)= a1x2 + a2xy+ a3y2 + a4x+ a5y+ a6 has the
same principal curvature values (k1; k2) at P as the original surface.

Proof
If Equation (2) is used to approximate the surface neighbourhood at point P, then the Gaussian
and mean curvatures at point P can be expressed by K =4:0a1a3 − a22 and H = a1 + a3. If
we take a1 = a3 = 0:5H and a2 =

√
H 2 − K , relationships in Equation (5a) will be satis�ed.

This means that we can �nd a surface of the form de�ned by Equation (2), which has given
values of K and H . Similarly, since k1 =H +

√
H 2 − K and k2 =H − √

H 2 − K , then the
relationships in Equation (5a) can be transformed to

k1 = a1 + a3 +
√
(a1 + a3)2 − (4a1a3 − a22)

k2 = a1 + a3 −
√
(a1 + a3)2 − (4a1a3 − a22) (6)

If we take a1 = a3 = 0:25(k1+k2) and a2 = 0:5(k1−k2), the above relationships will be satis�ed,
which means that we can �nd a surface of form (2) that has given values of k1 and k2.
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On the basis of Lemma 1, we can prove the following proposition.

Proposition 2
If the tangent plane at point P is determined by using the principal component method in
Algorithm 1.3, the local quadric co-ordinate patch: z=f(x; y)= a1x2 + a2xy+ a3y2 + a4x +
a5y+ a6 su�ciently represents all major types of surfaces: elliptic, hyperbolic, parabolic and
planar, at the neighbourhood of point P.

Proof
According to di�erential geometry, major types of surfaces can be characterized by curvatures
at each point P as follows:

• elliptical if K(P)¿0,
• hyperbolic if K(P)¡0,
• parabolic if K(P)=0 and k1(P) �=0 or k2(P) �=0,
• planar if k1(P)= k2(P)=0,

where K(P) refers to the Gaussian curvature at point P, etc. By Lemma 1, we can use a
surface of form (2) to su�ciently represent a pair of arbitrarily valued principal curvatures
(k1; k2) or a pair of arbitrarily valued Gaussian and mean curvatures (K;H). Thus, the local
quadric co-ordinate patch of the form (2) can su�ciently represent all major types of surfaces
listed above.

Proposition 3
If the local quadric co-ordinate patch: z=f(x; y)= a1x2+a2xy+a3y2+a4x+a5y+a6 is used
to approximate the surface S at the neighbourhood of point P, and if surface S is continuous
at point P, the discrete curvatures in Equations (5a) and (6) approach or converge to the
curvatures of surface S at point P in a limit.

Proof
If surface S is of class Cm, where m62, it is obvious that the above local quadric co-ordinate
patch can accurately describe S and therefore has the same curvatures. When S is of class of
Cn, where n¿3, let x(u; v) be a parameterization at point P of surface S, with x(0; 0)=P.
Since x(u; v) is di�erentiable, the following Taylor’s formula holds:

x(u; v)=x(0; 0) + xuu+ xvv+ 0:5(xuuu2 + 2xuvuv+ xvvv2) + R (7)

where the derivatives are taken at (0; 0), i.e. point P, and the remainder R satis�es the
following condition:

lim
(u; v)→(0;0)

R
u2 + v2

= 0

Thus, when (u; v) approaches (0; 0), term R is negligible, compared to other terms on the
right-hand side of Equation (7). It follows that Equation (7) without R has an exactly same
quadric form as Equation (2) and the same formulas for all six coe�cients as in Equation
(2), because the coe�cients in Equation (2) can be rewritten as

a1 = 0:5zxx(0; 0); a2 = zxy(0; 0); a3 = 0:5zyy(0; 0)

a4 = zx(0; 0); a5 = zy(0; 0); a6 = z(0; 0)
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Table I. Convergence of discrete curvature k12 to the theoretical value 1.0.

Model name Sphere 5 Sphere 10 Sphere 15 Sphere 20 Sphere 30

Elements 28 152 324 600 1352
k12 1.1 1.02 1.012 1.004 1.002

Thus, we can conclude that the discrete curvatures in Equations (5a) and (6) approach or
converge to the curvatures of surface S at point P in a limit.

A numerical experiment on a unit sphere with di�erent degrees of discretization was con-
ducted. The convergence of discrete curvature k12, which is de�ned in Equation (8), is given
in Table I. A similar convergence trend is observed with the Gaussian, mean and principal
curvatures.

3.4. Surface partitioning by discontinuity of curvatures

On top of the above two passes in Sections 3.1 and 3.2, we can have a third pass of partitioning
on the basis of curvature discontinuity. This pass is extremely important to curved surfaces.
There are several important issues that need to be addressed before we introduce an algorithm
for surface partitioning by discontinuity of curvatures.

3.4.1. Choices of curvatures. By di�erential geometry, we can use one of four well-known
curvatures (Gaussian, mean, maximum and minimum principal curvatures) as an index to
guide the surface partitioning process. However, through numerical experiments, we found
that the following index is more suitable to the surface partitioning problem:

k12 = 0:5(|k1|+ |k2|) (8)

We cannot prove why the above index is better than the four well-known curvatures in a
surface partitioning process. However, intuitively k12 is an average of curvatures at a point,
similar to the total curvature k 21 + k

2
2 or the absolute curvature |k1|+ |k2|. The problem with

the Gaussian curvature is that it becomes zero whenever either k1 or k2 is zero. In such a
situation, little amount of information is available to guide the surface partitioning process.
Similarly, k1 and k2 may cancel each other if their signs are di�erent in terms of the mean
curvature. The maximum principal curvature or the minimum principal curvature alone does
not provide enough information about curvatures along di�erent directions at a point.

3.4.2. Directional nodal curvatures w.r.t. element edges. If nodal curvatures are used, normal
curvature along the tangential directions that are perpendicular to di�erent element edges is
used directly to represent the directional curvature. By di�erential geometry, the calculation
of normal curvature is given by

kn(t)=
II(t)
I(t)

=
e(x; y)a2 + 2f(x; y)ab+ g(x; y)b2

E(x; y)a2 + 2F(x; y)ab+G(x; y)b2
(9)

where, I( ) and II( ) are the �rst and second fundamental forms in di�erential geometry. x and
y are orthogonal co-ordinates in the tangent plane at a point P of M . t is a unit vector that is
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Figure 1. Normal curvature w.r.t. an element edge.

in the tangential plane and perpendicular to an element edge ve projected onto the tangential
plane, as shown in Figure 1, with t= ax + by. The de�nitions of functions e( ), f( ), g( ),
E( ), F( ), and G( ) can be found in a textbook of di�erential geometry [43]. kn(t) is the
normal curvature at point P in the tangential direction t, i.e. the normal curvature w.r.t. the
element edge ve.

3.4.3. Curvature partitioning separator. With a surface patch obtained from executing steps
1 and 2 in Algorithm 1, curvature partitioning means that we intend to divide the surface
patch into two or more subregions, and is essentially implemented by a breath-�rst search in
which the normal curvature cross each element edge (i.e. in the direction perpendicular to
that edge) is checked during the search propagation over the surface.
In order to conduct the curvature partitioning, a curvature threshold is required as a separator

to assist the partitioning process. In this study, we use an average nodal curvature over the
surface patch as a default value of the curvature threshold. One exceptional case to the average
nodal curvature is that when all nodal curvatures over the surface patch are very close to each
other, the following modi�cation is used:

CRt =3:0CRav; if di� ratio¡1:8 (10)

where

di� ratio=
CRmax − CRmin

CRav

in which CRmax, CRmin, and CRav are maximum, minimum, and average curvatures over
the surface patch. CRt refers to the curvature threshold. The formula in Equation (10) is a
heuristic that was found to work well in most cases. The meaning of this heuristic is that if
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the magnitudes of all curvatures on a surface patch are almost the same, then the curvature
threshold with an initial value, CRav, is increased three times such that no division will occur
on this surface patch.
The basic strategy in implementing the curvature partitioning is to let the breath-�rst search

locate one subregion with low curvature and group the remaining elements into one or more
subregions. The search is controlled to start from an element with all its nodal curvatures
smaller than the nodal curvature threshold. In the search propagation, if normal curvature
w.r.t. an element edge is smaller than the nodal curvature threshold, the propagation continues.
Otherwise, it terminates at that element edge.

3.4.4. Algorithm. Now we are ready to introduce the algorithm by means of nodal curvatures.

Algorithm 1.4: surface partitioning by discontinuity of curvatures

(1) loop over each surface patch generated by Algorithms 1.1 and 1.2, which is not a �at
region

(1.1) calculate nodal curvatures
(1.2) calculate an average nodal curvature
(1.3) perform breath-�rst searches

(1.3.1) initiate only from an element with a curvature that is less than the average
curvature

(1.3.2) propagate over the surface until a termination condition is satis�ed: the
curvature is greater than the curvature threshold.

(1.3.3) If there are still some elements unprocessed, go back to (1.3.1) to initiate
another breath-�rst search.

(1.4) group the remaining elements, which do not belong to regions formed by breath-
�rst searches, into one or more di�erent surface patches by means of their con-
nectivity.

4. DESIGN VARIABLES AND PERTURBATION PATTERNS

The shape optimization of structures can be written as a mathematical statement that requires
the optimization of an objective function (design objective) subject to certain constraints on the
types of designs that are admissible. Both the objective function and the constraint functions
are represented by structural responses calculated in �nite element analyses and are dependent
upon a number of design variables as follows:

minimize f(x) (11a)

subject to ge(x)60 (11b)

gi(x)60 (11c)
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where x is the vector of design variables. f(x) is the objective function. ge(x) and gi(x)
are explicit and implicit constraints, respectively. Even though the objective function can be
de�ned in many ways, in this study we focus on one type of objective function:

f(x)=
1
2
u(x)TK(x)u(x)=

1
2

∫
�
U(x)T�(x) d�= 1

2
u(x)TF

where the right-hand side refers to the compliance, the strain energy of the structure, and
can be considered as a reciprocal measure of the sti�ness of the structure. u and K are
displacement vector and sti�ness matrix, respectively. U and � are strain and stress tensors,
respectively. F refers to external loads that are considered as constants. � refers to the domain
occupied by the structure.
The explicit constraints, ge(x)60, can be expressed explicitly by the design variables as

follows:

xL6x6xu (12)

where xL and xu are the lower bound and upper bound vectors of design variables, re-
spectively. These bounds are inputs from users. On the other hand, the implicit constraints,
gi(x)60, cannot be expressed explicitly by the design variable. Typical implicit constraints
include structural responses such as stress, displacement, and natural frequency. In this study,
for the sake of simplicity no stress constraints are used in our numerical experiments, even
though these constraints can be added into the shape optimization. Nevertheless, the following
volume constraint is used:

V (x)
V0

= 1 (13)

where V (x) and V0 are the volume of the structure at the current iteration and before the �rst
iteration of the optimization process, respectively.
Commercial software such as OptistructTM and GenesisTM can be used to solve a subset

(see Equation (28) for details) of the optimization problems represented by Equations (11).
However, with large-scale mesh models, if each mesh node is de�ned as a design variable,
the optimization becomes computationally less feasible for numerical and economic reasons.
A simple and e�ective way to circumvent the computational complexity is to reduce the
space of original design variables to one of its subspaces such that the dimensionality of the
optimization problem is decreased accordingly. Pickett et al. [11] �rst proposed this idea that
evolved to the well-known basis vector approach as follows. Instead of using x that contains
n design variables, we replace it by a linear combination of a smaller set of approximations:

x=Dy (14)

where y is a vector that contains m design variables with m¡n or m�n. D is a n×m
matrix that represents a smaller set of m approximations to the �nal design. Consequently,
the optimization problem in Equations (11) is reduced to

minimize f(y) (15a)

subject to ge(y)60 (15b)
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gi(y)60 (15c)

If y satis�es Equations (15b)–(15c), then the corresponding x satis�es Equations (11b)–(11c).
However, the optimization of Equation (15a) is generally an approximation to that of
Equation (11a).
One variation to Equation (14) is the perturbation vector approach:

x=x0 +
m∑
i=1
Piyi (16)

where x0 refers to the initial geometric con�gure of the structure before the shape optimization.
Pi and yi are ith perturbation vector and ith design variable, respectively. m denotes the num-
ber of design variables in vector y. Compared to the basis vector approach, the �exibility of
the perturbation vector approach lies in the fact that the length of vector Pi can be the number
of nodes on a small surface patch rather than n, the number of all nodes in the structure.
The art of the shape optimization lies in how to determine the matrix D in Equation

(14) or Pi in Equation (15). Even though many studies related to the basis or perturbation
vector methods [11–15] have been conducted in the past and some commercial software
(OptistructTM and GenesisTM) are available in the market, creating D or Pi is, in general,
still a time-consuming process with need for a considerable amount of human intervention.
By following the spirit of the perturbation vector approach, we herein propose an e�cient
scheme to generate perturbation vectors and design variables as follows.

Algorithm 2.1: generation of perturbation vectors and design variables

(1) Perform a surface partitioning (Algorithm 1) of the input mesh model such that each
resulting surface partition corresponds to a possible shape design variable

(2) Let users decide which surface patch will be involved in the shape optimization
(3) Generate perturbation vectors associated with all chosen surface patches and the corre-

sponding design variables.

In the above algorithm, steps (1) and (3) can be fully automated, while step (2) needs a little
amount of users’ intervention. To carry out step (3) of Algorithm 2.1, a special perturbation
method, constant surface normal �ow, is proposed as follows. The perturbation of each
partitioned surface patch is carried out by a constant magnitude of movement of all nodes
along the direction of surface normal, as shown in Figure 2. This perturbation scheme is
supported by the following lemma and proposition.

Lemma 4
Let x=x(u; v) be a regular parameterized surface patch.§ If the constant surface normal �ow
is used to generate another surface patch

y(u; v)=x(u; v) + aN̂ (u; v) (17)

§A regular surface refers to a surface S ⊂R3 that is locally di�eomorphic to R2. In other words, for each point P ∈ S,
there exists a neighbourhood V of P in S, an open set U ⊂R3, and a map x :U→V , which is a di�eomorphism
[43].
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Figure 2. Constant surface normal �ow.

where a is a constant that denotes the length of perturbation vectors. N̂ (u; v) is a unit surface
normal. Then at regular points, the Gaussian and mean curvatures of y are respectively

K (y)(u; v)=
K (x)(u; v)

1− 2H (x)(u; v)a+ K (x)a2

H (y)(u; v)=
H (x)(u; v)− K (x)(u; v)a
1− 2H (x)(u; v)a+ K (x)a2

(18)

where K (x)(u; v) and H (x)(u; v) are Gaussian and mean curvatures of x. K (y)(u; v) and H (y)(u; v)
are Gaussian and mean curvatures of y.

Proof
By di�erentiating y(u; v) in Equation (17) with respect to u and v, we get

yu=xu + aNu; yv=xv + aNv (19)

Then the cross product of the above two vectors is

yu⊗ yv=xu⊗xv + axu⊗Nv + aNu⊗ yv + a2Nu⊗Nv (20)

where ⊗ refers to a vector cross product. Since

S(xu)⊗xv + xu⊗ S(xv)=2H (u; v)(xu⊗xv)
and

S(xu)⊗ S(xv)=K(u; v)(xu⊗xv) (21)

where S is shape operator or Weingarten map [44] such that

S(xu)=−Nu; S(xv)=−Nv (22)

hence

yu⊗ yv=(1− 2H (x)(u; v)a+ K (x)(u; v)a2)(xu⊗xv) (23)
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Now by using Equations (19) and (21)–(23), we can write the curvatures of y as follows:

K (y)(u; v)=
Nu⊗Nv
yu⊗ yv =

K (x)(u; v)
1− 2H (x)(u; v)a+ K (x)(u; v)a2

H (y)(u; v)=
−Nu⊗yv − yu⊗Nv

2(yu⊗ yv)

=
−Nu⊗xv − aNu⊗Nv − xu⊗Nv − aNu⊗Nv

2(yu⊗ yv)

=
H (x)(u; v)− K (x)(u; v)a

1− 2H (x)(u; v)a+ K (x)(u; v)a2

(24)

On the basis of Lemma 4, the following proposition is ready to be derived.

Proposition 5
If the curvatures of a surface patch are continuous, i.e. the surface patch is smooth except on
its boundary, then the perturbation scheme of constant surface normal �ow does not destroy
the smoothness of the surface patch after the shape optimization.

Proof
Since the curvatures of the surface patch represented by x(u; v) in Equation (17) is initially
continuous, at each regular point (u0; v0) of x we have

lim
u→u0
v→v0

K (x)(u; v)=K (x)(u0; v0); lim
u→u0
v→v0

H (x)(u; v)=H (x)(u0; v0) (25)

By Equations (24) and (25), we can write

lim
u→u0
v→v0

K (y)(u; v)=
lim u→u0

v→v0
K (x)(u; v)

1− 2a lim u→u0
v→v0

H (x)(u; v) + a2 lim u→u0
v→v0

K (x)(u; v)
=K (y)(u0; v0)

lim
u→u0
v→v0

H (y)(u; v)=
lim u→u0

v→v0
H (x)(u; v)− a lim u→u0

v→v0
K (x)(u; v)

1− 2a lim u→u0
v→v0

H (x)(u; v) + a2 lim u→u0
v→v0

K (x)(u; v)
=H (y)(u0; v0)

(26)

Thus, the curvatures of surface patch y are continuous as long as the denominators in
Equations (26) are not zero, and the smoothness of the surface patch after the shape
optimization is not changed.

The conclusion in Proposition 5 means that the proposed constant surface normal �ow
scheme does not destroy the smoothness of an original surface patch, unlike the approach in
[23]. In contrast to the B-spline approach [9], our approach avoids the troubles of converting
polygonal meshes into B-spline patches in the cases without CAD information, and has no
need for trim curves of NURBS patches or awkward constraint management between B-spline
patches. In addition, our approach is well suited for handling arbitrary topology, compared to
the limitation of the B-spline approaches.
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Even though the proposed constant surface normal �ow mathematically maintains the
smoothness at interior points of each surface patch, heuristic treatment is needed to handle
boundary points where the discontinuity of surface normal or curvature occurs. We categorize
the boundary between adjacent surface patches into the following two groups.

(1) Boundary between non-design and design surface patches
Note that only design surface patches are allowed to be perturbed as design variables.
Assume that P is a boundary point and shared by a non-design surface patch nd1 and
a design surface patch d1, as shown in Figure 3. If there is a G1 discontinuity between
patches nd1 and d1 (see Algorithm 1.1), the perturbation at point P due to d1 is the
overall perturbation at P, as illustrated in Figure 3(a). Otherwise, the perturbation at
point P due to d1 is reduced by half to make a smooth transition, as in Figure 3(b).

(2) Boundary between design surface patches
Let P be a boundary point shared by two design surface patches d1 and d2, as shown
in Figure 4. If there is a G1 discontinuity between d1 and d2 as in Figure 4(a), vector v
should be generated to maintain the sharp corner at point P. Given perturbation vectors
v1 and v2 in Figure 4(a), angle �1 in �PAC of Figure 5 can be determined by

�1 = arcsin

(
|v2| sin �√|v1|2 + |v2|2 − 2|v1‖v2| cos �

)
(27)

where � is the angle between vectors v1 and v2. In �ABC, length BC can be expressed
as

c=
sin �2

√|v1|2 + |v2|2 − 2|v1‖v2| cos �
sin �

(28)

where �2 is complementary to �1, i.e., �2 = 90◦ − �1. Let v3 = (v2⊗ v1)⊗ v2 and v̂3 be
a unit vector in the direction of v3. Then, the vector v in Figures 4 and 5 can be
determined by

v= v2 + cv̂3 (29)

After v is known, the following scaling factor can be computed:

s=
|v|

|v1 + v2| (30)

Perturbation vectors v1 and v2 at point P can then be changed to sv1 and sv2, re-
spectively, such that the sharp corner is approximately preserved. Note that if �=90◦,
s=1:0. The handling of three or more design patches that form a G1 discontinuity
between each other at point P is much more complex, as shown in Figure 6. In this
paper, we do not provide special treatment to this kind of cases. It will be a future
research topic.

If there is no G1 discontinuity between d1 and d2 as in Figure 4(b), we simply change pertur-
bation vectors v1 and v2 at point P to 0:5v1 and 0:5v2, respectively. An additional way to handle
the boundary between design surface patches is to use a feature-recognition technique to detect
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Figure 3. Perturbation at boundary point P be-
tween a design surface patch d1 and a non-design
surface patch nd1: (a) G1 discontinuity at point
P; and (b) no G1 discontinuity at point P.

Figure 4. Perturbation at boundary point P be-
tween two design surface patches d1 and d2:
(a) G1 discontinuity at point P; and (b) no G1

discontinuity at point P.

Figure 5. Calculation of vector v in Figure 4(a). Figure 6. Perturbation at boundary point P shared
by three design surface patches.

design features such as holes, �llets, chamfers, pockets, slots and beams on the basis of
partitioned surface patches. Each design feature can be then perturbed as a meaningful design
unit. This part of work will be a research topic in the near future.
In order to avoid a possible mesh distortion due to the perturbation of surface nodes on each

patch, we proportionally perturb the domain nodes close to these surface nodes. Each surface
node has a spherical in�uence zone with an adjustable radius that is an input from users, and
inside the zone the perturbation becomes e�ective with a magnitude that linearly decreases
with the distance between the domain node and the surface node. The overall perturbation of
a domain node is the accumulative contribution from all nearby surface nodes divided by the
number of these surface nodes.

5. SHAPE OPTIMIZATION OF FINITE ELEMENT MESHES
OF COMPLEX STRUCTURES

By combining Equations (11)–(13), (15) and (16), our shape optimization can be expressed
by

Minimize f(y)=
1
2
u(y)TK(y)u(y)=

1
2

∫
�
U(y)T�(y) d�= 1

2
u(y)TF (31a)
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Figure 7. Overall process of a shape optimization.

subject to g(y)− g(y)u60 (31b)

yL6y6yu (31c)

where the design variables in y are de�ned in Equation (16). Functions g(y) are structural re-
sponses obtained from a �nite element analysis, and include the volume of the entire structure,
nodal displacements, etc.
In this study, the shape optimization was carried out by using the optimizers available in

OptistructTM, a dual method and a primal feasible directions method that are both based on
the convex linearization of the design space. The overall process of the shape optimization is
illustrated in Figure 7. Since we use only polygonal meshes, a design model is the same as
the corresponding analysis model for a �nite element analysis.

6. NUMERICAL EXPERIMENTS AND DISCUSSIONS

The algorithms introduced in this paper were implemented in VC++ and tested on a Pentium
III HP PC. Table II shows experimental results of surface partitioning on di�erent mesh
models. Since the major part of the surface partitioning algorithm is three passes of breath-
�rst searches over all elements of M , its time complexity is O(n), where n=max(Ne; Nv),
Ne and Nv are the numbers of elements and vertices in M , respectively. However, element
neighbour relationship needs to be set up as a precomputation, which takes O(n log n) time.
Thus, overall time cost of the proposed surface partitioning is O(n log n).
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Table II. Surface partition of di�erent test mesh models.

Time Rate Reduction ratio
Model name Vertex Element (s) (Element=s) Partition (Node=partition)

Bumper 473 432 0.17 2541 8 59.1
Bracket 236 186 0.07 2657 11 21.5
Deck lid 8807 8624 3.0 2871 9 978.6
Curver1 143 120 0.04 3000 3 47.7
Block 56 46 0.01 4600 5 11.2
Base 12640 25328 6.13 4132 43 294.0
Ellipsoid 156 308 0.06 5133 1 156
Torus 1521 3042 0.67 4533 1 1521
Hyperbolic Paraboloid 441 400 0.14 2857 1 441
Cone 902 1800 0.39 4603 3 300.7
Engine bracket 12465 46373 5.81 3098 173 72.1
Control arm 2643 1730 0.61 2854 38 69.6

The last column of Table II demonstrates the ratio of total number of nodes to total number
of partitioned surface patches. It re�ects the reduction of design variables from the conven-
tional design variable scheme of using each mesh node to the new scheme of using each
partitioned patch. Depending upon the geometric complexity and mesh density, the design
variables were reduced by 10–1000 times. Even though using B-spline patches may achieve
a similar amount of reduction, there is a need for trim curves of NURBS patches or awkward
constraint management between B-spline patches.
Two practical examples are used to demonstrate the e�ectiveness of the proposed approach

in the direct shape optimization of complex structures represented by polygonal meshes.

Example 1
Control arm.

Speci�cation: The control arm is a typical structure encountered in the structure design of
automobiles, as shown in Figure 8(a). It contains one constant-cross-section beam (at the
rear) and two tapered beams (along the sides). The non-design elements are shown in dark
grey colour and the design elements are in light grey.

Results: Figure 8(b) illustrates the surface partition results after removing all non-design
elements. Among all 38 partitioned patches, users have an option to choose certain number
of patches as design variables for a shape optimization. We do not want to automate this
step, because it will provide tremendous �exibility to try out di�erent combinations of shape
design variables.
In our test, 11 design variables were chosen, each of which corresponded to a partitioned

surface patch. The visible design surface patches are marked in Figure 8(b). Since there is
a V-shaped discontinuity at the top surface of beam 3 in Figure 8(b), two surface patches
are generated to cover that surface. The sets of perturbation vectors generated automatically
by the proposed approach are shown in Figure 8(c). The weighted compliance of the entire
structure is reduced by 12.95%, as shown in Figure 8(d). The comparison between the original
and optimized geometric con�gurations is illustrated in Figure 9.
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Figure 8. A control arm de�ned by a �nite element model: (a) original model; (b) partitioned patches;
(c) perturbation vectors; and (d) optimization history.

Example 2
Engine mount bracket.

Speci�cation: An aluminium engine bracket of an automobile is used here. The �nite element
model in the original problem speci�cation is shown in Figure 10(a) in which the dark grey
colour refers to design domain consisting of 9046 elements. Six load cases are considered to
re�ect di�erent driving and service conditions: (1) start; (2) backup; (3) into a pothole; (4)
out of a pothole; (5) loads from an attached part and (6) loads during engine transport [45].

Results: Among 173 partitioned surface patches, we chose 19 patches as design variables.
The chosen surface patches after removing non-design elements are shown in Figure 10(b).
The sets of perturbation vectors that are automatically generated by the new approach are
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Figure 9. Original versus optimized geometric shape of the control arm de�ned in Figure 8:
(a) original; and (b) optimized.

Table III. Comparison of sizes of beam components before and after the shape optimization on
the engine bracket model in Figure 10.

Width after opt. Height after opt.
Beam Width Height
set no. before opt. Isotropic Anisotropic before opt. Isotropic Anisotropic

1 9.041 5.39 7.26 13.101 8.37 8.60
2 11.023 6.59 7.03 11.051 7.05 7.25
3 6.337 9.15 6.80 12.226 15.10 15.39
4 5.004 7.41 1.36 2.000 4.21 4.26
5 5.017 6.67 4.53 9.701 11.36 11.70
6 10.091 12.52 10.10 41.618 42.99 40.60

illustrated by Figure 10(c). Since there were four patches related to each beam in Figure 10(c),
we devised two slightly di�erent ways, isotropic and anisotropic perturbations, to create design
variables. In the isotropic perturbation, four patches related to each beam are considered as a
single shape design variable such that the beam is allowed to expand and shrink isotropically.
In contrast, with the anisotropic perturbation, four patches related to each beam are allowed to
change independently and considered as four di�erent shape design variables. The comparison
between the optimized shape and original shape is listed in Table III. The weighted compliance
of the entire structure is reduced by 9.1% (anisotropic) and 5% (isotropic), respectively, as
shown in Figure 10(d).

7. CONCLUSIONS

In this paper, we present a new algorithm to conduct shape optimizations directly on polygonal
meshes. Surface partitioning is used to dramatically reduce the total number of shape design
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Figure 10. An engine block de�ned by a �nite element model: (a) original model;
(b) partitioned patches; (c) perturbation vectors; and (d) optimization history.

variables by about 10 through 1000 times. A perturbation scheme of constant surface normal
�ow is proposed to maintain the smoothness of original surfaces. Each partitioned surface
patch can be assigned as a shape design variable, depending upon users’ preference. Numerical
experiments indicate that the proposed approach simpli�es the conventional shape optimization
processes and works well with large-scale polygonal mesh models.
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