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In this work, the near-tip fields in notched specimens of pressure-sensitive non- 
porous and porous materials are investigated by finite element analysis. The speci- 
men geometry and material properties are adopted from the corresponding experi- 
ments on rubber-modified epoxies. The Drucker-Prager yield criterion is first used 
to describe the yielding of nonporous materials. The yielding behavior of porous 
materials is based on a generalized Gurson yield criterion. The yield criterion for 
porous materials accounts for both the matrix material pressure sensitivity and the 
macroscopic pressure sensitivity due to porosity. Modifications are made on the 
yield criterion under negative mean stresses in order to account for the specific 
loading and geometry of the specimen. The computational results are compared 
with observed experimental cavitation zones and intense shear zones near the 
notch tip in specimens. Moreover, the near-tip fields and crack initiation sites ahead 
of the notch tip related to the volume fraction of rubber particles are investigated. 
The computational results suggest that the lowering of the mean stress ahead of 
the tip in rubber-modified epoxies with higher volume fractions of rubber changes 
the fracture mode from being controlled by high mean stresses at the elastic-plastic 
boundary to being controlled by large plastic strains closer to the notch tip. 

1 INTRODUCTION 

he yielding of many materials, including polymeric T materials, exhibits dependence on the hydrostatic 
stress, for example, see (1-4). This dependence on the 
hydrostatic stress is accounted for, from the macro- 
scopic phenomenological viewpoint, by modifying the 
von Mises yield criterion through the introduction of 
the mean stress in the yield criterion for pressure-in- 
sensitive materials, for example, see Drucker and 
Prager (5) and Drucker (6). 

M-g thermoset epoxy resins with rubber parti- 
cles is known to noticeably improve the fracture tough- 
ness of the epoxies as shown by McGarry and co-work- 
ers (7-9). The toughening by rubber particles increases 
the range of applicability of plastics. Yee and Pearson 
(10) and Pearson and Yee (1 1, 12) studied experimen- 
tally the fracture behavior of rubber-modified epoxies 
and pointed out that the mechanism responsible for 
the increased toughness of rubber-modified epoxies, 
when compared to pure epoxies, is the cavitation in 
rubber particles early in the deformation process, fol- 
lowed by the intense shear yielding of the surrounding 
matrix material. 
Based on the experimental work on notched speci- 

mens of rubber-modified epoxies, Yee et aL (13) sug- 

gested that the cavitation of the rubber particles 
around the notch tip induces a plane-stress condition 
in the region ahead of the notch tip and thus relieves 
the thickness constraint even in thick specimens where 
the plane-strain condition is satisfied. They also noted 
that the intense shear yielding zone, which is con- 
tained within a larger cavitation zone, extends directly 
ahead of the notch tip. 

Ductile fracture mechanisms in metals have been 
modeled extensively (14). In general, the fracture of 
ductile metals is intimately related to second-phase 
particles which experience fracture or decohesion dur- 
ing loading. This leads to the creation of voids and 
cracks within metals. The presence of such micro- 
voids and cracks gives rise to noticeable macroscopic 
pressure-sensitive yielding behavior even when the 
yielding behavior of metals is not sigmficantly pres- 
sure dependent. Ductile fracture in metals could occur 
through a process of nucleation of microvoids, subse- 
quent growth and coalescence of microvoids to final 
fracture ( 14). 

Gurson (15, 16) developed a macroscopic pressure- 
sensitive yield criterion to describe the yielding behav- 
ior of porous materials with pressure-insensitive von 
Mises matrices. Jeong (17) and Jeong and Pan (18. 
19) analyzed porous materials with pressure-sensitive 
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matrices and proposed a generalized Gurson’s yield 
criterion so that both the microscopic pressure sensi- 
tivity in pressure-sensitive matrices, which is tradi- 
tionally accounted for by the Drucker-Prager yield cri- 
terion, and the pressure sensitivity due to porosity of 
the materials can be incorporated. They also devel- 
oped a set of constitutive relations to describe the 
material rate-dependent constitutive behavior for in- 
vestigation of the crack-tip fields in rubber-modified ep- 
oxies. As recently shown by Chang and Pan (20), the 
load-canying capacities of porous plastics and rub- 
ber-modified plastics are quite similar when cavitation 
in rubber particles occurs early in the deformation 
history and a failure criterion under large deformation 
is assumed for the rubber material. This suggests that 
use of the generalized Gurson’s criterion is reasonable 
to describe the yielding behavior of rubber-modified 
plastics after cavitation occurs early in rubber parti- 
cles. 

The goal of this work is to investigate the notch-tip 
fields in specimens of rubber-modified epoxies with 
different rubber contents used in the work of Yee et 
al. (1 3) based on the generalized Gurson yield crite- 
rion by a finite element analysis. A comparison of the 
computational results and the experimental results is 
used to assess the proposed mechanisms of toughen- 
ing and failure in Yee et al. (13). In this paper, a finite 
element model is first developed for double-edge dou- 
ble-notch specimens used in the experimental work of 
Yee et a1 (13). Some preliminary analyses are con- 
ducted in order to confirm the accuracy and stability 
of the finite element model and to assess the possibil- 
ity of using the Drucker-Prager yield criterion to in- 
vestigate the crack-tip fields in rubber-modified epox- 
ies. The results from these finite element analyses are 
compared with the fully-plastic analytical notch-tip 
stress solutions developed by Al-Abduljabbar and Pan 
(2 1). The analytical solutions were developed for 
wedge-shape circular notch tips with different wedge 
angles. The analytical solutions include the notch-tip 
geometry in the specimen used in the experiment 
of Yee et aL (13). By benchmarkmg the computational 
results with the fully plastic analytical stress solu- 
tions, we can assess the accuracy of the !bite element 
analysis. Since the fully plastic solutions are applica- 
ble to perfectly plastic materials, a perfectly plastic 
material behavior is assumed in the finite element 
code AEiAQUS with material softening and directional 
hardening being neglected. 

Then, the notch-tip fields in specimens of rubber- 
modified epoxies are investigated by using the consti- 
tutive relations developed by Jeong and Pan (18). Due 
to the geometry and loading conditions, the yield cri- 
terion used in the analysis of rubber-modified epoxies 
has to cover both positive and negative mean stress 
states. The region under negative mean stress is de- 
scribed by the Drucker-Prager yield criterion with 
consideration of the effects of rubber particles on the 
yield criterion, whereas the region of positive mean 
stress is described by the generalized Gurson yield 

criterion proposed by Jeong and Pan (18). The notch- 
tip fields in the specimens are analyzed for different 
rubber contents, and the results are compared with 
the experiment of Yee et aL (13). 

2 YIELDCRITERION 

The Drucker-Prager yield criterion has been widely 
used to account for the effects of the hydrostatic pres- 
sure on yielding by a combination of the effective 
stress u, and the mean stress urn as 

@DP(U) = ue + v5pu, = U O ,  (1) 

where QDP represents the yield criterion, u is the 
Cauchy stress tensor, p represents the pressure sen- 
sitivity, and uo represents the generalized effective 
tensile yield stress. Here, uo equals a constant for per- 
fectly plastic materials. The mean stress urn and the 
effective tensile stress ue are defined as follows 

1 
3 

urn = - u)& 

112 
m e = ( :  - sij sij ) . (3) 

In Eq 3, sy are the deviatoric stress components de- 
fined as 

(4) 

where 6y is the Kronecker delta. The subscripts i, j 
and k range from 1 to 3 and the summation conven- 
tion for repeated indices is adopted. 

1.5 
- T  

=In 

Rg. 1 .  Yield contours for pressure-sensitiue porous mnterials. 
In the negative mean stress region, the solid lines represent 
Eq 7 and the dotted lines represent Eq 6. 
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For maraging and tempered martensitic steels, the 
pressure sensitivity c~ is small with a range of 0.014 to 
0.064 as reported in (22-24). For zirconia-containing 
ceramics, the pressure sensitivity p for phase trans- 
formation ranges between 0.55 and 0.77 as shown 
in (25). For polymers, Kinloch and Young (4) reported 
that p ranges from 0.10 to 0.25. When p becomes 
zero, the Drucker-Prager yield criterion reduces to the 
von Mises yield criterion. Many more references on 
using the Drucker-Prager yield criterion to describe 
the yielding behavior of plastics can be found in Jeong 
and Pan (18). 

The presence of voids and microdefects in materials 
gives rise to noticeable dependence of yielding on 
pressure even when the yielding behavior of the ma- 
trix materials is not pressure dependent. Based on an 
upper bound analysis, Gurson (15) presented a pres- 
sure dependent yield criterion for porous materials. 
Tvergaard (26, 27) modified Gurson's yield criterion by 
three parameters ql ,  &. and 93 to fit the results of his 
finite element analysis for localization as 

- 1 - q 3 f  =o,  (5) 

where @ represents the yield criterion, H is the macro- 
scopic Cauchy stress tensor acting on the porous ma- 
terial, and f is the void volume fraction. The macro- 
scopic effective tensile stress 8, and the macroscopic 
mean stress 2, are defined in a fashion similar to that 
of u, and urn above. Jeong and Pan (18) generalized 
this form in order to include the effect of the pressure 
sensitivity of the matrix materials as follows 

where p* = f i p .  Here, the parameters ql, &. and q3 
are also introduced to fit the yield criterion to the cor- 
responding finite element results. The values of these 
parameters are different from those of Tvergaard. In 
Jeong and Pan (18), the values of these parameters are 
q1 = 1.35, = 0.95, and 93 = 1.35. The generalized 
Gurson criterion given in Eq 6 accounts for the com- 
bined effects of the matrix pressure sensitivity and the 
porosity on the macroscopic pressure-sensitive yield- 
ing. When the matrix pressure sensitivity is negligible 
(p = 0). Eq 6 reduces to the Gurson-Tvergaard yield cri- 
terion (Eq 5). When the porosity is negligible If = 0). Eq 
6 reduces to the Drucker-Prager yield criterion (Eq I). 

Equation 6 will be used to describe the yielding be- 
havior of the porous material where the mean stress 
is positive, Yee and Pearson (10-12) noted that the rub- 
ber particles were cavitated at very low stresses. As 
recently shown by Chang and Pan (20), the load-car- 
rying capacity of the rubber-modified plastic, when a 
rubber failure criterion at large deformation is consid- 
ered, is nearly the same as that of the corresponding 
porous plastic. Therefore, the generalized yield criterion 
for pressure-sensitive porous materials may be used to 
describe the yielding of rubber-modified epoxies. 

In the region where the mean stress is negative, the 
rubber particles will not be cavitated. Since the rub- 
ber is incompressible, a simple rule of mixtures would 
be the first approximation to depict the yielding be- 
havior with the rubber being considered to contribute 
to shear load-carrying capacity at small strains. How- 
ever, due to the consideration of the continuity of the 
yield criterion near zero mean stress, we neglect the 
small contribution of rubber to the shear load-cany- 
ing capacity when the mean stress is negative and use 
the following yield criterion 

z, + p * z m  
@(c,uo,Jp) = ( 

uo 
) + %Lf-  1 - q3f2 = 0. 

(7) 

Figure I shows the yield contours for porous materi- 
als with a void volume fraction f = 0.12 and different 
values of c ~ .  In the negative mean stress region, the dot- 
ted lines represent the yield criterion based on Eq 6 
and the solid lines represent the yield criterion based 
on Eq 7. 

Jeong and Pan (18) also proposed a plastic potential 
function similar to the yield criterion, with the 
pressure sensitivity factor replaced by the dilatancy 
factor p. A fictitious generalized tensile flow stress ur 
is sought such that the current stress state is located 
at the plastic potenlial surface in the stress space. The 
dilatancy of plastics is small: for example, see Spitzig 
and Richmond (3). Therefore, the dilatancy factor is 
taken as zero for simplicity. Then the potential function 
reduces to a form similar to the Gurson-Tvergaard 
yield Criterion and the von Mises yield criterion for 
positive and negative mean stresses, respectively. 
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3 CONSTITUTIVE RELATIONS 

The constitutive relations for porous materials pre- 
sented in this section are adopted from the work of 
Jeong and Pan (18). Although the yield criterion and 
the plastic potential function discussed above were 
developed for rate-independent porous materials, we 
assume that they are approximately applicable to 
rate-dependent materials (1 8). The constitutive rela- 
tions are derived by first decomposing the rate of de- 
formation tensor I) into an elastic and a plastic part 

D =De+DP. (8) 

The elastic rate of deformation tensor De is related to 
the Jaumann rate of the macroscopic Cauchy stress 2 
bY 

De = [(1 + v*)% - v*I(I:%)] = L-l : 2. (9) E' 

where E' and V* are the macroscopic elastic modulus 
and Poisson's ratio of the porous material, respec- 
tively. These are defined by a self-consistent model 
based on the average stress scheme, which was intro- 
duced by Tandon and Weng (28) 

2E(7 - 5 ~ ) ( 1  - f )  
14 - 1 0 ~  + f ( l +  ~ ) ( 1 3  - 1 5 ) '  E' .= (10) 

* v( 14 - 1 0 ~ )  +f(l + ~ ) ( 3  - 511) 
14 - 1Ov + f ( l  + ~ ) ( 1 3  - 1 5 ~ ) '  v =  (1 1) 

As for the plastic part of the deformation-rate tensor, 
DP its covariant components are related to the partial 
derivatives of the plastic potential function QP with re- 
spect to the corresponding contravariant components 
of the macroscopic Cauchy stress tensor S as 

where A is a proportionality factor. The equivalent ten- 
sile plastic strain E$ for porous materials is defined as 

@ = (2DP' : DP')'l2 dt, (13) 

where DP' is the deviatoric part of I)p. Here, is a 
convenient scalar quantity for measuring the extent of 
plastic deformation. 

The equivalent plastic work for porous materials 
can be expressed as in (18): 

ib 

Z :DP = (1 - f) u,E~. (14) 

Here, b C is the effective plastic strain rate of the matrix 
materials, which is determined according to 

E: = E r [ q  , (15) 

where g(@ is a generalized stress function, E, is a ref- 
erence plastic strain rate, and m is the material rate 
sensitivity. A convenient strain softening-hardening 
form of g(@ is adopted here (18) 

l /m 

g ( a  

where uy = fi-~~. Here.7, is the yield stress in shear 
at the reference shear plastic strain rate r ,  ( = %'%,), 
and g$ = &C/(uy/Ej. In Eq 16, N and N ,  are the hard- 
ening exponents and C ,  and C, are material coefE- 
cients. Flgure 2 shows the stress-strain relation based 
on g(E5) typical epoxies with E = 2.94 GPa, v = 0.4, uy 
= 75 ma, m = 0.035, N = 0.1, N, = 1.3, C, = 0.03, 
and C, = 0.05 at Ez = E, = 0.0032 s-l. 

Combining Eqs I2  and I4 gives the relation for A as 

I s -  + 

Fg. 3. Geometry and loading of a SDEDN specimen used in Yee et al(13). 
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Fig. 4. (a) The finite element 

men, (b) Themite element model 
near the &J? notch (c) ?he c00rdi- 
nate system for the leJ? notch 

model of the left half of the speci- 

In addition, the consistency condition which holds 
during plastic deformation requires that 

where the dot denotes the time derivative. In general, 
the change in the void volume fraction comes from 
two contributions: growth of the existing voids and 
nucleation of new voids. In this study, we consider 
only the growth of the existing voids. Therefore, the 
rate of the void volume fraction is expressed as 

f =  (1- f)DP:I 

Note that the reduction in the void growth due to the 
matrix dilatancy considered in Jeong and Pan (19) is 
eliminated in Eq 19 because the dilatancy factor f3 is 
taken as 0 because of the reported small plastic dila- 
tancy of plastics as pointed out earlier. 

4 FINITE ELEMENT MODEL 

In this section, the pressure-sensitive yield criteria 
and the constitutive relations for Drucker-Prager ma- 
terials and for porous materials with Drucker-Prager 
matrix materials discussed earlier are used in a finite 
element analysis to investigate the notch-tip fields of 
symmetrical double-edge double-notched (SDEDN) 
specimens used in Yee et aL (13). The geometry and 
loading of a SDEDN specimen are shown in Fig. 3. 
The specimen has width (W) of 19.1 mm, thickness of 
6.3 mm and length of 126 mm. The notches on each 
side are 25 mm apart, and the ratio of notch size to 

width, c/W, is 0.25. The notches are V-shaped with a 
total wedge angle of 45" and a notch radius a = 0.50 
mm. The span between the upper load application 
points, ci, is 35 mm, and the span between the lower 
supporting points, S, is 75 mm. 

Due to the symmetry, only one half of the specimen 
is modeled in our finite element analysis. The loading 
is applied on the upper side of the specimen so that 
the upper portion is under compression, and the lower 
portion is under tension. The finite element model of 
the left half of the specimen, rotated 90" clockwise, is 
shown in Hg. 4(a). The model includes two notches 
and consists of 1535 elements and 4786 nodes. 
mure 4(b) shows a close-up of the region near the left 
notch under tension. m e  4(c) shows the coordinate 
systems for the presentation of finite element results. 
The origins of the polar coordinates and the Cartesian 
coordinates are at the center of the circular profile of 
the notch tip. In the finite element analysis, 8-node 
reduced-integration plane-strain elements are used. 

In OUT finite element analysis, the specimen is sub- 
jected to displacement-controlled loading conditions. 
Prescribed displacement conditions are used at the 
support and load application points. The displace- 
ment at the load application points is increased to the 
value at which the specimen fractures. From Yee et aL 
(13), the specimen with 10 p.h.r. CTBN rubber frac- 
tures at a total load of 480 N. An equivalent pre- 
scribed displacement of the load application point at 
fracture based on linear elastic beam theory is 1.1 
mm. We will use this displacement to study the stress 
and deformation patterns near the notch tip in the 
SDEDN specimens. We begin with an analysis of the 
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Flg 5.  Notch-tip opening stresses 
in the y direction, normalized by 
uo directly ahead of the notch tq 
as fwrctions of r / a ,  for pressure- 
sensitiue LImcker-Prager materials 
with = 0.13 at diffkrent load lev- 
els from the FEM analysis. The 
corresponding fully plastic solution 
is also shown as the solid line. 

notch-tip fields in the specimen of pressure-sensitive 
Drucker-Prager materials. Then, we examine the notch- 
tip fields in porous materials with pressure-sensitive 
Drucker-Prager matrix materials. 

5 RESULTS FOR DRUCKER-PRAGER 
HATERIALS 

For the analyses of the specimen of pressure-sensi- 
tive Drucker-Prager materials, the material constants 
are: E (Young's modulus) = 2.5 GPa, u (Poisson's 
ratio) = 0.4, and cry  beld  stress) = 67 ma, which are 
typical material properties of epoxies from tensile tests. 
We only consider elastic perfectly plastic material be- 
havior. We select the elastic-plastic material behavior 
option in finite element code ABAQUS. 

For the convenience of presentation, the stresses 
presented in this section and next section are normal- 
ized by the generalized tensile yield stress uo. Flgure 5 
shows the normalized opening stresses in the y direc- 
tion, a,, as functions of the radial distance normal- 
ized by the notch radius, r /a ,  ahead of the notch tip (0 
= 0), for pressure-sensitive materials with p = 0.13 at 
different loads from the finite element computations. 
The normalized fully-plastic solution for the same 
notch geometry obtained in Al-Abduljabbar and Pan 
(21) is also presented in the figure as the solid line for 
p. = 0.13. The fully-plastic stress solution is for per- 
fectly plastic materials. 

The loads corresponding to the applied displace- 
ments are normalized by a lower-bound limit load 
Plim. The plastic limit load is obtained by assuming 
full-plastic deformation throughout the remaining lig- 
ament of the specimen. A lower-bound limit moment 
Mlim for the remaining ligament is 

1.5 

1 

0.5 

0 

t 

where b = W-2c (30). Therefore the corresponding 
limit load Ph is obtained as 

4" Sim = - 
S - d '  

rla 
FYg. 6. Notch-tip opening stresses in the y direction, normal- 
ized by u0, directly ahead of the notch tip a s w n s  of r / a  
for von M i s e s  materials with = 0 and pressure-sensitive 
DNCke-pTager materials ' with p = 0.13 and 0.3 at thepre- 
scribed displacement of 1.1 mm 
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3 

2.5 

2 -  

1.5 

p=O 
p = 0.13 
p = 0.3 

_ _ - _ -  
- - - _ _  - 

- 

- 
O F L  I ' 2 I '  ' ' ' 3 I '  ' ' " 4 ' ' " 5 I " ' ' 6 I '  

rla 
Rg. 7. Generalized tensile effecthe stresses, normalized by 
C S ~  directly ahead of the notch tip asfunctions of r/a for = 
0, 0.13, and0.3attheprescribeddisplaoementof 1.1 mm 

The details of the derivation for the limit moment are 
presented in Al-Abduljabbar and Pan (29). In Rg. 5, 
the results for different loads from the finite element 
analysis show different stress levels ahead of the 
notch tip. As the load increases, the finite element re- 
sults seem to approach to the fully plastic solution for 
perfectly plastic materials. In contrast to the fully 
plastic solution, the finite element solutions indicate 
that beyond the location of the maximum stress, the 
opening stress decreases as r increases. The finite ele- 
ment results also indicate that the region beyond the 
maximum stress is in elastic state. 

m e  6 shows the normalized opening stresses, Ow. 
ahead of the notch tip as functions of the normalized 
radial distance r / a  for perfectly plastic Mises materials 
(p, = 0), and two pressure-sensitive Drucker-Prager 
materials (p, = 0.13 and 0.3) at the prescribed dis- 
placement of 1.1 111111. For the three cases with p = 0, 
0.13 and 0.3, the uniaxial tensile yield stress is set at 
67 Mpa for these computations. The plot shows that 
as the pressure sensitivity p increases, the maximum 
normalized opening stress in the y direction decreases 
and the extent of the region from the tip to the loca- 
tion of the maximum opening stress increases. The 
peak value of the stress locates the maximum extent 
of the plastic region ahead of the notch tip. Beyond 
the location of the maximum opening stress, the 
stress decreases as the radial distance from the tip in- 
creases. Figure 7 shows the normalized generalized 
tensile effective stresses, a,, as functions of r / a  for p, 
= 0, 0.13 and 0.3 at the prescribed displacement of 
1.1 111111. When we compare Figs. 6 and 7, it is clear 
that in the region beyond the location of the maxi- 
mum opening stress, the material is in elastic state. It 
is also clearly shown that the plastic zone size in- 
creases as the pressure sensitivity increases at the 
prescribed displacement. 

668 

1.5 2l 
0. 8. Mean stresses, normalized by u0. directly ahead of 

prescribed displacement of I .  1 mm 
the notch tip asfunctions of r /Q for p = 0, 0.13 and 0.3 at the 

Figure 8 shows the normalized mean stresses di- 
rectly ahead of the notch tip for p = 0, 0.13 and 0.3. 
The trends shown in Rg. 8 are quite similar to those 
shown in Fig. 6. Fig. 9 shows the equivalent tensile 

plastic strain I$' ( = dt, where E $  repre- 

sent the deviatoric plastic strain rates) directly ahead 
of the notch tip for p = 0, 0.13 and 0.3. As shown in 
Fig. 9, for higher values of pressure sensitivity, the 
equivalent tensile plastic strain in the region ahead of 
the notch tip is larger. The effects of pressure sensitiv- 
ity on the notch-tip stress fields for pressure-sensitive 
materials presented in Figs. 5 to 8 are in general agree- 

6 

&: 

rla 
0. 9. Equivalent tensile plastic simins direct& ahead of the 
notch tip asfunctions of r/a for p = 0. 0.13, and 0.3 at the 
prescribed displacement of 1.1 mm 
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stress nem the notch tip for p = 0, 
0.13 and 0.3. 
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p = 0.13 

p = 0.3 

ment with those of the analytical solutions presented 
in Al-Abduijabbar and Pan (2 1). 

The distributions of the mean stress around the 
notch tip are shown in l%~. 10 for p = 0, 0.13 and 0.3 
at the same prescribed displacement of 1.1 mm. 

POLYMER ENGINEERING AND SCIENCE, APRIL 1999, Vol. 39, No. 4 

Different mean stress levels corresponding to different 
hydrostatic pressure levels are plotted. 

The change in the shape of the distribution around 
the notch is quite mild as the pressure sensitivity in- 
creases. Figure 1 1  shows the distributions of the 
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Fig. 1 1 .  Distributionsoftheequiv- 
alent tensileplastic strain new the 
notch tip for )I = 0, 0.13 and 0.3. 
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p = o  

p = 0.1: 

p = 0.3 

equivalent tensile plastic strain for p = 0, 0.13 and 
0.3. The figure shows that as the pressure sensitivity 
increases, the plastic zone ahead of the notch increases. 
It should be noted that there is no intense shear zone 
where the equivalent tensile plastic strains are larger 
than &g?= 0.2. 

From Rgs. 10 and 1 1 ,  it is clear that it is not possi- 
ble to characterize the notch-tip fields in rubber-modi- 
fied epoxies as observed in Yee et aL (13) by using the 
Drucker-Prager yield criterion alone. It should be noted 
that Van der Giessen (30) has adopted a more sophis- 
ticated constitutive law for glassy polymers to model 
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- 

j 
3 

2.5 1 

r/a 
FUJ. 12. Macroscopic n o d  stresses in the x and y direc- 
tions. normalized by uo, directly ahead of the notch tip as 
functions of r / a  for pressure-sensitive porous materials ‘ with 
the softening-hardening behavior, p. = 0.13 and fo = 0. 

r/u 
Fg. 14. Macroscopic n o d  stresses in the x and y direc- 
tions, normalized by u0. directly ahead of the notch tip as 
jimctions of r / a  for pressuresensitive porous matenals ’ with 
the softening-hardening behavior. p = 0.13 and fo = 0.12. 

the notch-tip fields. However, in order to model the 
notch-tip fields in rubber-modified epoxies, the gener- 
alized Gurson’s yield criterion proposed by Jeong and 
Pan (18) is a logical choice since the yield criterion 
can include the effects of the voids due to cavitation in 
rubber particles and the yield criterion can be readily 
used in finite element analyses. 

r/a 
Ffg. 13. Macroscopic n o d  stresses in the x and y direc- 
tions, normalized by uo, directly ahead of the notch tip as 

with 
the softeniru-hnrdening behauior, p. = 0.13 and fo = 0.06. 
fimctmns of r /a  for pressure-sensitiue porous materials . 

6 RESULTS FOR POROUS MATERIALS 

As shown by Chang and Pan (20). the load-carrying 
capacities of porous plastics and rubber-modified 
plastics are quite close to each other when cavitation 
takes place early in the deformation history [at the 
mean stress of a few MPa, see Gent and Lindley (31)]. 
Therefore, the use of the constitutive law for porous 
plastics seems to be appropriate when we investigate 
the deformation state where the plastics are well into 
plastic yielding. Therefore, we take the generalized 
Gurson model of Jeong and Pan for porous materials 
[ 18) to describe the macroscopic yielding behavior of 
rubber-modified epoxies. We take the stress-strain re- 
lation as shown in Rg. 2 for the epoxy. All the results 
in this section are for the same prescribed displace- 
ment of 1.1 mm. This prescribed displacement corre- 
sponds to the fracture load of the SDEDN specimen 
as discussed earlier. 

The normalized opening and - transverse macro- 
scopic stresses (Xw = Xw/uo and Em = E,/uo. respec- 
tively) ahead of the notch tip are plotted as functions 
of the normalized radial distance r / a  in Figs. 12 to 14 
for porous materials with = 0.13 and the initial void 
volume fraction of fo = 0, 0.06 and 0.12, respectively. 
As shown in Fig. 12 forfo = 0, the distributions of the 
stresses are similar to those for Drucker-Prager mate- 
rials as shown in the previous section but the direc- 
tional hardening behavior results in a sharper in- 
crease to the maximum opening stress at the elastic- 
plastic boundary as the radial distance to the notch 
tip increases. 
As shown in F‘ig. 13 for the small initial void volume 

fraction offo = 0.06, the magnitudes of the maximum 
stresses are reduced but without s i ecan t  change in 

- 
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Fig. 15. Distributions of the 
macroscopic mean stress near the 
notch tip for pressure-sensitive 
porous materials with the soften- 
ing-hardening behavior, = 0.13. 
and fo = 0, 0.06 and 0.12. 

fo = 0.06 

fo = 0.12 

the distribution pattern when compared to that shown 
in Q. 12. As for the case of the larger initial void vol- 
ume fraction of fo = 0.12, shown in FIg, 14, while the 
peak stresses are reached at a certain distance away 
from the tip, the stresses decrease and then increase 
again as the radial distance to the notch tip de- 
creases. It will be shown later that there is a substan- 

672 

tial amount of void growth which results in significant 
reduction of the macroscopic stresses between the 
notch tip and the elastic-plastic boundary where the 
maximum stresses are located. However, as the free 
surface is approached, the opening stress increases 
again due to the material directional hardening be- 
havior. 

POLYMER ENGINEERING AND SCIENCE, APRIL 1999, Vol. 39, No. 4 



Numerical Analysis of Notch-% Fields 

Fg. 16.  Distributions of the e q w -  
alent tensile plastic strain near the 
notch tip f o r  pressure-sensit ive 
porous materials with the soften- 
ing-hardening behavior, p. = 0.13, 
andfo= 0. 0.06and0.12. 

The distributions of the macroscopic mean stress 
near the notch tip for pressure-sensitive porous mate- 
rials with p. = 0.13 and the initial void volume fraction 
fo  = 0, 0.06 and 0.12 are shown in Rg. 15. We notice 
the change in the distribution from elliptid shape to 

POLYMER ENGINEERING AND SCIENCE, APRIL 1999, Vol. 39, No. 4 

one closer to a circular shape for the mean stress 
equal to and larger than 20 Mpa as the void volume 
fraction increases. This is in agreement with the trend 
of the shapes of the observed cavitation zones re- 
ported in Yee et d (13). For the larger value of the 
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0.2 :3h 

& = 0  

f, = 0.12 

- _ _ _  
f, = 0.06 -. _ . - . - 

r/a 
FYg. 17. Equiualent tensile plastic strains asfunctions of r/a 
along t h e y  direction ahead ofthe notch tip for p = 0.13 and 
fo = 0, 0.06 and 0.12. 

void volume fraction (f, = 0.12), the region near the 
notch tip with high mean stress (40 MPa or higher) 
becomes smaller. As seen in the bottom plot, there is 
a small circular region ahead of the notch tip, where 
the mean stress is quite low. This region is located be- 
tween the notch tip and the high mean stress region 
(40 MPa or higher). This is the region where the void 
growth is substantial and the macroscopic effective 
plastic strain is higher, as will be shown later. The lo- 
cation of the low mean stress region is possibly corre- 
sponding to the crack initiation site as observed in 
(13). 

f 
0.4 I 

L - \  I 

I ._________--_--- I 

The distributions of the equivalent tensile plastic 
strain (WJ for fo = 0, 0.06 and 0.12 are shown in Rg. 
16. The equivalent tensile plastic strain is defined in 
Eq 13. We notice that the zone defined by 2 0.01 
grows gradually asf, increases. However, the intense 
shear yielding zone identified by Ez 2 0.2 spreads 
some distance ahead of the notch tip only for fo = 
0.12, as seen in the bottom plot of Rg. 16. The shape 
of the intense shear yielding zone is somewhat similar 
to that seen in the experiments (13) although the ex- 
tent of the region defined by &> 0.01 here is smaller. 
Note that the distribution of the equivalent tensile 
plastic strain is not exactly symmetrical forf, = 0.12 
since the deformation is not symmetrical with respect 
to the notches for SDEDN specimens. Forf, = 0 and 
0.06, the asymmetry of the distributions of the equiv- 
alent tensile plastic strains is not shown clearly as 
that shown in Rg. 15 forf, = 0.12. 

Rgure 17 shows the equivalent tensile plastic strains 
as functions of r / a  ahead of the notch tip for porous 
materials with c~ = 0.13 andfo = 0, 0.06 and 0.12. As 
shown in the figure, the equivalent tensile plastic 
strain for the large initial void volume fraction case 
with fo = 0.12 is very large ahead of the notch tip. 
This large plastic strain is located near the low mean 
stress region ahead of the notch tip as discussed for 
Rg. 15. 

Rgure 18 shows the void volume fractions ahead of 
the notch tip for p =0.13 andf, = 0.06 and 0.12. As 
shown in the figure, the void volume fractions fa r  
away from the notch tip in the elastic region stay at 
the original values. For the low initial void volume 
fraction cfo = 0.06), the change in f i s  very small in 
the plastic region near the notch tip. However, for the 
large initial void volume fraction case (f, = 0.12), the 
void volume fraction increases dramatically due to 
void growth within the plastic region between the 
notch tip and the elastic-plastic boundary. 

A comparison of the observations in Figs. 12-18 
with the experimental results of Yee et al. (13) shows 
that the overall cavitation zone observed in the sub- 
critical damage zone near the notches on the tensile 
side of test specimens in the experiments is in agree- 
ment with the mean stress distribution presented 
here. The change in size and shape of the cavitation 
zone from elliptical to circular as the initial void vol- 
ume fraction increases as discussed with regard to 
Rg. 15 can be seen in the experimental results shown 
in Rg. 8 of Yee et aL (13). Our computational results 
indicate that the intense shear zone is located directly 
ahead of the notch tip as shown in Rg. 16. However, 
the intense shear zones are smaller than the experi- 
mental results shown in Rg. 8 of Yee et aL (13). 

The experimental observation of the relocation of 
crack initiation sites from some distance ahead of the 
notch for pure epoxy to locations closer to the notch 
tip for epoxies with higher rubber contents leads to 
the suggestion of the change of fracture mode from 
plane strain to plane stress proposed by Yee et d. 
(13). Note that the specimen is under plane strain 
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conditions. Examining the stress and strain plots in 
Figs. 12, 13, and 17 for epoxies with no or small rub- 
ber content, we see that the maximum stresses are 
high and located at the elastic-plastic boundary. The 
plastic strains, however, increase gradually as the ra- 
dial distance to the notch tip decreases, and reach the 
maximum at the free surface. The experimental re- 
sults indicate that the crack initiation sites are fa r  
away from the tip (13). This indicates that the fracture 
mode may well be controlled by the stresses, and the 
nucleation sites are at the location of the maximum 
stresses. 

On the other hand, when the rubber content in- 
creases, the maximum macroscopic stresses decrease, 
and the plastic strain becomes higher ahead of the 
notch tip for fo = 0.12. Examining the stress and- 
strain plots in Figs. 14, 15, 17, and 1 8  for the case of 
fo = 0.12 shows that the location of the maximum 
stresses is still farther away from the notch tip than 
that for pure epoxies, but very large plastic strains 
develop between the notch tip and the elastic-plastic 
boundary mainly due to the large initial void volume 
fraction and the growth of voids. The experimental re- 
sults indicate that the nucleation sites are closer to 
the tip (1 3). This suggests that the fracture mode is 
now controlled by the plastic strains closer to the tip 
instead of the stresses since the maximum stresses 
ahead of the notch tip are not high enough to meet 
the stress-controlled fracture criterion. This explana- 
tion is consistent with the plane strain/plane stress 
argument proposed by Yee et al. (13) since we show 
that the large initial void volume fraction and the 
growth of voids decrease the macroscopic stress (or 
relieve the plane strain constraint) ahead of the tip, 
with the assumption that cavitation occurs early in 
the deformation. 

7 CONCLUSIONS 

In this work, we present notch-tip fields for pres- 
sure-sensitive non-porous and porous materials from 
our finite element analysis. The solutions for pres- 
sure-sensitive nonporous materials obtained here are 
in agreement with the analytical fully plastic solu- 
tions. The results for pressure-sensitive porous mate- 
rials are in agreement with the experimental work of 
Yee et al. (13) for rubber-modified epoxies, where the 
cavitation zone is surrounding the notch tip and the 
intensive shear zone is located directly ahead of the 
notch tip. The computational results indicate that as 
the void volume fraction increases, the macroscopic 
stress becomes lower and the plastic strain is higher 
ahead of the notch tip. The location of the maximum 
plastic strain is closer to the notch tip when compared 
to the location of the maximum stresses for a large 
void volume fraction. This explains the change of frac- 
ture mode from being controlled by high mean stresses 
at the elastic-plastic boundary to being controlled by 
the plastic strain closer to the notch tip for epoxies 

with higher rubber contents, as indicated in the ex- 
periment by Yee et aL (13). 
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