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ABSTRACT: With currently used definitions of out-of-plane angle and bond
angle internal coordinates, Cartesian derivatives have singularities, at "pr2 in
the former case and p in the latter. If either of these occur during molecular
mechanics or dynamics simulations, the forces are not well defined. To avoid
such difficulties, we provide new out-of-plane and bond angle coordinates and
associated potential energy functions that inherently avoid these singularities.
The application of these coordinates is illustrated by ab initio calculations on
ammonia, water, and carbon dioxide. Q 1999 John Wiley & Sons, Inc. J
Comput Chem 20: 1067]1084, 1999
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Introduction

lthough ab initio quantum mechanical meth-A ods can be used for rigorous structural anal-
yses of small molecules, molecular mechanics
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Ž . Ž .MM or molecular dynamics MD simulations
are the only effective methods for studying large
molecules such as proteins and nucleic acids. An
empirical potential energy function for MM or MD
simulations is typically expressed in terms of the

Žmolecule’s internal coordinates e.g., bond dis-
tances, bond angles, out-of-plane angles, torsion

.angles , while each atom is monitored in Cartesian
coordinates. Parameters based on internal coordi-
nates are easily transferable between similar local
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structures, as shown in the development of an ab
Žinitio-based spectroscopic force field for a-poly L-

. 1alanine . Similarly, the internal parameters in the
potential function can be obtained from those of
related small molecules that have similar local
molecular structures, such internal parameters be-
ing reasonably derived from ab initio calculations
or a rigorous experimental analysis based on accu-
rate observed data. However, a problem with some
internal coordinates, specifically the out-of-plane
angle and the valence angle coordinates, is that
their definitions are not unique. As efforts are
being made to improve MM functions,2 ] 7 it is
important to avoid such problems in their formu-
lation. We present here new out-of-plane angle
and bond angle internal coordinates, with related
new potential energy forms, that improve in many
respects on the commonly used ones.

In the Wilson-type internal coordinates8 the
Cartesian derivatives of an out-of-plane angle co-
ordinate have singularities at "pr2 and the Carte-
sian derivatives of a bond angle coordinate have

9 ] 11 Ž .singularities at p local linear structure . If any
of these singularities occurs during MM or MD
simulations, which is not prohibited for any valid

Žphysical reason, the Cartesian forces derivatives
.of the potential function are not well defined.

Fortunately, the Cartesian derivatives of a torsion
angle are well defined except for the case when
three related adjacent atoms move into a linear
configuration.8, 11, 12 In such a case, the correspond-
ing singularities can be removed by a suitable
choice of an angular switching function.13

For both the out-of-plane angle and the valence
angle internal coordinates we carefully examine
the common definitions and present a new coordi-
nate that is well defined in all physically permitted
configurations. We also present the corresponding
potential energy forms, which at least can satisfy
the expected asymptotic behavior and the curva-
ture at the equilibrium conformation. A new linear
angle coordinate suitable for a locally linear equi-
librium conformation is also given. As applications
of these new internal coordinates and their poten-
tial energy forms, detailed analyses have been

Ž . Ž .done on the isolated ammonia NH , water H O ,3 2
Ž .and carbon dioxide CO molecules.2

Theory

The typical calculation in MM or MD involves
the derivatives of the total potential function, V,

with respect to the Cartesian coordinates of the
j Ž .n th atom, x n s 1, . . . , N , where j is an indexn

for coordinate components x, y, or z:

N bR V  V  R
Ž .s 1Ýj b j x  R  xn nbs1

N2 2 a bR V  V  R  R
s Ýi j a b i j x  x  R  R  x  xm n m na , bs1

N 2 bR  V  R
Ž .q 2Ý b i j R  x  xm nbs1

where R b is the b th internal coordinate of total
N , and  R br x j ' B b

j and  2 R br x i  x j 'R n n m n

Ž i .Ž b j . b
i jr x  R r x ' B are pure geometricalm n m n

properties called the first and the second order
B-matrix elements, respectively.

Because the internal potential energy of a finite
molecule should be invariant under the external
translations and rotations, V is a function of inter-

< < < <atomic distances r ' x ' x y x , with xmn mn n m mn

being the distance vector from atom m to atom n .
The Cartesian derivatives of x are found to bemn

 x j
mn Ž . Ž .s d d y d 3jk ln lmk xl

where d s 0 for m / n and d s 1 for m s n.m n m n
Ž .Among the N N y 1 r2 distance vectors only N

y 1 are independent. Similarly, for an internal
coordinate R b defined by L atoms, the total num-
bers of independent first- and second-order B-ma-

Ž .trix elements are L y 1 and L L y 1 r2, respec-
Žtively. It is convenient to choose the L y 1 va-

.lence bond vectors as these independent vectors
Žand to label each of these by y ' x b s 1, . . . , Lb ls

. Ž .y 1 , i.e., to assign a pair of atom indices l, s for
each bond index b. The desired B-matrix elements
can be expressed in compact form by

Ly1 b Ly1 b R  R
b bŽ . Ž .jB s d y d ' K 4Ý Ýn ns nl nj j x  yls bbs1 bs1

Ly1 2 b R
b Ž .Ž .i jB s d y d d y dÝm n mv mk ns nli j x  xkv lsb , cs1

Ly1 2 b R
c b Ž .s K K 5Ý m ni j y  yc bb , cs1

where K b ' d y d for y s x . Thus, then ns nl b ls

Cartesian derivatives of R b can be computed from
L y 1 independent derivatives with respect to bond
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FIGURE 1. Wilson-type out-of-plane coordinate.

vectors y ' x . Because K b can be only 0, 1, orb ls n

Ž . Ž .y1, the multiplications involved in eqs. 4 and 5
can be replaced by simple arithmetic summations
in a computer program. Each internal coordinate
R b defined by L atoms is expressible by a simple
form in terms of L y 1 independent bond vectors,

Ž . Ž .and thus eqs. 4 and 5 can be effective forms for
computing B-matrix elements. We believe this for-
malism is as effective as the method presented by
Miller et al.,14, 15 which uses local orthogonal coor-
dinate systems to give simple expressions for
nonzero B-matrix elements combined with coordi-
nate transformations based on the translational
and rotational invariance in internal coordinates.

Out-of-Plane Angle

An out-of-plane angle bending coordinate arises
when the local molecular structure consists of four
atoms with three valence bonds formed to one

Ž .center atom see Fig. 1 .
The three independent distance vectors can be

chosen as the bond vectors x ' y , x ' y , and41 1 42 2
x ' y . Let f be the angle between x and x43 3 1 42 43
Žthe other two angles, f and f , can be defined2 3
by cyclic permutations among the three bond vec-

.tors .

WILSON-TYPE COORDINATE

A Wilson-type out-of-plane angle coordinate8 is
defined by an angle, v , between the bond vector1
x and the plane containing the other two bond41
vectors, x and x :42 43

e = e42 43 Ž .sin v s e ? ' e ? u 61 41 41 1ž /sin f1

where e and u are unit vectors defined by41 1
< <e ' x rx and u ' e = e rsin f , respec-41 41 41 1 42 43 1

tively. The corresponding empirical potential func-

tion for MM or MD simulations is commonly taken
Ž .up to the quadratic term as

21 eqŽ . Ž .V s k v y v 7v 1 1 121

where v eq is the value of v at the equilibrium1 1
structure and k is a harmonic force constant pa-1
rameter related to the out-of-plane angle deforma-
tion. In this definition, there are three possible
ways to measure the deviation angle from the
reference plane. The other two angles, v and v ,2 3

Ž .can be defined by cyclic permutations of eq. 6 .
Rather than a single out-of-plane angle, the sym-
metrized average of the three is used in usual MM
and MD simulations. The first derivatives of v1
with respect to the related bond vectors are given
by

v 1  e1 41 Ž .s ? u 81j jcos v x  x141 41

v 1  u1 1 Ž .s e ? 941j jcos v x  x142 42

v 1  u1 1 Ž .s e ? . 1041j jcos v x  x143 43

The first-order B-matrix elements can be ob-
tained by computing  e r x j ,  u r x j , and41 41 1 42

 u r x j , with K b elements being given by1 43 n

1 0 0 y1
Ž .K s . 110 1 0 y1ž /0 0 1 y1

In most cases, the computation of B-matrix ele-
ments involves the derivatives of vectors of type
e or u ' e = e rsin f with respect to the41 1 42 43 1
related distance vectors, and these can be pro-
grammed as subroutines for frequent calling. Ex-
pansion to higher order B-matrix elements is
straightforward, and the final formula can be ex-
pressed in a compact vector notation. The detailed
computational methods and expressions for these
are given elsewhere.16

Note that when the valence angle f is close to1
Ž . Ž .p or 0 i.e, sin f f 0 , the expression of eq. 61

cannot be used for numerical computation. Al-
though f cannot take values close to zero due to1
the van der Waals repulsion between atom 2 and

Ž .atom 3, the case of f f p linear orientation may1
happen during MD simulations. In such a case, a
suitable switching function to remove the singular-
ity can be introduced, but the related expressions

JOURNAL OF COMPUTATIONAL CHEMISTRY 1069



LEE, PALMO, AND KRIMM

Ž . Ž .in eqs. 1 and 2 become much more compli-
cated.13 Aside from this problem, due to the sin v1

Ž .term in eq. 6 , the Cartesian derivatives of this
coordinate, like v r x j and  2v r x i  x j , are1 n 1 m n

wnot well defined for v close to "pr2 see eqs.1
Ž . Ž .x8 ] 10 , which also may happen during MD sim-
ulations. To avoid this kind of singularity at v s1
"pr2, sin v itself can be directly used as an1
out-of-plane coordinate, with the corresponding
potential function being expressed in terms of
sin v by1

21 eqŽ . Ž .V s k sin v y sin v . 12v 1 1 121

Ž .But the functional form of eq. 12 imposes the
result that for a given equilibrium angle v eq the1
potential energy at an out-of-plane angle of v is1
the same as that at p y v , which is highly un-1
likely. Also, in general, when two of the three end
atoms approach very closely, there is a strong
repulsion between them, and the potential energy
should go to a very high value. The potential

Ž . Ž .energy forms of eqs. 7 and 12 , which are valid
only in the neighborhood of the equilibrium con-
formation, far from correctly describe this ex-
pected asymptotic behavior. Even if cubic or quar-

Ž .tic anharmonic terms are introduced in eqs. 7 or
Ž .12 , this problem will still exist.

IMPROPER TORSION COORDINATE

Another commonly used out-of-plane angle
bending coordinate in MM and MD simulations is
called an improper torsion, and is defined by a

Ž .torsion angle t 3 y 2 y 1 y 4 with two non-1
Žbonded distance vectors x and x the explicit23 21

Ž .definition of a torsion angle t l y m y n y s
with atom indices and related derivatives with

.respect to bond vectors are shown in the appendix .
The other two associated improper torsions are
Ž . Ž .t 1 y 3 y 2 y 4 and t 2 y 1 y 3 y 4 , respec-2 3

tively. The symmetrized average of t , t , and t1 2 3
is commonly used as a representative out-of-plane
coordinate, with a quadratic potential energy form

Ž .similar to eq. 7 for each improper torsion coordi-
nate. Although this kind of improper torsion coor-
dinate can avoid the singularity problem at v s1

Ž ."pr2 inherent in a coordinate defined by eq. 6 ,
the frequently overlooked fact is that this kind of
coordinate depends on the valence bond lengths
r , r , and r for nonplanar configurations. From41 42 43
the derivative of a unit vector e s x rr withln ln ln

Ž .respect to the length r / 0 we obtainln

 xln Ž .s e . 13ln rlm

Applying this to the results from the appendix
with the chain rule, the derivatives of t with1
respect to bond distances are found to be

t cos u1 2 Ž .s u ? e 1441 r r sin u41 21 2

t r y r cos u1 21 23 2 Ž .s u ? e 1542 r r r sin u42 21 23 2

t 11 Ž .s y u ? e 1643 r r sin u43 23 2

where u is a unit vector defined by u ' e =21
e rsin u , which is perpendicular to the plane of23 2
the three end atoms 1, 2, and 3, with u being the2
angle between x and x . Note that for any non-21 23
planar structure u is not perpendicular to the unit
vectors e , e , and e , giving a nonzero deriva-41 42 43
tive with respect to each bond length internal
coordinate. In such an interdependent internal co-
ordinate set it is difficult to get consistent internal
parameters that can be transferable between simi-
lar local structures. In a recent report by Maple
et al.,4 it is mentioned that a symmetrized
Wilson-type out-of-plane angle was found to give
a much better description of the potential energy
surface than the conventional improper torsion an-
gle.

Instead of the conventional improper torsion
Žangle, let us consider the torsion angle t 3 y 2 y1

. Ž eq .4 y 1 t s p for a planar equilibrium structure ,1
which has only one nonbonded distance vector x .23
Similarly, the other two associated improper tor-

Ž . Žsions can be chosen as t 1 y 3 y 4 y 2 and t 22 3
.y 1 y 4 y 3 , respectively. In the case of t , the1

unit bond vectors e and e are perpendicular to42 43
e = e and the unit bond vectors e and e are24 23 41 42
perpendicular to e = e . Thus, the derivatives41 42
of t with respect to r , r , and r are all zero,1 41 42 43
and the above bond-length dependence disappears
in this type of definition.

A NEW OUT-OF-PLANE ANGLE COORDINATE

To introduce a more general out-of-plane coor-
dinate, which is independent of internal bond
lengths and is well defined in all physically possi-
ble configurations, let us consider a pyramidal
structure constructed from three unit bond vectors
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(FIGURE 2. New out-of-plane coordinate, h ' sing , g
)= the corresponding out-of-plane angle .

e , e , and e , as shown in Figure 2. A vector v,41 42 43
which is perpendicular to the plane defined by the
three end points of e , e , and e , can be defined41 42 43
by

Ž .v ' e = e q e = e q e = e . 1741 42 42 43 43 41

Ž .The unit vector v s vrv in the direction of v canˆ
be obtained from

v2 s 3 y cos2 f y cos2 f y cos2 f q1 2 3

� Ž . Ž .q 2 cos f cos f y 1 q cos f cos f y 11 2 2 3

Ž .4 Ž .qcos f cos f y 1 . 183 1

We define the desired new coordinate as the
normal distance, h, from the apex atom 4 to the
point in the plane determined by the three end
points of e , e , and e . Explicitly, h is found to41 42 43
be

1
Ž .h s v ? e s v ? e s v ? e s e ? e = e ,ˆ ˆ ˆ41 42 43 41 42 43v

Ž .19

which is a dimensionless quantity with 1 as its
Ž .maximum value. From eq. 19 it is evident that

this new coordinate, h, is ill-defined at v s 0, viz.,
when two of the three end atoms occupy the same
point. But this can never happen in real situations
due to the van der Waals repulsion between such
atoms. Although a symmetrized form of the three
related improper torsions, or Wilson-type coordi-
nates, is commonly used in MM and MD simula-
tions, such a symmetrization is not necessary in
the new coordinate, because h itself is in a sym-
metric form and well represents the deviation from
planarity. This new coordinate is essentially differ-
ent from that in the recent treatment by Tuzun
et al.17 Instead of using unit bond vectors, they
used the three bond vectors x , x , and x to41 42 43
separate three out-of-plane angles from three in-

plane angles by projection to the plane defined by
three end atoms 1, 2, and 3. Those out-of-plane
deformations depend on the internal bond lengths
for nonplanar orientations, although they are or-
thogonal to the three in-plane angle bends.

The first derivatives of h with respect to bond
vectors are found to be

 h 1  v  e41 Ž . Ž .s yh q ? e = e 2042 43ž / x v  x  x41 41 41

 h 1  v  e42 Ž .s yh q e ? = e 2141 43ž /ž / x v  x  x42 42 42

 h 1  v  e43 Ž .s yh q e ? e = 2241 42ž /ž / x v  x  x43 43 43

Ž .where  vr x can be obtained from eq. 184 j
whenever we compute the derivatives of type

Ž . e r x j s 1, 2, 3 . Generalization to a higher4 j 4 j
order computation is straightforward.

A suitable potential energy function for our
out-of-plane deformation should have the proper-
ties that its energy goes to infinity as the three end

Ž .atoms converge to one point h ª 1 and the state
Ž .of planar orientation h s 0 is a transition state

with an energy higher than that of the equilibrium
Žnonplanar conformation the difference between

.the two is called the barrier height, B . A simpleh
functional form that satisfies these requirements,
which is symmetric in terms of h, is for a nonpla-
nar equilibrium structure

2 4t t< < < <h h
V s V q V ,s sh 2 4ž / ž /< < < <1 y h 1 y h

Ž . Ž .y1 - h - 1 23

where s, t, V , and V are parameters to be fit.2 4
ŽThe constant energy term, V , can be put to zero0
by an energy scaling. For a planar equilibrium
structure, we can simply take the quadratic term
Ž . .i.e., V s 0 . In most cases, the actual value of t,4
which can be a noninteger, should be close to 1,

Ž .and when the value of s positive integer becomes
large, the potential function behaves like a simple
polynomial of h2 in the neighborhood of h s 0.
When s is an even number, the absolute signs in

Ž .eq. 23 can be left out, giving a simpler potential
form. At an equilibrium configuration, we have
the following relations:

2teq< <h
Ž .V s y2V 24s2 4 eqž /< <1 y h
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 2Vh
eq<f ' hshhh 2 h

2 2t t seq eq eq< < < < w Ž . < < xh h t q s y t h
s 8V s4 eq 2s½ 5eq eqž /< <1 y h < <Ž < < .h 1 y h

Ž .25

4teq< <h
eqB s yV s V sh h 4 eqž /< <1 y h

2seq eq< <Ž < < .1 h 1 y h
Ž .s f . 26shh eq½ 5Ž . < <8 t q s y t h

The equilibrium position heq , the curvature f ,hh
and the barrier height B , can be estimated fromh
ab initio quantum mechanical calculations for a
small molecule. Using the ab initio estimates of heq

and f , the s and t can be chosen to give the abhh
initio B and potential energy surface. We illustrateh
below the application of this new potential func-
tion with the new out-of-plane coordinate by a
detailed analysis of an isolated NH molecule.3

Bond Angle

A conventional internal bond angle coordinate
is defined as the angle between two related bonds
connected at a center atom, as in Figure 3: the
related bond angle, f , can be obtained from2

Ž .cos f s e ? e . 272 21 23

The first derivatives of f with respect to the2
related bond vectors are found to be

f 1  e2 21 Ž .s y ? e 2823 x sin f  x21 2 21

f 1  e2 23 Ž .s y e ? . 2921 x sin f  x23 2 23

FIGURE 3. Nonlinear angle coordinate.

The related B-matrix elements can be obtained
Ž . bfrom eq. 4 , with K elements being given byn

1 y1 0 Ž .K s . 30ž /0 y1 1

The expansion to a higher order is straightfor-
ward, with only derivatives of each unit bond
vector with respect to its bond vector required to
be computed. The related potential energy form
for MM and MD simulations is commonly taken
Ž .up to the quadratic term to be

21 eqŽ . Ž .V s k f y f 31f f 2 22

where k is a harmonic force constant parameter.f

Because Cartesian derivatives of f have singular-2
w Ž . Ž .xities at f s 0 and f s p see eqs. 28 and 29 ,2 2

Ž . Ž .the Cartesian derivatives of eqs. 1 and 2 are not
well defined at these molecular orientations. Al-
though the case of f s 0 cannot happen due to2

Žvan der Waals repulsion, that of f s p linear2
.orientation may happen in MM or MD simula-

tions. To avoid this problem, instead of using f ,2
the direct use of cos f as the related bond angle2
coordinate was suggested with V being given by 9

f

21 eqŽ . Ž .V s k cos f y cos f . 32f f 2 22

A desired potential function for a bond-angle
deformation should have symmetric double min-

Žima about the linear transition configuration a
single minimum for a linear equilibrium confor-

.mation , with its value approaching infinity as the
distance between the two end atoms converges to

Ž . 18 Ž .zero f ª 0 . The form of eq. 32 , even if cubic2
or quartic anharmonic terms are added, is inade-
quate to reproduce such expected barrier height
and asymptotic behavior.

As a new internal bond-angle coordinate, we
introduce the magnitude of the dimensionless vec-
tor, g, defined by

1 Ž . Ž .g ' e y e , 3321 232

< < Ži.e., g ' g the half distance between the two end
.points of e and e , given by21 23

212 Ž . w Ž .x Ž .g s 1 y e ? e s sin f r2 . 3421 23 22

The corresponding B-matrix elements can be
obtained from the derivatives with respect to re-
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lated bond vectors:

 g 1  e21 Ž .s y ? e 3523j j4 g x  x21 21

 g 1  e23 Ž .s y e ? 3621j j4 g x  x23 23

 2 g
i j x  x21 21

1  g  g  2 e21s y 4 q ? e23i j i jž /4 g  x  x  x  x21 21 21 21

Ž .37

 2 g
i j x  x23 23

1  g  g  2 e23s y 4 q e ?21i j i jž /4 g  x  x  x  x23 23 23 23

Ž .38

 2 g 1  g  g  e  e21 23s y 4 q ? .i j i j j iž /4 g x  x  x  x  x  x23 21 23 21 21 23

Ž .39

Thus, the Cartesian derivatives of g are well
Ž .defined except for the case of g s 0 f s 0 ,2

which never happens.
A simple and appropriate potential energy form

in this coordinate, which is symmetric about the
axis of g s 1, is given by

2t t< < < <1 y g 1 y g
V s V q V ,s sg 1 2ž / ž /< < < <1 y 1 y g 1 y 1 y g

Ž . Ž .0 - g - 2 . 40

This looks like a shifted form of the potential
Ž .function for the out-of-plane coordinate of eq. 23 ,

with the right-hand side shifted by unity and with
a different power of each term due to the nonlin-

Ž .ear relation of eq. 34 . Although the actual value g
wcan take is only from 0 to 1 the absolute signs in

Ž . xeq. 40 can be neglected in real computations , for
Ž 0.a particular configuration of g s g f s f we0 2 2

consider the inverted configuration as the state of
Ž 0 0.g s 1 q g f s yf or p q f . The related0 2 2 2

parameters can be determined from relations at
the equilibrium conformation:

< eq < t1 y g
Ž .V s y2V 41s1 2 eqž /< <1 y 1 y g

 2Vg
eq<f ' gsggg 2 g

2ty1 seq eq< < w Ž . < < x1 y g t q s y t 1 y g
s 2V2 2seq½ 5Ž < < .1 y 1 y g

Ž .42

2teq< <1 y g
B s V sh 2 eqž /< <1 y 1 y g

2seq eq< <Ž < < .1 1 y g 1 y 1 y g
Ž .s f . 43sgg eq½ 5Ž . < <2 t q s y t 1 y g

Due to the inherent double minima nature in an
angle bend potential function, it is natural to con-
sider a tunneling effect and a large amplitude
inversion motion across the barrier when B is noth
large compared to the fundamental frequency of
the corresponding angle bend mode. In such a
case, each energy level of the harmonic bending
mode is expected to split into two levels as in the
case of an isolated ammonia molecule,19 and this
effect should be taken into account in the related
spectroscopic band analysis. We illustrate below
the application of this new bond angle coordinate
and the related potential form by a detailed analy-
sis of an isolated H O molecule.2

As shown above, the new bond angle coordi-
nate, g, has well-defined Cartesian derivatives for
all physically possible values of g. Thus, it can
always be used in MM and MD calculations. How-
ever, in spectroscopic force-field calculations a lin-
ear structure poses a problem. This is due to the

Ž .fact that at a linear orientation f s p , g s 1 , the2
k k Ž .two vectors  e r x and  e r x in eqs. 3521 21 23 23

Ž .and 36 are perpendicular to e and e , giving21 23
Žzero B-matrix elements for g and thus giving zero

.vibrational frequency for the corresponding mode .
ŽIn this case, there is an additional linear angle

.bend degree of freedom in the direction perpen-
dicular to the corresponding linear axis. For a
proper description of the linear bending motion it
is, therefore, necessary to introduce an arbitrary
reference point, x , to fix the two arbitrary axes4

Ž .perpendicular to the linear axis Fig. 4 . The de-
sired orthonormal basis vectors can be chosen as
� 4e , u, w with u and w being defined, respec-23
tively, by

e = e23 24 Ž .u ' 44
sin f

Ž .w ' u = e 4523
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FIGURE 4. Linear angle coordinate.

where f is the angle between e and e . The23 24
conventional linear angle displacements, Dg andu
Dg , can be obtained20 from the derivatives ofw

Ž . Ž .sin g ' u ? e = e 46u 21 23

Ž . Ž .sin g ' w ? e = e s u ? e . 47w 21 23 21

Considering that a torsion angle displacement is
well defined at t s "p , new linear angle coordi-
nates can be defined by two torsion angles, u su
Ž . Ž .t 1 y u y 2 y 3 and u s t 1 y w y 2 y 3 ,w

where u and w represent the position vectors,
x ' x q u and x ' x q w, respectively. Be-u 2 w 2
cause e is orthogonal to u and w, using the23
results from the appendix, the first derivatives
with respect to related bond vectors are found to
be

u 1u j Ž .s y p 48ˆj r sin f x u1 uu1

uu Ž .s 0 49j x 2 u

u 1u j Ž .s q 50ˆj r x 2323

where f is the angle between x and x withu u2 u1
Ž . < <p ' x = x rx = x and q ' e = u. Be-ˆ ˆu2 u1 u2 u1 23

cause cos f s 1rr , we haveu u1

u uu u Ž .s y . 51j j x  xu2 u1

Ž . Ž .Using eqs. 49 and 51 , the derivatives for the
second-order B-matrix elements are found to be

 2u 1u s yi j 2 x  x Ž .r sin fu1 u1 u1 u

ji j ˆŽ . Ž . Ž .= 2 p = u p q i = u 52ˆ ˆ½ 5

 2u 1 ju i j ˆŽ . Ž .s 2 q = u q q i = uˆ ˆ½ 5i j 2 x  x Ž .r23 23 23

Ž .53

 2u  2u  2uu u u Ž .s s y 54i j i j i j x  x  x  x  x  xu2 u2 u1 u1 u2 u1

ˆ ˆ Ž .where a unit vector i is defined as 1 ' 1, 0, 0 ,
ˆ ˆŽ . Ž . Ž2 ' 0, 1, 0 , and 3 s 0, 0, 1 . The corresponding
formulas for u can be easily obtained by replac-w

.ing u by w with suitable modifications. The B-ma-
Ž . Ž .trix elements can be obtained from eqs. 4 ] 5 ,

with K b elements being given byn

1 0 0
0 1 0 Ž .K s 55
0 y1 0� 0
0 y1 1

where the row distance vector index corresponds
Ž .to the order of x , x , x , and x . Eqs. 49 andu1 u2 2 u 23

Ž .51 insure that, in this new linear angle coordinate
definition, the computation of B-matrix elements is
simpler and faster than in the usual definition of

Ž . Ž . Ž . Ž .eqs. 46 and 47 . Note that eqs. 48 ] 54 are also
well defined for any nonlinear bond-angle struc-

Žture and either u or u specifically, u for au w u
choice of the reference point in the plane of atoms

.1, 2, and 3 can be used for a nonlinear bond angle
coordinate with a suitable choice of the reference
point.

For a linear equilibrium structure, the two lin-
ear bending modes corresponding to u and u areu w
degenerate, and the related potential functions
should be expressed in the same form. Rather than
constructing a potential function in terms of u oru
u , let us consider the potential energy form of eq.w
Ž .40 with t s 1, V ) 0, and V ) 0. From the1 2

Ž .nonlinear relation of eq. 34 , V can be estimated1
by

2 2 V  Vg gs
u u u uu u w wu sp u spu w

1  V 1g Ž .s y s V 5614  g 4gs1

where the derivative of  V r g is not continuousg
at g s 1, and only its left-hand side limiting value
has to be taken because the real range of g
is 0 - g F 1. Note that in a linear equilibrium

w j xconformation we have  V r x s 0 andg n gs1
w 2 j j x V r x  x G 0, because the first-orderg n n gs1
B-matrix elements of g are all zero, and g has a
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wmaximum value of unity there, respectively see
Ž . Ž .xeqs. 1 ] 2 , satisfying the desired equilibrium

conditions. Therefore, the potential energy form of
Ž .eq. 40 with t s 1, V ) 0, and V ) 0 is also well1 2

suited for MM and MD simulations in a linear
equilibrium structure by using the new angle bend
coordinate, g. We show below that a calculated ab
initio potential energy surface of an isolated CO2
molecule is well reproduced by this model poten-
tial energy function.

Redundancy Relations

When some of the internal coordinates, say
� < b j 4q q s R , j s 1, . . . , m F N , are connectedj j R
through a relation

Ž . Ž .F q , q , . . . , q s 0, 571 2 m

the related quadratic force constants are not
uniquely determined in this dependent coordinate
set. To solve this problem, the redundancy func-
tion F is usually expanded in a Taylor series as

m  F
Ž .F q s DqÝ j  q ecjjs1 qsq

2m 1  F
q Dq Dq q ???Ý i j2  q  q eci ji , js1 qsq

Ž .58

Ž . ecwith q ' q , q , . . . , q and Dq ' q y q where1 2 m
ec Žq is an arbitrary expansion center which is

the equilibrium conformation in a spectroscopic
.formalism on the hypersurface defined by eq.

Ž . Ž ec .57 giving F q s 0. The nonlinear terms,
w 2 x Ž .ec Fr q  q , of eq. 58 usually affect thei j qsq

related harmonic force constants in spectroscopic
formalisms.20, 21 However, in MM and MD for-
malisms they do not make the quadratic force
constants indeterminate.22

For a planar trigonal system, the set of conven-
tional bond-angle coordinates has a linear redun-
dancy relation:8

Ž .f q f q f s 2p 591 2 3

where f , f , and f are angles between the1 2 3
Ž .related bonds see Fig. 1 . In terms of the new

Ž . Žangle bend coordinate of eq. 34 , from sin f r2 q1
.f r2 q f r2 s 0 we have a nonlinear redun-2 3

dancy relation:

f f f f2 3 3 1
F s g cos cos q g cos cos1 22 2 2 2

f f1 2 Ž .qg cos cos y g g g s 0. 603 1 2 32 2

The first-order derivative of F with respect to g1
is found to be

 F f f2 3s cos cos
 g 2 21

f f f3 2 1y g cos q g cos tan y g g .2 3 2 3ž /2 2 2
Ž .61

The derivatives  Fr g and  Fr g can be ob-2 3
Ž .tained by cyclic permutations of eq. 61 .

For a nonplanar structure, as in Figure 1, the
new out-of-plane angle coordinate, h, depends on
the related valence angles, f , f , and f . The1 2 3
area of a triangle defined by the three end points

Žof e , e , and e is found to be Heron’s for-41 42 43
.mula

Ž .Ž .Ž . Ž .s s y 2 g s y 2 g s y 2 g 62' 1 2 3

Ž .with s ' g q g q g Fig. 2 . This should be the1 2 3
same as the total contribution from the three sub-
triangles due to projection of the three unit bond
vectors on the triangle:

Ž .t g q t g q t g 631 1 2 2 3 3

Ž . 2where each t j s 1, 2, 3 is defined by t ' 1 yj j
2 2 Ž .h y g . Thus, the nonlinear redundancy relationj

between the new out-of-plane angle coordinate, h,
and the related valence angles is found to be

Ž .Ž .Ž .F s s s y 2 g s y 2 g s y 2 g1 2 3

2Ž . Ž .y t g q t g q t g s 0. 641 1 2 2 3 3

Applications

NH3

An isolated ammonia molecule has a pyramidal
equilibrium structure whose geometry has C3v
point symmetry. In terms of our new coordinates,
its six genuine internal vibrations can be expressed
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Ž .by the following symmetry internal coordinates

1
1 Ž . Ž . Ž .R A s r q r q r 651 41 42 43'3

2 Ž . Ž .R A s h 661

1
3a Ž . Ž . Ž .R E s 2 r y r y r 6741 42 43'6

1
3b Ž . Ž . Ž .R E s r y r 6842 43'2

1
4 a Ž . Ž . Ž .R E s yg y g q 2 g 691 2 3'6

1
4b Ž . Ž . Ž .R E s g y g 701 2'2

where r , g , and h represent the related bond4 i i
lengths, bond angles, and the out-of-plane angle,

Ž .respectively see Fig. 1 . Each doubly degenerate
state is labeled by a and b.

An ab initio calculation at the MP2r6-311qq
GUU level gives an optimized geometry of r eq s4 i

˚ eq eq T eqŽ .1.013 A, g s 0.8054 f s 107.29 , and h si i
Ž eq T0.3676 out-of-plane angle of g s 21.57 with

eq Ž . T .h ' sin g , v Wilson-type s 59.90 ; frequen-
Ž .cies of n s 3530 NH symmetric stretch, ss , n s1 2

Ž .1069 out-of-plane deformation, umbrella mode ,
a b Ž .n s n s 3682 NH antisymmetric stretch, as ,3 3

a b y1 Ž .and n s n s 1665 cm HNH bend . The out-4 4
of-plane coordinate, h, has a significant interaction
only with R1, and the related harmonic force con-

˚stants are found to be f s 7.2210 mdynrA, f s11 22
˚2.1735 mdynA, f s y0.9865 mdyn. In a planar12

Ž tr .transition structure h s 0 , which is optimized at
tr ˚ tr tr TŽ .r s 0.999 A and g s 0.8660 f s 120.00 with4 i i i

the same basis set, the value of f tr is zero by12
symmetry and the diagonal force constant of the
out-of-plane coordinate is found to be negative

tr ˚with f s y1.0468 mdynA, giving an imaginary22
vibrational frequency of n tr s 846 i cmy1. The cal-2
culated barrier height, which depends on the basis

23, 24 y1 Žset choice, is found to be 1763 cm 5.041
.kcalrmol .

The MP2r6-311qqGUU potential energy sur-
face was obtained by geometric optimizations at

T T Žeach 1 increment of g from 0 planar orienta-
. Ttion to 60 . These ab initio energy values are

converted to ones in h, and the optimized poten-
Ž .tial energy parameters of eq. 23 are found to be

V s y27370 and V s 106223 cmy1 with t s2 4
1.024 and s s 50. The resulting model potential

Ž .function labeled by circles in Fig. 5 gives an
excellent fit to this ab initio energy surface in the

eq eq Žrange of yg F g F g maximum deviation of
y1 .26 cm , although the deviation becomes signifi-

Žcant outside of this region it is higher than the ab
initio energy by 253, 1890, and 2644 cmy1 at g s

FIGURE 5. Ab initio MP2r6 ]311++GUU potential energy surface of an out-of-plane deformation for an isolated NH3
molecule, in h. The new model potential surface is labeled by circles.
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T T T .32 , 42 , and 52 , respectively . However, we be-
lieve our model potential function is good enough
for typical MM and MD simulations.

One of the important features due to tunneling
through the barrier in the symmetric double min-
ima potential function is the vibrational splitting,
D , in the out-of-plane deformation mode. It wasn
observed that D f 1, D f 36, D f 280]284, D0 1 2 3
f 511]512 cmy1 for an isolated ammonia
molecule.25 ] 27 In an extensive ab initio study of
this molecule by Rush and Wiberg, using a poly-
nomial expansion for the potential, these splittings
were found to be D s 2, D s 77, D s 378, D s0 1 2 3
550 cmy1 at the MP2r6]311qqGUU level.23 Our

Ž .analytic form for the potential, Eq. 23 , should
provide a more complete description for this calcu-
lation.

H O2

The symmetry elements of an isolated water
molecule belong to the C point group. Its three2 v
genuine internal vibrations can be expressed by
the following internal coordinates

1
1 Ž . Ž . Ž .R A s r q r 711 21 23'2

2 Ž . Ž .R A s g 721

1
3Ž . Ž . Ž .R B s r y r 731 21 23'2

where g represents the related bond-angle coordi-
Ž .nate see Fig. 3 .

The ab initio calculation at the MP2r6]311qq
GUU level gives an equilibrium geometry of r eq s2 i

˚ eq eq TŽ .0.960 A and g s 0.7851 f s 103.47 ; frequen-2
Ž . Ž .cies of n s 3885 OH ss , n s 1629 HOH bend ,1 2

y1 Ž .n s 4003 cm OH as ; force constants of f s3 11
˚8.5755, f s 8.8283 mdynrA, f s 7.1676 mdyn33 22

˚ ˚ 2Ž Ž . .A 0.6873 mdynAr rad in f , f s 1.14242 12
Žmdyn. In the linear transition configuration g s

.1 , which has D symmetry and is optimized at`h
tr ˚r s 0.937 A with the same basis set, there is an2 i

additional bond-angle degree of freedom giving a
doubly degenerate linear angle bend mode. Using
the new linear angle coordinates with B-matrix

Ž . Ž .elements being computed from eqs. 48 ] 51 , the
corresponding diagonal force constants are found

a b ˚ 2Ž .to be f s f s y0.6841 mdynAr rad with22 22
imaginary vibrational frequencies of n a s n b s2 2
1720 i cmy1. The barrier height is calculated to be

y1 Ž 24 .11276 cm cf. similar results , which is too big
for a splitting due to tunneling through the poten-
tial barrier to be observed in a usual infrared
spectrum. However, some hot bands of an H O2
molecule may be significantly affected by such a
tunneling effect. Note that we can always con-
struct a molecule-fixed coordinate system that is
separated from external rotations, and a large-am-
plitude HOH inversion motion may be suitably
described in such a molecule-fixed coordinate sys-
tem.

The MP2r6]311qqGUU potential energy sur-
Ž .face Fig. 6 was obtained by geometric optimiza-

tions at each 2.5T increment of f from 40T to 18082
Ž .g s 1 . From these ab initio results, the optimized

Ž .potential energy parameters of eq. 40 are found
to be V s y84559 and V s 158517 cmy1 with1 2
t s 0.859 and s s 12. Overall, the resulting model

Ž .potential function labeled by circles in Fig. 6
gives an excellent fit to the ab initio energy surface
w y1 Tmaximum deviation of 278 cm at f s 157.52

Ž eq T . Ž eq T .xin the range of y f q 30 F f F f q 30 .2 2 2
Although the potential surface in terms of f has2
a similar shape to that of an out-of-plane coordi-
nate, it has a discontinuous first derivative at a
linear configuration in terms of the new angle

Ž .bend coordinate, g see Fig. 6b .
For an Si—O—Si angle bend potential function

Ž .of an isolated disiloxane H SiOSiH molecule,3 3
Koput28 introduced a Lorentzian hump of

22 2B f r y rŽ .h ff eq Ž .V s 74r 4 2 2f r q 8 B y f r rŽ .ff eq h ff eq

with r ' p y f . As a comparison with our po-2
tential function, the potential surface based on eq.
Ž . Ž74 is also plotted in Figure 6a labeled by trian-

.gles . Although such a Lorentzian hump may well
reproduce the ab initio potential energy surface of
an Si—O—Si angle bend potential for a disiloxane
molecule, which has a very small barrier,29, 30 it is
far from reproducing the angle bend potential en-
ergy surface of an H O molecule. In view of the2
expected very small barrier in an Si—O—Si angle
bend potential, a tunneling effect should be taken
into consideration for a more accurate spectro-
scopic analysis of the disiloxane molecule.

CO2

The symmetry elements of an isolated carbon
dioxide molecule belong to the D group. Its four`h
genuine internal vibrations can be expressed by
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FIGURE 6. Ab initio MP2r6 ]311++GUU potential energy surface of an HOH bend of an isolated H O molecule. The2
( ) (new model potential surface is labeled by circles; a in bond angle the surface based on Koput’s potential energy

) ( )function is labeled by triangles ; b in g.
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the following internal coordinates

1
1 qŽ . Ž . Ž .R S s r q r 75g 21 23'2

2 a Ž . Ž .R P s u 76u u

2 b Ž . Ž .R P s u 77u w

1
3 qŽ . Ž . Ž .R S s r y r 78u 21 23'2

where u and u represent the related linear angleu w
coordinates whose B-matrix elements can be ob-

Ž . Ž . Ž .tained from eqs. 48 ] 51 see Fig. 4 . The ab initio
calculation at the MP2r6]311qqGUU level gives

eq ˚a linear equilibrium geometry of r s 1.170 A;2 i
Ž . a bfrequencies of n s 1335 CO ss , n s n s 6551 2 2

Ž . y1 Ž .OCO bend , n s 2432 cm CO as ; force con-3
˚stants of f s 16.8071, f s 15.2146 mdynrA, and11 33

a b ˚ 2Ž .f s f s 0.7553 mdynAr rad .22 22
The MP2r6]311qqGUU potential energy sur-

face was obtained by geometric optimizations at
T Ž . Teach 2.5 increment of f see Fig. 3 from 90 to2

T Ž eq .180 g s 1 . Although the potential surface is
close to a quadratic form in terms of f , it is close2
to a linear form in terms of the new angle bend

Ž .coordinate, g Fig. 7 . The potential energy param-
Ž .eters of eq. 40 optimized to the calculated ab

initio energy surface are found to be V s 1520911

and V s 215000 cmy1 with t s 1 and s s 10. The2
resulting model potential function in terms of g
Ž .labeled by circles in Fig. 7 gives an excellent fit to

Žthe ab initio energy surface maximum deviation of
y1 T T .2 cm in the range of 150 F f F 210 , show-2

ing that the new angle bend coordinate defined by
Ž .eq. 34 is also a good coordinate for MM and MD

simulations of a molecule with a linear equilib-
rium structure.

Conclusions

The Wilson-type conventional out-of-plane co-
ordinate has singularities in its Cartesian deriva-
tives at a value of "pr2, causing the force acting
on a related atom to be ill-defined. The conven-
tional improper torsion coordinate, which is com-
monly used in MM and MD simulations to repre-
sent an out-of-plane deformation, is found to be
dependent on the related internal bond length for
nonplanar configurations. We have introduced a
new out-of-plane internal coordinate, which is well
defined in all physically admissible molecular con-
figurations. Because it is already in a symmetric
form, it does not require an additional sym-
metrization for MM or MD simulations. A newly
introduced potential energy function in terms of
this coordinate is found to excellently reproduce

FIGURE 7. Ab initio MP2r6 ]311++GUU potential energy surface of an OCO bend of an isolated CO molecule, in g.2
The new model potential surface is labeled by circles.
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the ab initio MP2r6]311qqGUU potential energy
surface of an isolated NH molecule.3

A new nonlinear bond-angle coordinate is intro-
duced to avoid the problem resulting from the
singularity in Cartesian derivatives of the conven-
tional bond-angle coordinate8 for a linear molecu-
lar configuration. The related new potential energy
function, which is essentially a parallel shift of the
new out-of-plane potential function, is found to
give an excellent fit to the ab initio MP2r6]311
qqGUU potential energy surface of an isolated
H O molecule. For a vibrational analysis of a lin-2
ear equilibrium structure, a new linear angle coor-
dinate is introduced based on a torsion angle defi-
nition, which is faster and simpler in computation
than the conventional linear angle definition.20 It is
shown that the new bond-angle coordinate is also
a suitable coordinate for MM or MD simulations of
a linear equilibrium structure.

The general potential energy surface of an angle
deformation of a nonlinear equilibrium structure is
found to have symmetric double minima,18 as in
the case of the NH molecule. For a molecule with3
a small-angle bend potential barrier, the effect of
tunneling through the potential barrier may be
observable in infrared or Raman spectra as a split-
ting in the related angle bend mode.
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Appendix

BASIC DERIVATIVES WITH RESPECT TO
DISTANCE VECTORS

As we have already shown, the B-matrix ele-
ments of an internal coordinate can easily be ob-
tained from some derivatives with respect to dis-

Ž . Ž .tance vectors through eqs. 4 ] 5 . The required
derivatives are actually categorized into two types,
which can be programmed into two subroutines.
The first one is related to each distance vector
itself, and the necessary quantities are derivatives
of each unit distance vector with respect to its

distance vector:

 e 112 kˆ Ž .s k y e e a1Ž .12 12k r x 1212

 2 e y1  e  e  e k
12 12 12 12j ks e q e q e12 12 12j k k j jž /r x  x  x  x  x1212 12 12 12 12

Ž .a2

 3e12
i j k x  x  x12 12 12

y1  2 e  2 e12 12i js e q e12 12j k k ižr  x  x  x  x12 12 12 12 12

 2 e  e j  e  e k  e12 12 12 12 12kqe q q12 i j i k j i x  x  x  x  x  x12 12 12 12 12 12

 e i  e  2 e k
12 12 12 Ž .q q e a312k j i j / x  x  x  x12 12 12 12

ˆwhere a Cartesian unit vector k is defined as
ˆ ˆ ˆŽ . Ž . Ž .1 ' 1, 0, 0 , 2 ' 0, 1, 0 , and 3 ' 0, 0, 1 .

The second one is related to a bond angle inter-
Ž .nal coordinate Fig. 3 , where the useful quantities

are derivatives of a unit vector u defined by

e = e21 23 Ž .u ' a4
sin f

Ž .where f cos f s e ? e is an angle between x12 23 21
and x . Using the following relations23

 cos f kk k Ž .r s e y e cos f s ysin f e = u21 23 21 21k x 21

Ž .a5

 cos f kk k Ž .r s e y e cos f s ysin f u = e23 21 23 23k x 23

Ž .a6

 sin f k kŽ .r s y u = e y sin fe21 23 21k x 21

kŽ . Ž .s cos f e = u a721

 sin f k kŽ .r s y e = u y sin fe23 21 23k x 23

kŽ . Ž .s cos f u = e , a823

the desired derivates of u with respect to the
related distance vectors are found to be

 u 1 kˆ Ž . Ž .s k = e q u = e u a9� 423 23k r sin f x 2121
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 u 1 kˆ Ž . Ž .s e = k q e = u u a10� 421 21k r sin f x 2323

 2 u 1  ujŽ .s u = e23j k k½r sin f x  x  x2121 21 21

 ukŽ .q u = e23 j x 21

k
 u

Ž .q = e u a1123j 5ž / x 21

 2 u 1  ujŽ .s e = u21j k k½r sin f x  x  x2323 23 23

 ukŽ .q e = u21 j x 23

k
 u

Ž .q e = u a1221 j 5ž / x 23

 2 u 1  ujŽ .s e = u r21 21j k k½r r sin f x  x  x23 2123 21 21

 uk ˆ ˆŽ .q u = e r q k = j23 23 j x 23

k
 u ˆq r = e q u = j u23 23j 5ž / x 23

Ž .a13

 3 u
i j k x  x  x21 21 21

1  2 uiŽ .s u = e23 j k½r sin f  x  x21 21 21

 2 ujŽ .q u = e23 k i x  x21 21

 2 ukŽ .q u = e23 i j x  x21 21

j
 u  u

q = e23i kž / x  x21 21

k
 u  u

q = e23j iž / x  x21 21

i
 u  u

q = e23k jž / x  x21 21

k2 u
Ž .q = e u a1423i j 5ž / x  x21 21

 3 u
i j k x  x  x23 23 23

1  2 uiŽ .s e = u21 j k½r sin f  x  x23 23 23

 2 ujŽ .q e = u21 k i x  x23 23

 2 ukŽ .q e = u12 i j x  x23 23

j
 u  u

q e =21 i kž / x  x23 23

k
 u  u

q e =21 j iž / x  x23 23

i
 u  u

q e =21 k jž / x  x23 23

k2 u
Ž .q e = u a1521 i j 5ž / x  x23 23

 3 u
i j k x  x  x23 21 21

1
s

r r sin f23 21

 2 uiŽ .= e = u r21 21 j k½  x  x21 21

 2 ujŽ .q u = e r23 23 i k x  x23 21

 2 ukŽ .q u = e r23 23 i j x  x23 21

j
 u  uˆq r = e q u = i23 23i kž / x  x23 21

k
 u  uˆq r = e q u = i23 23i jž / x  x23 21

k
 u  u

q = e r23 23j iž / x  x21 23

k2 u  u ˆq r = e q = i u23 23i j j 5ž / x  x  x23 21 21

Ž .a16
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 3 u
i j k x  x  x23 23 21

1
s

r r sin f23 21

 2 uiŽ .= e = u r21 21 j k½  x  x23 21

 2 ujŽ .q e = u r21 21 i k x  x23 21

 2 ukŽ .q u = e r23 23 i j x  x23 23

i
 u  uˆq e = r q k = u21 21 k jž / x  x21 23

j
 u  uˆq e = r q k = u21 21 k iž / x  x21 23

j
 u  u

q e = r21 21i kž / x  x23 21

j2 u  uˆq e = r q k = u21 21 i k i 5ž / x  x  x23 21 23

Ž .a17

TORSION COORDINATE

The expression for the B-matrix elements of a
torsion angle can be formulated in a compact way
if we separate the original structure into two inde-
pendent bond-angle structures, with x and x23 32

Žbeing treated as independent of each other the
total related number of bonds being four instead

. Ž . bof three Fig. 8 ; the required K elements aren

given by

1 y1 0 0
0 y1 1 0 Ž .K s . a18
0 1 y1 0� 0
0 0 y1 1

If we define u ' e = e rsin f and u ' e2 23 21 2 3 34
Ž .= e rsin f unit vectors , then a torsion angle,32 3

t , can be defined by

Ž .cos t s u ? u . a192 3

The desired derivatives with respect to the related

FIGURE 8. Torsion angle coordinate.

distance vectors are found to be

t y1
k Ž .s u , R ' r G , G ' sin f a202 a 21 2 2 2k R x a21

t 1
ks F u , F ' cos f , R ' r G2 2 2 2 b 23 2k R x b23

Ž .a21

t y1
ks F u , F ' cos f , R ' r G ,3 3 3 3 c 32 3k R x c32

Ž .G ' sin f a223 3

t 1
k Ž .s u , R ' r G a233 d 34 3k R x d34

 2t y1 kj k ˆs v u q e = j ,Ž .½ 52 2 23j k 2 Ž . x  x R a2421 21 a

Ž . Ž .v ' 2 u = e , v ' 2 e = u1 2 21 2 23 2

 2t 1 kj k ˆs v u q j = e ,Ž .½ 53 3 32j k 2 Ž . x  x R a2534 34 d

Ž . Ž .v ' 2 u = e , v ' 2 e = u3 3 32 4 34 3

 2t y1 kj k ˆs w u q j = e ,Ž .½ 521 2 21j k Ž .a26R R x  x b a23 21

w ' v q G e21 1 2 23

 2t 1 kj k ˆs w u q e = j ,Ž .½ 534 3 34j k Ž .a27R R x  x c d32 34

w ' v q G e34 4 3 32
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 2t 1 kj k ˆs w u q F j = e ,Ž .½ 522 2 2 21j k 2 x  x R23 23 b Ž .a28
 F2

w ' F v q G r22 2 1 2 23  x 23

 2t y1 kj k ˆs w u q F e = j ,Ž .½ 533 3 3 34j k 2 x  x R32 32 c Ž .a29
 F3

w ' F v q G r33 3 4 3 32  x 32

 3t y1
i j i j i j kŽ .s 2 v v q e e y d u½ 2 2 23 23 2i j k 3 x  x  x R21 21 21 a

k ki jˆ ˆqv e = j q v e = iŽ . Ž . 52 23 2 23

Ž .a30

 3t 1
i j i j i j kŽ .s 2 v v q e e y d u½ 3 3 32 32 3i j k 3 x  x  x R34 34 34 d

k ki jˆ ˆqv j = e q v i = eŽ . Ž . 53 32 3 32

Ž .a31

 3t
i j k x  x  x23 23 23

1  F  F2 2i js 2 F v v y r r2 1 1 23 213 i j½ žR  x  xb 23 21

 F  F2 2 i j i jŽ .yr r q F e e y d23 21 2 21 21j i / x  x23 21

2 F22 2 kqG r u2 23 2i j x  x23 23

k ki jˆ ˆ Ž .qw j = e q w i = e a32Ž . Ž .22 21 22 21 5
 3t

i j k x  x  x32 32 32

y1  F  F3 3i js 2 F v v y r r3 4 4 34 323 i j½ žR  x  xc 34 32

 F  F3 3 i j i jŽ .yr r q F e e y d34 32 3 34 34j i / x  x34 32

2 F32 2 kqG r u3 32 3i j x  x32 32

k ki jˆ ˆ Ž .qw e = j q w e = i a33Ž . Ž .33 34 33 34 5

 3t
i j k x  x  x23 21 21

y1 ji i j ˆŽ .s v q w v q 2 G i = uŽ .1 21 2 2 22 ½ žR Rb a

 F2i j i j j kŽ .yF e e y d y e r u2 21 21 21 21 2i / x 21

k kiˆ ˆ ˆqG i = j q w e = jŽ . Ž .2 21 23

kj ˆ Ž .qv i = e a34Ž .2 21 5
 3t

i j k x  x  x32 34 34

1 ji i j ˆŽ .s v q w v q 2 G u = iŽ .4 34 3 3 32 ½ žR Rc d

 F3i j i j j kŽ .yF e e y d y e r u3 34 34 34 34 3i / x 34

k kiˆ ˆ ˆqG j = i q w j = eŽ . Ž .3 34 32

kj ˆ Ž .qv e = i a35Ž .3 34 5
 3t

i j k x  x  x23 23 21

y1
i j i js v v q w w½ 1 1 21 212R Rb a

i j i j 2 i j i j kŽ . Ž .q2 e e y d y G 2e e y d u21 21 2 23 23 2

k ki jˆ ˆ Ž .qw j = e q w i = e a36Ž . Ž . 521 21 21 21

 3t
i j k x  x  x32 32 34

1
i j i js v v q w w½ 4 4 34 342R Rc d

i j i j 2 i j i j kŽ . Ž .q2 e e y d y G 2e e y d u34 34 3 32 32 3

k ki jˆ ˆ Ž .qw e = j q w e = i a37Ž . Ž . 534 34 34 34
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