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Abstract: Distance geometry has been a broadly useful tool for dealing with conformational calculations. Customarily
each atom is represented as a point, constraints on the distances between some atoms are obtained from experimental
or theoretical sources, and then a random sampling of conformations can be calculated that are consistent with the
constraints. Although these methods can be applied to small proteins having on the order of 1000 atoms, for some
purposes it is advantageous to view the problem at lower resolution. Here distance geometry is generalized to deal with
distances between sets of points. In the end, much of the same techniques produce a sampling of different configurations
of these sets of points subject to distance constraints, but now the radii of gyration of the different sets play an important
role. A simple example is given of how the packing constraints for polypeptide chains combine with loose distance
constraints to give good calculated protein conformers at a very low resolution.
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Introduction

Distance geometry refers to a treatment of geometric problems that
emphasizes Euclidean distances between points, rather than an-
gles, and so forth." This is sometimes a convenient way to deal
with conformational problems, where the points correspond to
atoms.>~* Currently the most frequent application is to calculate a
sampling of sets of atomic coordinates given constraints on some
of the interatomic distances derived from NMR experiments.>~’
Other applications include protein homology modeling,®° protein
structure prediction,'®~'? and more abstract conformation'® and
sequence'? spaces. A recurring task in all these applications is how
to generate a set of coordinates for the points given at least some
constraints on some of the interpoint distances. New methods for
this continue to be developed,'>"!” each with its advantages and
disadvantages, depending on the type of constraint set.

Here we consider a new sort of distance geometry problem
where the points may be atoms or even whole amino acid residues,
and we want to look at conformations at a very low resolution
where the primary objects are clusters or subsets of the points.
Much of the standard methodology for single points carries over in
an analogous form for clusters, with the advantage of building in
the space-filling features of real atoms or residues in a natural way.
In order to make this correspondence clear, we first briefly outline
the standard distance geometry methods, then show the equivalent
procedures for clusters, and finally give a simple demonstration of
calculating conformations for a protein given certain constraints.

Methods

Standard Distance Geometry

Suppose we have a set of n distinct points with a matrix of
proposed squared Euclidean distances between them, M = (dl-zj).
Obviously M must be symmetric (dizj = d_ﬁ), the diagonal must be
zero (d, = 0), and the elements must be non-negative (d,-zj = 0).
There are in addition some nonobvious requirements that M must
fulfill in order to correspond to a realizable arrangement of the
points in three-dimensional space that is not confined to some
planar subspace. These constraints are expressed in terms of C(M,

k), the Cayley-Menger determinant involving the first k£ points:

0 1 1 -1

10 d, - d
cMk=|1 & 0 - dy (1)
1 & & - 0

Blumenthal’s theorem' specialized to three dimensions and n = 4
requires that there be some ordering of the points such that C(M,
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2) >0, C(M, 3) <0, C(M, 4) > 0, and for any choice of
additional fifth and sixth points that C(M, 5) = C(M, 6) = 0.

The constraints on the lower order determinants can readily be
interpreted.”” Because C(M, 2) = 2d3,, the first inequality is
trivially satisfied by d,, > 0. The second inequality involves
factoring the determinant

C(M, 3) = (dza + d12 - dls)(dlz + d13 + d23)(d12 + d13 - dzs)
X (dlz —d; — d23) <0 2

which is satisfied if the triangle inequality, d,5 = d,, + d,s,
holds as a strict inequality for all three permutations of indices.
The triangle inequality becomes an equality when the three points
are colinear, so the requirement that C(M, 3) > 0 means the first
three points are not colinear. The algebra for four points is more
complicated, but solving C(M, 4) = 0 for d?, (assuming fixed
values of the other distances) gives two real, positive roots, and as
long as d?, lies strictly between these two bounds, we have C(M,
4) > 0. This has been called the tetrangle inequality,* and satis-
fying the strict inequality implies the first four points are nonco-
planar.

Another way to look at the Cayley-Menger determinants is in
terms of coordinates of the points in the case that the constraints on
the corresponding distances are satisfied and coordinates can con-
sequently be found. Any two points i and j span a linear subspace
that we can equip with a coordinate system consisting of an origin
and an x-axis. Then the determinant for the ordered pair of points

CM, [i, j]) = 2x; 3)

where

=X TX C))

is the orientation of the two ordered points relative to the coordi-
nate system. That is, x;; > 0 if going from x; to x; is the same
direction as going from the origin to the positive x-axis, y,; < 0 if
the orientation is opposite, and ;; = 0 if the two points coincide
and hence have no orientation along the x-axis. Similarly, it is
straightforward but tedious to verify that for an ordered set of three
points, [i, j, k], spanning two dimensions, the corresponding
Cayley-Menger determinant is

where the three-point orientation relative to the x- and y-axes of
the coordinate system is

1 1 1
Xig = |Xi X Xk (6)
Yi Vi Yk

and x;;; > 0 when going from point i toj to k is counterclockwise
in the xy-plane. When the three points are colinear, x,; = 0.

There are other useful quantities that follow directly from the
distances without reference to coordinates. Given the matrix of
squared distances, M, one can directly calculate d7,, the squared

distance from point i to the unweighted center of mass of all n
points'®.

&=n"'" D d&-n7Y d; @)
J

J>k

Because the radius of gyration of the n points is r, =
(n~ ' 3, d2)"?, it follows from eq. (7) that

r=n? Y d; ®)

J>k

An important problem in distance geometry is finding coordi-
nates for the points, if any can exist, that satisfy given bounds on
the distances between some of the pairs of points. Thus for every
distance we require that /;; = d,; = u,;, and for some distances the
upper and lower bounds may be significant constraints, while for
others they may be the trivial /;; = 0 and u;; = . Bound
smoothing®* is a process whereby the information from the tight
bounds is spread around to all distances by lowering some upper
bounds and raising some lower bounds. At the triangle inequality
level, one simply repeatedly examines all triples of points and
whenever

Uy = u; + 9)

is violated, u;, is reduced to the right-hand side of the inequality.
After no further reductions in upper bounds can be achieved, all
triples of points are repeatedly checked for violations of

L= 1 — uy (10)

in which case /,, is increased to the right-hand side of the inequal-
ity.

From the smoothed bounds, one may pick distance values at
random in the intervals /;; = d,; = u,;, independently for each d;.
However, the resulting distances may not necessarily obey the
triangle inequality. In the process called metrization,” each time a
particular d;; is chosen, the corresponding bounds are tightened to
l; = d;; = u,;, and smoothing of the other bounds by eqs. (9) and
(10) may tighten them. When all the distances have been chosen in
this way, they do obey the triangle inequality.

In order to determine coordinates from the selected distances,
the metric matrix G = (g;;) is determined by

gy =;(d}, + d, — d} (11
where the distances to the center of mass come from eq. (7). Then
the j = x, y, z coordinate vectors of the n points are determined

by

¢, = \"’w, (12)
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from the three largest (positive) eigenvalues A; and corresponding
eigenvectors w; of G. If the other n — 3 eigenvalues are relatively
large in magnitude, the resulting coordinates may need adjusting in
order to obey the original bounds.

Cluster Distance Geometry

General Relationships

Suppose the objects of interest are not individual points, but rather
sets of b points. So if n is a multiple of b, we can think of grouping
M into b X b blocks to form an order n/b matrix M, = (D,,),
where each element D, is the sum of the b interpoint squared
distances, df,-, within that block. It is still true that M, is a
symmetric matrix of non-negative elements, but now the diagonal
elements are no longer necessarily zero. Instead, we see from eq.

(8) that
D, =2bry, (13)

where r; ; is the squared radius of gyration of the /th set of points.

The equivalent constraints on the Cayley-Menger determinants
apparently hold. The two-block determinant is not as trivial as the
two-point determinant:

CM,, [1,J)) =2D;;— D;; —D;; >0 (14)

It is easy enough to demonstrate that this condition holds when
there are coordinates for the points. Consider the case b = 2,
involving only four points labeled i, i + 1, j, andj + 1. Suppose
these points have coordinates [x,, v,, z;]”, and so forth. Then

C(Mz, [1, J]) = Z(d?j + di2+l,j + diz,j-H + d,z+1‘j+1 - dlz,H-] - djz,j-H)
=2(x; — xj)z + 2(x4y — -xj)2 +2(x; — -xj+l)2 + 2(xis — -xj+l)2

= 2(x; = x;41)% — 2(x; — x;4,)* + similar for y and z

= 2(x; + X;4; — X; — X;4,)> + similar for y and z = Sd%j

5)

where T and J denote the unweighted centers of mass (or centroids)
of the two clusters. In general

C(M,, [, J]) = 2b%d;; = 2b%x;; = 0 (16)

where x;7 is the one-dimensional orientation for the two centroids
as in eq. (4), and C(M,, [/, J]) = 0 only when the two centroids
coincide. Clearly for b = 1, this reduces to the standard distance
geometry case.

Similarly, C(M,,, 3) < 0 is widely observed to be always
satisfied for configurations of points in three dimensions, but is not
so simply interpreted in terms of something like the triangle
inequality. In terms of coordinates in the plane, one can derive in
analogy to eq. (15) that

C(M,, [1,J,K]) = —4b* x5z =0 (17)

and C(M,, [/, J, K]) = 0 when the corresponding three centroids
are colinear. In terms of distances, like the treatment of the
tetrangle inequality above, one can solve C(M,, [/, J, K]) = O for
an upper and lower bound on, say, D,,, given values for all the
other matrix elements. This gives

D,+Dyx—D,,—P"?”<Dy=D,+ D,,— D,,+ P"* (18)
where

P = 2Dy — D;;— Dxx)(2D;; — Dy — Dyy)

and the bounds in eq. (18) are always real because both factors in
eq. (19) are positive, according to the requirement of eq. (14). In
the b = 1 limit where D,;, = D,, = D, = 0, this reduces to the
usual triangle inequality limits of

max(dy, — d

i diy — di) = dy = dy + djy. (20)

The equivalent to triangle inequality level bound smoothing is
somewhat more complicated than in standard distance geometry.
For every pair of blocks there are bounds L,, = D,, = U,, that
may be trivial (L,, = 0 and U,, = %) for some or nontrivial given
bounds for others. The diagonal elements may also have nontrivial
bounds, rather than d;; = 0 for a single point i. Thus the first step
is to repeatedly scan all pairs of blocks looking for violations of

Ly= (Ly+ Ly)/2 2n

which would require raising L,, to the right-hand side of the
inequality, in accord with eq. (14). Similarly, a less frequently
occurring case is violations of

20, — Ly=Uy (22)

which requires lowering U, to the left-hand side of the inequality.
The same holds for / and J exchanged.

After no further tightening of bounds can be achieved, the next
step is to repeatedly examine all unordered triples of blocks /7, J,
and K for violations of

Ux=Uy;+Ux—Ly,
+ [(2UJK —Ly— LKK)(zUIJ —L;— LJJ)]]/2 (23)

which comes from maximizing the right-hand side of eq. (18).
Note that that expression achieves its maximum subject to the
constraints that D,, = U,,, D,;x = U,x, D;; = L;;, Dy = Ly,
and D,, = L,,. The constraints that 2D ;. — D,;, — Dgx = 0 and
2D,, — D,; — D,, = 0 are not active at the maximum, and the
two factors in the square root of eq. (23) are necessarily non-
negative. Here U, is reduced to the right-hand side, very much
like using eq. (9).
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Figure 1. A semilog plot of the range of diagonal elements D, as a function of block size b. Plotted
values are those observed in a survey of 32 small protein crystal structures for log L,, (diamonds) and log
U,, (crosses) compared to fitted upper bounds from eq. (30) (thick line) and fitted lower bounds from eq.

(31) (thin line).

Eq. (23) is used to reduce off-diagonal upper bounds, just as in
standard distance geometry, but it can also lead to reductions in
U,;, U,;, and Uy .. For example, if substituting U,, for L,, in eq.
(23) leads to a calculated U, < L., then U,; must be reduced to

(LIK - Uu - UJK + LJJ)Z
2UJK - L/J - LKK

Up= 2Uu —Ly— (24)

which comes from solving C(M,,, [/, J, K]) = 0 for D,, when
D,x. D,;;, D are at their lower bounds, and D, and D, are at
their upper bounds. Swapping indices / and K in eq. (24) gives the
condition for reducing Uy,. For reducing U,, in the equivalent
situation, the limit is

UJJ

- (Uu -U JK)Z + L?K + 2UIJ(LKK - LIK) +2U, JK(LII - LIK) - LIILKK
- LKK + LII - 2LIK

(25)

The last step is to repeatedly examine all unordered triples of
blocks in order to raise L,, by the equivalent of eq. (10). Referring
to eq. (18), the question is whether the current value of L, is less
than the minimal value of D,, + D, — D,, — (C(M,, [I,
JNCM,, [J, K]))"'? subject to C(M,,, [1, J]) = 0, C(M,, [J,
K1) = 0, and the upper and lower bounds on all five variables, D ,,
D,,, D, D,,, and D . It is easy to verify that the left-hand side
of eq. (18) can be expressed as

Dy =3 ((JC(M,, [1,.7]) = JC(M,, [, K]))* + Dy + Dyx)  (26)

which suggests three cases depending on the allowed ranges of
CM,, [1, J]) and C(M,,, [J, K]). The first case is when max
CM,, [1,J]) < min C(M,, [/, K]) as detected by 2U,, — L,; <
2L,k — Ugg and 2L, — Ugg — L, > 0. Then the minimal
value of D, is achieved at the combination of upper and lower
bounds:

Lx=U ut Lk — LJJ
- ((2Uu - Lu - L//)(ZLJK - LJJ - LKK))1/2 27

which involves Lgg, not Ugg. The second case is when the
allowed interval for C(M,,, [/, J]) is strictly above that for C(M,,,
[J, K]). Simply exchanging indices / and K, one detects that
2U,x — Lgx <2L,;, — Uy and2L,, — U,, — L,, > 0, resulting
in

Lxk=L,+Ujk—Ly
- ((ZLIJ - L11 - LJJ)(2U/K - L// - LKK))”2~ (28)

The third case is when the ranges overlap. The right-hand side of
eq. (26) is minimized when they are equal, and it reduces to the
two-block constraint that L, = (L,, + Lgg)/2. In the special
case of b = 1, the bounds on the diagonal elements are all zero,
U,, becomes u?,-, and so forth, so that eq. (28) reduces to eq. (10),

and eq. (27) reduces to the equivalent relation, [, = [;; — u,;.
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Figure 2. A semilog plot of the range of diagonal elements D, as a function of block size b, when the
corresponding protein residues are all part of a B-strand. Values observed in a survey of protein crystal
structures for log L,, (diamonds) and log U/, (crosses) are compared to fitted upper (thick line) and fitted

lower bounds (thin line) from eq. (34).

Protein Specific Relationships

Consider a low resolution representation of protein structure where
the n points are the C* atoms of the n amino acid residues in a
single polypeptide chain, one point per residue. Because of the
chemical structure of the chain and its space-filling atoms, there
are lower and upper bounds on the cluster distances that are much
tighter than the pure geometric constraints. For instance, sequen-
tially adjacent C* atoms linked with a frans peptide bond would
have a fixed separation of 3.8 A, assuming standard bond lengths
and angles. On the other hand, the mathematical series

b(b* - 1
> <i—j)2:% (29)

i=1 j=1
so the upper bound on the diagonal blocks U,, = D, is

r*(* - 1)

U, = (4.01 A)? G

(30)

for a fully extended polypeptide chain. The scaling factor of 4.01
A rather than 3.8 A comes from a survey over crystal structures of
small proteins (PDB codes 1A1X, 1ACF, 1BK2, IBM8, IBYW.A,
1C44.A, 1COALL 1CQY.A, 1DHN, 1DT4.A, 1ENH, 1EW4.A,

1G90.A, 1HEY, 112T.A, IJWO.A, IMIL, IMJC, 10PS, 1PGB,
IPHT, 1PTF, 1QAU.A, ITEN, 1ITMY, 1TUL, 1UBI, 1VCC,
IWHI, 2IGD, 3ILS8, and 9MSI.A) and takes into account some
experimental variations from standard peptide geometry. Over this
dataset, the bounds are tight for » = 10, but for larger blocks,
finding such fully extended chain segments becomes unlikely, as
shown in Figure 1.

For the lower bounds on the diagonal blocks, L,, = D,,, we
know from eq. (13) that this corresponds to the minimal squared
radius of gyration for a contiguous segment of b residues, and we
know that the minimal r, , varies linearly with 5'’* from an earlier
survey.'® Once again surveying over the same 32 protein crystal
structures as for the upper bound, a tight lower bound for 1 = b =
129 is

Ly =2b3.17 AP — 1) (31

as shown in Figure 1.

If all we know about a protein’s structure is that it is a single,
connected polypeptide chain, then the diagonal lower bounds are
just L,, for all 7 from eq. (31), and the off-diagonal lower bounds
L,, are that same value for all / and J by eq. (21). The default
diagonal upper bounds, U(b), come from eq. (30), but these can be
used to build up the off-diagonal upper bounds. Note that
2U 00 Y Uy + Upy g0 = URb) and Uy = Uy gy =
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Figure 3. A semilog plot of the range of diagonal elements D, as a function of block size b, when the
corresponding protein residues are all part of an a-helix. Values observed in a survey of protein crystal
structures for log L,, (diamonds) and log U/, (crosses) are compared to fitted upper (thick line) and fitted

lower bounds (thin line) from eq. (35).

U(b), so the first off-diagonal upper bounds are all determined. In
general

1
Uik = Upay = 2 (U((l + k)b) — E Um) (32)

Lm

fork =1, ..., (n/b) — 1, where the sum runs over the square
submatrix I = [, m = I + k except for the two corners, ({, [ +
k) and (I + k, I).

However, if any additional constraints have tightened some
bounds more than those corresponding to a single polypeptide
chain, the maximal packing density considerations can raise some
off-diagonal lower bounds. Using the same notation as eq. (32),
violations of

1
Lo = Liygr = 2 L((1 + k)b) — E Ul,m) (33)

Lm

require that L, ,, , and L, , , be raised to the value of the right-
hand side.

A knowledge of secondary structure can give tighter bounds on
the diagonal elements. If all the residues in a block of b residues
are known to be part of a 3-strand, then a survey over the same set
of small proteins finds rather tight bounds:

P — 1)
6

b*(* - 1)

=L,<U,=(3.92A)7 g

(3.09 A)? (34)

analogous to eq. (30), as shown in Figure 2. For an a-helical block,
the dependence on b is of lower order, but not so low as in eq. (31).
Cubic dependence fits well

(1.79 A = L, < U, = (2.86 A)*p’ (35)
as shown in Figure 3.

Embedding

Finding coordinates for the centroids of the blocks from distance
constraints is somewhat more elaborate than in standard distance
geometry, but basically follows the same procedure. Initial bounds
are either the trivial L,, = 0 and U,, = %, or in the case of a
polypeptide chain use eqgs. (30), (31), and (32). Additional infor-
mation further tightens some bounds, such as knowledge of protein
secondary structure via eqs. (34) and (35). Subsequent bound
smoothing involves exhaustive application of two-block relations
[egs. (21) and (22), and for proteins eq. (33)] and three-block
relations [egs. (23), (24), (25), (27), and (28)]. Metrization works
as before to choose random diagonal and off-diagonal D,, consis-
tent with all applicable bound smoothing relations. Conceptually,
this amounts to proposed radii of gyration for all the blocks, as
well as distances between them. By eq. (16), the (n/b) X (n/b)
matrix of proposed inter-centroid distances is calculated, which is
then converted to coordinates as usual by eqs. (11) and (12). For
very low resolution models, such as (n/b) < 7, the resulting
coordinates often completely satisfy the original bounds without
any further adjustment.
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Figure 4. Backbone trace of BPTI (PDB entry 1G6X.A) less the first
four residues (curved ribbon). The sequence of cylinders shows the
positions of the centers of mass of the six sequential nine-residue
segments.

Embedding Results

As a simple example of cluster distance geometry embedding
applied to a protein, consider bovine pancreatic trypsin inhibitor
(BPTI, PDB entry 1G6X.A). This consists of a single polypeptide
chain of 58 residues. Deleting the N-terminal first four residues
permits us to view the chain as a sequence of six clusters each
consisting of nine C* atoms or points. Figure 4 shows the C* trace
of the crystal structure and the greatly simplified trace of the six
clusters, which nonetheless roughly outline the overall backbone
path in space. For the sake of clarity, the radii of gyration of the six
clusters are shown separately in Figure 5 as spheres centered at the
cluster centers of mass and having the corresponding radii. Note
how the C-terminal helix and the tight bend at the top of the
illustration in Figure 4 correspond to small sphere in Figure 5,
whereas the N-terminal extended strand on the right side has a
large sphere.

In standard distance geometry, one could model this protein as
54 C* points linked by virtual bonds and otherwise restricted by
lower bounds between all points representing the self-avoiding
character of the chain. If the only other constraints were upper
bounds among points 1, 9, 18, 27, 36, 45, and 54 taken to be
slightly greater than the distances in the crystal structure, then a
wide variety of conformations would be possible, including great
rearrangements of the general fold. For the cluster distance geom-
etry treatment, we included the a priori constraints for polypeptide
chains plus off-diagonal U,, that were 10% greater than those
corresponding to the crystal structure. These explicit constraints
plus the maximal packing density restrictions from eqs. (31) and
(33) so greatly restrict the possible conformations that metrization
sometimes has trouble finding a permitted set of D,, values. In
terms of the root mean squared deviation (RMSD) after optimal
superposition of the cluster centers of mass from the crystal
structure versus those from embedding, RMSD values ranged from
3to 6 A. Figure 6 shows a calculated cluster structure superim-
posed on the crystal structure clusters where the RMSD in cluster
centers of mass was 3.4 A. Obviously the calculated structure is
constrained to be no bigger than the native, but note how some
large distances are indirectly enforced by the packing consider-
ations. Clearly there is still some room for conformational varia-
tion, as shown in Figure 7 where the traces of several calculated

Figure 5. The radii of gyration of the six nine-residue segments of
BPTI in the same view as the previous figure. Each segment is
represented as a solid sphere centered at its center of mass having
radius equal to the radius of gyration.
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structures are shown superimposed on the crystal structure (not
shown) in the same view as the previous figures. Overall, the
RMSD of the corresponding cluster radii of gyration ranged from
only 1.5 to 2.5 A, which varies so little from Figure 5 that it would
hardly be noticeable by eye.

Conclusion

Cluster distance geometry can be applied to a wide variety of
geometric problems where a great reduction in resolution is desir-
able or necessary. Special problem-specific information can be
built in, such as chain connectivity, secondary structure, and steric
packing limitations, as shown for proteins. In particular, the pack-
ing constraints are very naturally incorporated, and their effect on
other features is easily propagated. This is an effect that is difficult
to include in standard distance geometry, which may make cluster
distance geometry a useful approach even in instances that do not
require a low resolution treatment.
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Figure 6. Superposition of the centers of mass of the BPTI segments
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Figure 7. Superposition of the centers of mass for five calculated
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