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SUMMARY

We compare and contrast several di;erent methods for estimating the e;ect of treatment when responses
are paired binomial observations. The ratio of binomial probabilities is the parameter of interest, while
the binomial probabilities are nuisance parameters which may vary between pairs. The application is a
meta-analysis of the treatment of rectal cancer, with observations in each study indicating the number
of recurrences of the cancer in each of two groups, one with radiation therapy and one without. The
ratio of the probabilities of recurrence in the radiation to non-radiation groups is of substantive interest,
and is modelled as a logistic or complementary log-log function of an unknown linear combination
of the covariates. The three methods we consider are maximum likelihood, a Bayesian approach and
an approach based on estimating equations. For the MLE and Bayesian approach the potentially large
number of nuisance parameters are estimated together with the parameters of interest, whereas for
the estimating equation approach only the parameters of interest are estimated. A simulation study is
performed to compare the methods and evaluate the impact of overdispersion. Copyright ? 2001 John
Wiley & Sons, Ltd.

1. INTRODUCTION

In this article we contrast three methods for estimating regression coeBcients in a relative risk
regression model from a set of paired binomial responses, (Yi1; Ni1); (Yi2; Ni2), i=1; : : : ; I . The
methods are applied to a data set in which the aim is to estimate the e;ect of radiation dose and
overall treatment time on reducing the incidence of recurrence from metastases following the
treatment of rectal cancer. The three methods are maximum likelihood, a weighted estimating
equation approach and a Bayesian scheme from a hierarchical model. The parameter estimates
from the estimating equation approach will be driven primarily by the mean structure of
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the assumed model, whereas the MLE and Bayes approaches will use the full distributional
assumptions in the assumed model. Thus we might expect the estimating approach to be
more robust to misspeciHcation of the variance and other aspects of the model. An obvious
question is how does the eBciency of the weighted estimating equation scheme compare with
the other two approaches. We might suspect that it may be less eBcient particularly when
there is a small number of pairs. The eBciency of the estimator will also depend on the choice
of weights. Another fact which will be relevant if Ni1 and Ni2 are small and I large is the
inconsistency of the maximum likelihood estimate. For a simple special case it is known that
the maximum likelihood estimate of the relative risk is inconsistent as the number of pairs
(I) tends to inHnity [1]. This inconsistency is a result of the number of nuisance parameters
tending to inHnity. The magnitude of the bias will tend to be larger if Ni1 and Ni2 are small
and may be of no consequence if Ni1 and Ni2 are large. In contrast, the estimating equation
scheme is consistent [2] as I →∞. Another question is how are the various estimators a;ected
by extra-binomial variation.
The motivation for this work came from a study of the e;ect of radiation on rectal cancer

[3]. The results from the comparisons of surgery versus surgery plus radiation have been quite
variable, even amongst large randomized trials. One major reason for these di;erences has
been the diverse range of radiation prescriptions used in these studies, ranging from a single
small dose up to 6.5 weeks of daily treatment with a considerably larger dose. Understanding
whether the radiation prescription is responsible for the variation in the e;ect of radiation is
of considerable importance and could lead to more rational choice of fractionation protocol.
Several other potential problems exist in comparing these studies; these include di;erent eli-
gibility requirements, di;erent surgical techniques and di;erent methods of reporting patterns
of failure. However, within any one study we would expect similarity in these factors.
The speciHc data we use in this article consists of pairs of binomial counts; one count is

the number of recurrences following surgery for rectal cancer, and the second count is the
number of recurrences in which the treatment was radiation followed by surgery. Each pair
consists of data from a particular institution or clinical trial. In a few cases there was a cluster
of three studies rather than a pair. For simplicity we will develop the methods assuming pairs,
and indicate how we handle larger clusters later. There were 23 studies in total, 13 of which,
and particularly the larger studies, are randomized clinical trials. These data were obtained by
an exhaustive search of the rectal carcinoma literature and are shown in Table I. Details of
the inclusion criteria, the assignment of covariate values, the determination of the recurrence
rate, and many other factors are explained in Suwinski et al. [3]. It is important that these
data be modelled as pairs (or triples), because there is likely to be considerable between-
cluster variation in the patient population, the surgical technique and the exact deHnition
of the outcome, but much less within-cluster variation in these factors. For example, it can
be easily seen from Table I that there is considerable variation in the observed recurrence
rate between the surgical arms of the various studies. Part of this variation could be due
to sampling variability, as some of the studies are quite small. The recurrence rates will in
e;ect be nuisance parameters in the model, as they are allowed to vary between clusters.
We also see from the table that the addition of radiation tended to lower the recurrence rate,
but the amount by which it is lowered is quite variable. The covariates of interest were the
total radiation dose (D) and overall treatment time (T ) in the group of patients treated with
radiation as shown in Table I. From simple radiobiological principles we would expect the
highest total dose delivered in the shortest overall treatment time to be the most e;ective at
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Table I. Recurrence rates in rectal cancer studies.

Study Surgery Radiation + surgery
Yi1 Ni1 Yi1=Ni1 Yi2 Ni2 Yi2=Ni2 Dose Time

1∗ 118 275 0.43 125 277 0.45 6.25 1
1∗ 128 272 0.47 20.0 12
2∗ 2 36 0.06 2 34 0.06 6.25 1
3∗ 22 138 0.16 11 120 0.09 18.75 5
4∗ 32 87 0.37 27 93 0.29 20.0 12
5∗ 29 75 0.39 8 68 0.12 23.3 5
6 21 70 0.30 4 37 0.11 27.1 5
7∗ 131 557 0.24 41 453 0.09 31.3 5
8∗ 105 347 0.30 55 337 0.16 31.3 6
9 62 144 0.43 27 209 0.13 31.9 6
10 34 81 0.42 2 28 0.07 31.9 6
11 35 135 0.26 2 38 0.05 32.4 12
11 5 71 0.07 45.0 30
12 41 226 0.18 8 189 0.04 37.5 8
13∗ 29 127 0.23 19 129 0.15 30.8 24
14∗ 40 465 0.09 37 435 0.09 30.8 24
15∗ 33 175 0.19 14 166 0.08 35.4 21
16∗ 21 106 0.20 8 64 0.13 35.4 21
17∗ 16 34 0.47 5 34 0.15 40.0 28
18 24 78 0.31 3 32 0.09 41.4 30
19 13 89 0.15 2 36 0.06 44.1 30
20 7 83 0.08 8 61 0.13 45.0 30
21∗ 6 64 0.09 8 78 0.10 25.0 17
22 18 41 0.44 3 40 0.08 30.0 19
23 19 103 0.18 6 75 0.08 30.0 19

∗Randomized trial.

decreasing the recurrence rate. Examination of Yi2=Ni2 compared to Yi1=Ni1 in Table I does
suggest that this is supported by the data.
Radiobiology concepts [4] provide the basis for the statistical models we use. A simple

biological model for rectal cancer is that the cancer consists of a core of tumour cells which
can be detected and possibly also some undetectable metastatic cells within the pelvic region
but outside this core region. Let M be the number of such undetectable metastatic cells if
they exist. Recurrences following the therapy are generally thought to be a result of growth
of these metastatic cells. The patient has such metastatic cells with probability �. The patient
will be cured if all tumour cells are removed or killed by the therapy. Surgery removes the
central core so cures the patients if there are no metastases. Then the probability of cure for
the surgery only group is 1− �. Radiation therapy is given to a larger volume so is e;ective
in killing metastatic cells as well as cells in the central core. For a patient who does have
metastases assume that the probability that the radiation does not kill all these metastatic cells
is a function  (D; T ) of covariates D and T . Then the probability of cure for the surgery plus
radiation group is 1− �+ �(1−  (D; T ))=1− � (D; T ). Thus the probability of recurrence
is reduced from � to � (D; T ) by the addition of radiation to the surgery, and the proportion
by which it is reduced is  (D; T ) which depends on the covariates. The ratio of binomial
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probabilities of recurrence P(recurrence|radiation + surgery)=P(recurrence|surgery) is thus the
important radiobiological quantity, which we model as a function of the covariates.
A simple form for  (D; T ) can be derived from a standard radiobiological model [5] in

which the expected surviving fraction (S) of tumour cells following radiation of dose D
given in overall time T is S= exp(�1D + �2T ), where �1¡0 and �2¿0. This model is
obviously an approximation because excessively large values of T would make S¿1, which
is nonsensical, however it does have the sensible property that if there is no radiation then
S=1. In our data, T does not take on excessive values. Assuming independence between cells
and a binomial distribution for the number of surviving cells gives  (D; T )=1 − (1 − S)M .
Making the reasonable assumption that for the typical course of radiation therapy that S is
very small, then  (D; T ) can be approximated by  (D; T )=1− exp(−SM) or log(− log(1−
 (D; T )))= log(M) + �1D + �2T . We note that this has the form of a generalized linear
model with complementary log-log link. An alternative model to use for  (D; T ) is a logistic
function. In practice the di;erence in shape between the logistic and complementary log-
log links functions will likely be of little consequence compared to the other aspects of
heterogeneity in the data for this application. In the data analysis we consider both a logistic
function and a complementary log-log link for  (D; T ), but in the simulation we use only the
logistic function.
The motivation we give for the forms of the link functions do not allow for between-person

variation in M , �1 and �2. Such heterogeneity may change the shape of the link function,
as was shown for a special case in a similar model [6]. Another aspect of the model is that
D=T =0 does not lead to  (D; T )=1, but this is not a real concern because such points
are outside the region of interest and as we will see, the estimates of the intercept parameter
tend to be large so any problems with this limit are of small consequence.
The radiobiological considerations we described above motivate the relative risk as the

quantity of primary interest, and suggest the form of the statistical model. An implicit as-
sumption is that the amount by which the radiation lowers the recurrence rate can be explained
by D and T . There may be other unmeasured factors which contribute to the between-pair
variation in relative risk, resulting in extra-binomial overdispersion in the observed values of
Y or more generally lack-of-Ht of the hypothesized model.
The paper is organized as follows: Section 2 describes the model and the three methods of

estimation; Section 3 describes the analysis of the radiation therapy data; Section 4 describes
the results of a simulation study including an evaluation of the e;ect of overdispersion, and
Section 5 contains a brief discussion.

2. MODEL ESTIMATION AND INFERENCE

2.1. Notation and the model

Let Yij denote the number of recurrences of rectal cancer for patients in study i and group j,
i=1; : : : ; I , j=1; 2, where j=1 denotes the surgery only group and j=2 denotes the radiation
plus surgery group. Let Nij denote the number of patients in group ij. We assume

Yi1 ∼Binomial(Ni1; �i) (1)

Yi2 ∼Binomial(Ni2;  i�i) (2)
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Thus  i measures the e;ectiveness of the radiation therapy for study i. For the logistic link
we assume

log
(

 i

1−  i

)
=�0 + �1Di + �2Ti (3)

and for the complementary log-log link we assume

log (− log(1−  i)) =�0 + �1Di + �2Ti (4)

where Di is the total dose for the ith study and Ti is the overall treatment time for the ith
study. DeHne �=(�1; : : : ; �I) and �=(�0; �1; �2). The parameters of interest are the �’s, with
the �i’s being nuisance parameters; thus there are a large number of nuisance parameters
compared to the number of �’s.

2.2. Maximum likelihood and least squares approaches

Ignoring additive constants, the log-likelihood (li = li(�; �|Y )) contribution for pair i is

li =(Yi1 + Yi2) log(�i) + Yi2 log( i) + (Ni1 − Yi1) log(1− �i) + (Ni2 − Yi2) log(1− �i i)

This can be maximized to give estimates of all I+3 parameters [7]. As with all the estimation
schemes to be described, care must be taken to ensure that �i i is not larger than one. The
variances of the parameter estimates can be calculated from the observed information matrix
in the standard way; we refer to this as the binomial variance. It is well known for this model
that the maximum likelihood estimate is inconsistent for � as the number of pairs (I) tends
to inHnity [1] because of the increasing number of nuisance parameters.
A slightly more convenient approach for parameter estimation is to perform iteratively

reweighted least squares. We obtain estimates of the �’s and �’s by minimizing
∑
i
[vi1(Yi1 − Ni1�i)2 + vi2(Yi2 − Ni2�i i)2]

with respect to � and � where the weights, which are iteratively updated, are given by

v−1
i1 =Ni1�i(1− �i) (5)

v−1
i2 =Ni2 i�i(1−  i�i) (6)

This approach gives the same point estimates as maximum likelihood [8; 9]. The standard
errors from this least squares approach are based on the usual residual sum of squares statistics,
and may di;er from standard errors derived from the information matrix of the maximum
likelihood estimates if there is overdispersion in the data.

2.3. Bayesian estimation for a hierarchical model

In this formulation the likelihood is given as above and we specify prior distributions for
the parameters � and �. We use Markov chain Monte Carlo methods to obtain estimates
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Table II. Parameter estimates for radiation therapy data.

Method �0 (intercept) �1 (dose) �2 (time)

Estimate SE Estimate SE Estimate SE

Logistic link
MLE∗ 3.83 0.78 −0:152 0.026 0.0803 0.0177
Estimating equations† 5.16 1.95 −0:199 0.065 0.0951 0.0296
Bayes∗ 3.91 0.78 −0:154 0.026 0.0792 0.0181
Bayes OD∗ 3.32 1.00 −0:142 0.041 0.0838 0.0343

Complementary log–log link
MLE∗ 2.23 0.54 −0:105 0.019 0.0559 0.0124
Estimating equations† 2.58 1.02 −0:118 0.034 0.0608 0.0174
Bayes∗ 2.27 0.50 −0:106 0.017 0.0545 0.0120
Bayes OD∗ 1.93 0.64 −0:103 0.028 0.0631 0.0249

∗23 clusters.
†25 pairs.

of the posterior distribution of the parameters. We used BUGS [10] for Table II and our
own code for the simulation study. We use independent beta(a; b) priors for each of the
�i’s and an essentially Mat prior for the �’s. We let a=2, b=3 or a= b=1, both of which
represent minimal prior information. We perform Gibbs sampling, sampling from each �i

separately, followed by the �’s. A posteriori, the �i’s are independent given �, and with
a beta prior, they have a conditional density which is a very high dimensional polynomial
which we draw from using a Metropolis–Hastings (MH) step [11]. The posterior of � is not
in a simple form and also requires an MH step. The proposal jump density for � is a normal
density with covariance matrix set equal to the inverse of the 3 × 3 observed information
matrix evaluated at the MLE, setting the �i’s to the MLEs. The proposal density for each
�i is normal, with standard deviation set equal to a rough estimate of the posterior variance
(Yi1=Ni1)(1 − Yi1=Ni1)=Ni1. Whenever Yi1 equals 0 (or Ni1) we set Yi1 = 0:1 (or Ni1 − 0:1) to
calculate the standard deviation. When a jump proposes a new �i outside the interval (0; 1),
we reject the proposal and keep the previous value. We discard the Hrst 1000 draws and take
the next 5000 to compute the means and standard errors of all the parameters.
The Bayesian approach is based on the same likelihood as the MLE but it should have fewer

problems with the large number of nuisance parameters because it integrates over the nuisance
parameters rather than conditions on estimates of them. Further, estimates of variability are
averaged over the known uncertainties.

2.4. Estimating equations

A third alternative in which we avoid explicit estimation of the large number of nuisance
parameters is based on estimating equations. The method consists of Hnding the vector �
which solves the following equations:

I∑
i=1

wi

(
 i

Yi1

Ni1
− Yi2

Ni2

)
=0
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I∑
i=1

wiDi

(
 i

Yi1

Ni1
− Yi2

Ni2

)
=0

I∑
i=1

wiTi

(
 i

Yi1

Ni1
− Yi2

Ni2

)
=0 (7)

where wi are weights. Denote the solution by �̂ and the corresponding estimate of  i by
 ̂ i. The reason that this approach works is because ( iYi1=Ni1 − Yi2=Ni2) has expectation zero
under the model. We used wi =(N−1

i1 + N−1
i2 )−1 to give more emphasis to pairs in which

both Ni1 and Ni2 were large. We refer to them as Mantel–Haenszel weights. This choice of
weights will be discussed later. Three estimating equations are needed because there are three
parameters in �. The choice of the factors Di and Ti in the second and third equations is
by analogy with usual normal estimating equations in regression. We note that a solution to
the estimating equations in (7) is not guaranteed to exist. For example, if Yi2

Ni2
is greater than

or equal to Yi1
Ni1

for all i then a solution with  i¡1 could not be found. A related method to
the above estimation scheme for the case Ni1 =Ni2 = 1 has been suggested [2; 12], but these
authors assumed a log-linear model for  i rather than a logistic or complementary log-log
model and thus avoid the restriction of  i less than 1.
We used standard delta method techniques to obtain the variance of �̂. Denote the set of

estimating equations (7) by the vector equation
∑I

i=1 Ui(�)=0. Then the large I asymptotic
variance of (I 1=2�̂) is

V−1var
[
I−1=2∑Ui(�)

]
(V−1)T (8)

where

Vjk =
1
I

I∑
i=1

@Uij(�)=@�k (9)

and Uij(�) is the jth element of Ui.
For var[I−1=2∑Ui(�)] we use either I−1∑ var(Ui(�)) evaluated at �̂ where var(Ui(�))

is calculated from the binomial variance of Yi1 or Yi2 or we use (I − 1)−1∑I
i=1 Ui(�)U T

i (�)
evaluated at �̂. The second form is analogous to the variance in a GEE estimator [13; 14], it is
appropriate in the large I situation and is likely to be more robust to model misspeciHcation.
We label the Hrst form for the variance as binomial and the second form as robust. For
numerical calculation of the variance we replace Vjk by its expected value, which requires
estimates of the �i’s as well as the �’s. For �i we use

(1− �)Yi1=Ni1 + �Yi2= iNi2 (10)

where

�=[1 + (1−  i�i)Ni1=( iN2i(1− �i))]−1 (11)

which is the value of � which minimizes the variance of �i in equation (10) for known  i.
We iterate between equation (10) and equation (11) with  i set at  ̂ i to obtain an estimate
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of �i to use in equation (9). Alternative methods of obtaining a value for each �i to use in
the variance formula could be used. In our experience the choice of �i made little di;erence
to the results.
There has been much research for the case of no covariates including various suggestions

regarding the choice of weights [2; 7; 15–18]. Tarone et al. [17] considered Hxed I , large
Nij asymptotics and demonstrated that using the Mantel–Haenszel weights could be ineBcient
compared to the MLE in situations where the �i’s are homogeneous. Some weights give incon-
sistent estimates as I tends to inHnity. This can occur if the weights depend on the observed
responses Yi1 and Yi2. The Mantel–Haenszel weights wi =(N−1

i1 + N−1
i2 )−1 were suggested by

Nurminen [15]. They are known to give consistent estimates both in the large I asymptotics
and in the Hxed I , large Nij asymptotics [19]. These weights minimize the variance of  ̂ in
the special case in which all the �i’s are equal and there are no covariates. However, they
may su;er some eBciency loss in small I situations compared to the MLE [18].

The optimal set of weights is

wi =( (1− �i)N−1
i1 + (1−  �i)N−1

i2 )−1 (12)

From the practical point of view the optimal weights are not so useful because they depend
on the �’s, the unknown nuisance parameters. We will investigate the performance of these
various weighting schemes in a simulation study.
In the case of covariates the optimal estimating equations are of the form

I∑
i=1

E
(

@gi

@�j

)
V−1
i gi

where gi =( i
Yi1
Ni1

− Yi2
Ni2
) and Vi =var(gi). For both link functions this depends on the unknown

nuisance parameters so is less appealing than the simpler form in equation (7).

2.5. Con4dence intervals

There are a number of ways a 95 per cent conHdence or probability interval could be con-
structed for each of the three methods. For simplicity in this article we use the form ‘estimate
±1:96 SE’. For the Bayesian scheme estimate and SE are taken to be the posterior mean and
standard deviation as estimated from the posterior samples.

3. DATA ANALYSIS

Table II gives estimates and standard errors for � obtained from the three approaches for
the logistic and the complementary log-log models. For the Bayesian approach we set a=2
and b=3. For �, we used a N(0; 106) prior for the coeBcients; this is indistinguishable from
a Mat prior. The standard errors are based on the binomial variance for the MLE and on
the robust variance for the estimating equation approach. The two triplet studies are easily
handled in the MLE and Bayesian approach. For the estimating equation approach we split
the surgery-only group into two approximately equal half sized studies and regard them as
independent, that is we reformulate the data to have 25 pairs. The Bayes overdispersed (OD)
estimates are discussed in Section 5.
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Figure 1. Relative recurrence rate for radiation plus surgery compared to surgery. The
plot shows the predicted relative decrease in recurrence probability versus dose at two
Hxed treatment times. Lines are based on the logistic model parameter estimates in
Table II for the estimating equations, the MLE and Bayes. The lines are restricted to

the range of doses which are considered plausible for each treatment time.

For the logistic model the MLE and Bayes estimates and SEs are very similar and appear
to di;er somewhat from the estimating equation results. For the complementary log-log model
there is a smaller di;erence between the MLE and estimating equation results. From all the
estimates in Table II it would be concluded that dose and time do signiHcantly a;ect the
beneHt of radiation, and the best treatment with radiation would consist of the largest possible
dose in the shortest overall time. There are of course other restrictions concerned with logistics
and the potential for side-e;ects which also put restrictions on the dose and treatment time.
Figure 1 shows the estimated relative recurrence rate for the logistic model as a function of
dose, with time Hxed at either 12 (left and lower lines) or 24 days (right and upper lines). The
various lines are from the estimating equation parameter estimates, the MLE and Bayes. From
all the curves we see the beneHt of increasing the dose; we also see that shorter treatment
times lead to lower recurrence rates. The apparent di;erence between the estimating equation
and MLE logistic model results is not as great as might appear from the parameter estimates
in Table II. The Hgure shows they give similar predicted curves. Furthermore, as can be seen
from the data in Table I, the design points for dose and time are strongly correlated. This
leads to substantial correlation between the estimates of �1 and �2 (correlation equals −0:61
for the MLE in the logistic model) suggesting a ridge type of region in the likelihood surface.
The sets of parameter estimates in Table II di;er between the logistic model and the

complementary log-log models because they have di;erent interpretations, however Figure 2
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Figure 2. Relative recurrence rate for radiation compared to surgery for the estimating equation approach,
comparing logistic and complementary log-log link.

shows that the predicted curves are similar in the region where observations are logistically
possible. Figure 2 shows the predictions for the logistic and the complementary log-log links
for the EE approach. Analogous plots for ML and Bayes were similar and are not shown.
Robust standard errors from the estimating equation approach are larger than those of the

Bayesian approach and those derived from the information matrix for the MLE. The reason
for this is overdispersion of the binomial responses, even after allowing the covariates to
account for some of the variation. In particular for the MLE, the average value of the squared
standardized residual ((1=22)

∑
i

∑
j Nij(Yij − Ŷij)2=Ŷij(Nij − Ŷij)) is 2.1 for the logistic model

and 2.0 for the complementary log-log model, both of which are much larger than the value 1
which you would expect if the observations were binomial.
Another useful quantity in radiation oncology is the ratio of the regression coeBcients. For

example, −�2=�1 can be interpreted as the increase in dose necessary to balance an increase
in treatment time by one day to give the same expected outcome. The ratios calculated from
the eight estimates in Table II are all between 0.47 and 0.62, which are similar to published
values found for head and neck cancer [20].
Careful examination of the data in Table I shows that (Yi2=Ni2)=(Yi1=Ni1) tends to be smaller

for the non-randomized studies, suggesting some sort of publication bias for these data. How-
ever, it can also be seen that the non-randomized studies tend to be smaller, and tend to
have larger doses in shorter times, which is exactly the scenario in which we would expect
(Yi2=Ni2)=(Yi1=Ni1) to be smaller. Formal inclusion of study type in the model suggests it is
of borderline statistical signiHcance (using MLE with the logistic model). It is also clear
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from examination of observed and expected values of  i that study 20 is an outlier. For the
purposes of the data analysis illustration in this article these issues have been ignored.

4. SIMULATION STUDY

The data analysis suggested a number of potential di;erences between the various methods,
particularly in the standard errors and particularly between the estimating equation methods
and the likelihood based methods. We undertook a simulation study to address these and a
number of other issues concerned with the various methods. We focus on the logistic model.
One issue is how practically important is the lack of consistency of the MLE. A second issue
concerns the eBciency of the point estimates from the estimating equation approach compared
to the MLE and the Bayesian approach, and how this is inMuenced by the choice of weights.
A third issue is the e;ect of overdispersion on the various estimators and their standard errors.
In addition all of the above may depend on the �i’s, Ni1 and Ni2. We Hrst consider the simple
no covariate case to investigate some of the more theoretical issues and then consider a two
covariate situation to investigate issues raised by the data analysis. Unless otherwise indicated
we use a beta(1; 1) prior for �i and a Mat prior for � in the Bayesian approach.

4.1. No covariate case

In simulating the observations we considered I =32 or I =4, we considered �i =0:5 (homo-
geneous �) for all i or �i =0:2; 0:4; 0:6; 0:8 each for one quarter of the pairs (heterogeneous
�). For Nij we considered two balanced cases, Nij =3 or 10 (denoted by 3 or 10) for all
ij and an unbalanced case (Ni1; Ni2)= (10; 10); (10; 100); (100; 10); (100; 100) each for a
quarter of the pairs (denoted by unbalanced). We generated  i from two di;erent schemes
either  i =0:75 or  i ∼ beta(9; 3) (denoted by overdispersed). A beta(9; 3) random variable
has mean 0:75 and standard deviation 0:120. All results are based on 500 replications. In the
tables the columns labelled mean are the average of the 500 point estimates and the column
labelled SD is the standard deviation of these 500 numbers.
Table III shows the results of comparing di;erent weighting schemes in the estimating

equation approach with the MLE. To generate the data, we Hxed  i at 0:75. We show results
for bias, eBciency and coverage rate of two di;erent 95 per cent conHdence intervals, derived
from either binomial or robust standard errors. In the table MH refers to using Mantel–
Haenszel weights, opt(true) refers to using equation (12) with the true values of the parameters
and opt(est) refers to using equation (12) with estimated values of the parameters. The results
for wi =1 and wi =opt(true) are omitted in the conHgurations where these weights are constant
and the same as the MH weights. We see that the only estimator which consistently shows
bias is the estimating equation approach with estimated optimal weights. Although the MLE
is not consistent as I tends to inHnity, this inconsistency is not manifested as any real bias
in this simulation study even for N =3. A second Hnding is that using constant weights can
clearly be less eBcient than other schemes. All the other schemes have comparable eBciency
except that the MLE is less eBcient for the N =3 case. The opt(true) weights are included as
a benchmark of the best achievable eBciency, even though it is not a method which can be
used for real data. We see no practical di;erence in eBciency between using these weights
and using the MH weights. The coverage rate of the MLE is adequate except in the N =3

Copyright ? 2001 John Wiley & Sons, Ltd. Statist. Med. 2001; 20:3375–3390



3386 J. M. G. TAYLOR ET AL.

Table III. Monte Carlo results, comparisons of MLE and estimating equation approach,
e;ect of di;erent weights.

I �i N Method Mean SD Coverage rate
Binomial Robust

32 0.5 Unbalanced Estimating equations (wi =MH) 0.751 0.036 94.2 93.2
32 0.5 Unbalanced Estimating equations (wi =1) 0.749 0.052 94.0 92.4
32 0.5 Unbalanced Estimating equations (wi =opt(est)) 0.753 0.037 93.6 93.0
32 0.5 Unbalanced Estimating equations (wi =opt(true)) 0.751 0.036 94.6 92.6
32 0.5 Unbalanced MLE 0.751 0.036 94.4

32 Heterogeneous Unbalanced Estimating equations (wi =MH) 0.750 0.025 95.2 93.8
32 Heterogeneous Unbalanced Estimating equations (wi =1) 0.752 0.047 93.4 92.4
32 Heterogeneous Unbalanced Estimating equations (wi =opt(est)) 0.754 0.024 93.8 91.0
32 Heterogeneous Unbalanced Estimating equations (wi =opt(true)) 0.750 0.025 95.2 92.8
32 Heterogeneous Unbalanced MLE 0.750 0.024 94.6

32 0.5 10 Estimating equations (wi =MH) 0.751 0.071 94.0 93.0
32 0.5 10 Estimating equations (wi =opt(est)) 0.771 0.067 95.0 93.8
32 0.5 10 Estimating equations (wi =opt(true)) 0.751 0.071 94.0 93.0
32 0.5 10 MLE 0.749 0.071 93.2

32 Heterogeneous 10 Estimating equations (wi =MH) 0.755 0.062 94.8 96.0
32 Heterogeneous 10 Estimating equations (wi =opt(est)) 0.781 0.058 92.6 91.8
32 Heterogeneous 10 Estimating equations (wi =opt(true)) 0.755 0.062 94.8 96.0
32 Heterogeneous 10 MLE 0.752 0.067 91.4

32 0.5 3 Estimating equations (wi =MH) 0.760 0.126 94.2 94.4
32 0.5 3 Estimating equations (wi =opt(est)) 0.829 0.113 92.8 93.6
32 0.5 3 MLE 0.735 0.147 84.2

32 Heterogeneous 3 Estimating equations (wi =MH) 0.761 0.116 94.6 96.4
32 Heterogeneous 3 Estimating equations (wi =opt(est)) 0.829 0.098 87.0 86.7
32 Heterogeneous 3 MLE 0.743 0.126 80.6

4 0.5 10 Estimating equations (wi =MH) 0.767 0.207 95.0 85.6
4 0.5 10 Estimating equations (wi =opt(est)) 0.782 0.200 95.6 85.0
4 0.5 10 MLE 0.771 0.212 93.6

4 Heterogeneous 10 Estimating equations (wi =MH) 0.770 0.192 94.8 86.8
4 Heterogeneous 10 Estimating equations (wi =opt(est)) 0.780 0.173 94.6 81.4
4 Heterogeneous 10 MLE 0.770 0.182 92.6

case; also in this case the MLE is less eBcient. There is little di;erence in the coverage rates
of the binomial and the robust based conHdence intervals for the estimating equation method,
and both appear adequate, except for I =4 when the robust conHdence intervals appear to be
too narrow.
Table IV shows the results for the comparison of the Mantel–Haenszel estimating equation

method with the MLE, with the particular emphasis on the e;ect of overdispersion. All results
here are for I =32. The results for bias and eBciency are not shown because there was no
evidence of bias or di;erences in eBciency. The results show that the standard errors based
on the binomial distribution can lead to reduced coverage rates when there is overdispersion;
this is particularly the case if �i is heterogeneous and N is unbalanced. The coverage rates
of the robust conHdence intervals are less a;ected by overdispersion.
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Table IV. Monte Carlo results, comparisons of coverage rates of MLE and estimating equation
approach, e;ect of overdispersion.

Design Estimating equations MLE
 i �i N Binomial Robust Binomial

0.75 0.5 10 94.0 93.0 93.2
0.75 Heterogeneous 10 94.8 96.0 91.4
0.75 0.5 Unbalanced 94.2 93.2 94.4
0.75 Heterogeneous Unbalanced 95.2 93.8 94.6
�(9; 3) 0.5 10 93.0 93.8 92.0
�(9; 3) Heterogeneous 10 91.2 94.0 87.2
�(9; 3) 0.5 Unbalanced 85.8 93.0 85.8
�(9; 3) Heterogeneous Unbalanced 74.2 90.4 66.4

Table V shows the results for the comparison of the MLE, Bayesian method and the
estimating equations method. For the estimating equation approach the robust standard errors
are used. Because of the computational intensity, only a few scenarios were considered here.
The results show very little bias except for the Bayesian scheme for small I . Other than this
the Bayesian and the MLE results are very similar. There is very little di;erence between
the eBciency of the three methods except for small I where the Bayesian scheme is less
eBcient. The e;ect of overdispersion leads to inadequate coverage rates of the MLE and
Bayesian schemes, but not in general for the estimating equation approach. The relative merits
of the three schemes appear not to be inMuenced by whether the �i’s are homogeneous or
heterogeneous and by whether N is unbalanced or balanced. The case N =1000 is included
to emphasize the poor performance of the MLE and Bayes procedures for this model in the
case of overdispersion. Changing the prior distribution on �i and � in the Bayesian scheme
had no real e;ect.

4.2. Two covariate case

In this part of the study we used two covariates with design points given by the real data in
Table I. The true value of the �’s are given by the MLE results in line 1 of Table II. The
true value of the �’s were either the MLE results (labelled Heterogeneous) or 0.26 for all i.
We generated data from both a correct model and an overdispersed model. For the overdis-
persion case, values of  i were generated from a beta(a(i); 3) where a(i)=3× exp(Xi�).
All results are based on 1000 replications. We experienced a few cases for which the esti-
mating equations solution or the MLE were abnormally large. To avoid the e;ect of these
outliers on the summary of the Hndings we used median and interquartile range, instead
of mean and SD to express the bias and eBciency. The results are given in Table VI.
Unlike the no covariate case we do see more di;erences between the EE and MLE ap-
proaches. For the no overdispersion case the MLE is more eBcient. Using MH weights is
more eBcient than unweighted estimating equations, but somewhat surprisingly gives worse
coverage rate of conHdence intervals. Overdispersion has less e;ect on properties of the EE
approach, but does result in a loss of eBciency and poor coverage rate for the MLE ap-
proach.
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Table V. Monte Carlo results, comparisons of MLE, Bayesian and estimating equation approach.

I  i �i N Method Mean SD Coverage

32 0.75 Heterogeneous Unbalanced Bayes 0.745 0.023 93.8
32 0.75 Heterogeneous Unbalanced MLE 0.748 0.023 94.4
32 0.75 Heterogeneous Unbalanced Estimating equations (MH) 0.749 0.025 93.2

32 �(9; 3) Heterogeneous Unbalanced Bayes 0.757 0.044 73.8
32 �(9; 3) Heterogeneous Unbalanced MLE 0.761 0.044 72.8
32 �(9; 3) Heterogeneous Unbalanced Estimating equations (MH) 0.752 0.042 92.2

32 0.75 Heterogeneous 10 Bayes 0.754 0.072 88.2
32 0.75 Heterogeneous 10 MLE 0.759 0.070 92.2
32 0.75 Heterogeneous 10 Estimating equations (MH) 0.754 0.068 94.8

32 �(9; 3) Heterogeneous 10 Bayes 0.751 0.075 88.0
32 �(9; 3) Heterogeneous 10 MLE 0.752 0.074 91.2
32 �(9; 3) Heterogeneous 10 Estimating equations (MH) 0.749 0.070 91.2

32 0.75 0.5 Unbalanced Bayes 0.740 0.034 93.8
32 0.75 0.5 Unbalanced MLE 0.751 0.035 95.2
32 0.75 0.5 Unbalanced Estimating equations (MH) 0.751 0.035 92.6

32 �(9; 3) 0.5 Unbalanced Bayes 0.746 0.045 87.0
32 �(9; 3) 0.5 Unbalanced MLE 0.758 0.045 87.8
32 �(9; 3) 0.5 Unbalanced Estimating equations (MH) 0.752 0.045 94.4

4 0.75 Heterogeneous Unbalanced Bayes 0.781 0.090 85.6
4 0.75 Heterogeneous Unbalanced MLE 0.754 0.068 95.0
4 0.75 Heterogeneous Unbalanced Estimating equations (MH) 0.754 0.071 77.2

4 �(9; 3) Heterogeneous Unbalanced Bayes 0.772 0.146 59.0
4 �(9; 3) Heterogeneous Unbalanced MLE 0.745 0.128 67.4
4 �(9; 3) Heterogeneous Unbalanced Estimating equations (MH) 0.741 0.123 59.8

32 0.75 Heterogeneous 1000 Bayes 0.750 0.0059 93.8
32 0.75 Heterogeneous 1000 MLE 0.750 0.0059 95.8
32 0.75 Heterogeneous 1000 Estimating equations (MH) 0.750 0.0064 93.8

32 �(9; 3) Heterogeneous 1000 Bayes 0.758 0.027 30.6
32 �(9; 3) Heterogeneous 1000 MLE 0.758 0.027 30.2
32 �(9; 3) Heterogeneous 1000 Estimating equations (MH) 0.750 0.024 94.4

32 0.75 Heterogeneous Unbalanced Bayes; Prior(�i ∼ beta(2; 3)) 0.745 0.024 94.2
32 �(9; 3) Heterogeneous Unbalanced Bayes; Prior(�i ∼ beta(2; 3)) 0.753 0.046 67.4
32 0.75 Heterogeneous Unbalanced Bayes; Prior(�∼N(0; 1)) 0.746 0.025 92.6
32 �(9; 3) Heterogeneous Unbalanced Bayes; Prior(�∼N(0; 1)) 0.756 0.044 71.2

5. DISCUSSION

The results in this paper show that the estimating approach with Mantel–Haenszel weights is
a useful method of analysing data when the response is the ratio of binomial probabilities in
the case of a large number of strata. The MLE is inconsistent in this case, although there did
not appear to be any meaningful bias in our study. Large I and small N would be needed for
the bias to be substantial. The estimating equation approach appears to handle overdispersion
better than the two likelihood based approaches. However, in fairness to these two methods,
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Table VI. Monte Carlo results for two covariate case. Comparisons of MLE and estimating equation (EE)
approach, e;ect of di;erent weights and overdispersion.

I �i Over Method �1 IQR 95 per cent �2 IQR 95 per cent
dispersion Median CI Median CI

True value −0:152 0.0803
25 Heterogeneous No EE (wi =1) −0:148 0.063 91.5 0.079 0.038 93.9
25 Heterogeneous No EE (wi =MH) −0:146 0.053 84.7 0.075 0.029 88.8
25 Heterogeneous No MLE −0:146 0.040 93.1 0.074 0.027 93.9

25 0.26 No EE (wi =1) −0:148 0.080 91.2 0.080 0.039 94.7
25 0.26 No EE (wi =MH) −0:145 0.058 88.4 0.074 0.024 92.3
25 0.26 No MLE −0:151 0.042 94.3 0.073 0.022 93.9

25 Heterogeneous Yes EE (wi =1) −0:153 0.069 94.0 0.080 0.051 92.8
25 Heterogeneous Yes EE (wi =MH) −0:149 0.064 90.9 0.075 0.051 90.0
25 Heterogeneous Yes MLE −0:154 0.071 79.2 0.077 0.052 69.1

25 0.26 Yes EE (wi =1) −0:151 0.081 92.5 0.081 0.047 94.9
25 0.26 Yes EE (wi =MH) −0:151 0.067 92.2 0.076 0.050 87.9
25 0.26 Yes MLE −0:158 0.076 74.5 0.078 0.051 68.1

they could be adapted to allow for overdispersion. For example, using robust standard errors
or standard errors from the least squares approach mentioned in Section 2.2 would achieve
this for the MLE. The model used in the Bayesian approach could be extended. The results
labelled Bayes OD in Table II are for an overdispersed version of each model. In these
models each  i is assumed to have a beta(b i; b) distribution, where  i is chosen so that
the beta has the correct mean as given by equations (3) and (4). The parameter b allows
for overdispersion. There is little information in this data with regards to b, consequently we
decide to Hx b, and we started with an initial choice of b=3. Exploration of the prior SD of
 i given  i =0:5 and b in the range of one to ten suggested that the choice did not matter
greatly, and that b=1 was perhaps too small and b=10 was perhaps too large, and so we
kept our original choice of b=3. We note that other ways of determining overdispersion
are possible. We see that including overdispersion, while changing the point estimates, more
importantly increases the posterior standard deviations to a value more consistent with the
estimating equation values.
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