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SUMMARY

This research develops non-parametric methodology for sequential monitoring of paired time-to-event
data when comparing years of life saved, or years where any unpleasant outcome is delayed, is of
interest. The recommended family of test statistics uses integrated di3erences in survival estimates
that are available during the study period, where adjustments are made for dependence in the survival
and censoring outcomes under comparison. In the context of paired censored survival data, the joint
asymptotic closed form distribution of these sequentially monitored test statistics is developed and
shown to have a dependent increments structure. Simulations verifying nice operating characteristics
of the proposed monitoring methods also reveal consequences of ignoring an underlying paired data
structure in terms of size and power properties. A motivating example is also presented via the Early
Treatment Diabetic Retinopathy Study, which did not have methods available for sequentially monitoring
paired censored survival data at the time. Copyright ? 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Paired designs have historically been utilized to minimize extraneous sources of variability in
making treatment comparisons. Advantages of this study design in positively correlated pairs
include increased power to detect treatment di3erences as compared to similarly sized studies
on independent treatment groups. Conversely, if a particular power is desired, paired designs
usually achieve the desired power with a smaller required sample size than designs involving
independent treatment groups. When paired designs are based on time-to-event endpoints that
are available very quickly, tests such as Wilcoxon’s signed-rank test or a standard paired
t-test may be employed in an analysis. In cases where the endpoint of interest takes longer to
observe, counterparts to the paired t-test that can accommodate right censoring are desirable.

A counterpart to the two-sample t-test for independent groups that has received attention in
the censored data setting is the years of life saved (YLS) test, which has been independently
developed for the group sequential setting by Murray and Tsiatis [1] and Li [2], after its initial
discussion by Pepe and Fleming [3]. These tests compare integrated Kaplan–Meier survival

∗Correspondence to: Susan Murray, Department of Biostatistics, University of Michigan, 1420 Washington Heights,
Ann Arbor, MI 48109, U.S.A.

†E-mail: skmurray@umich.edu

Received June 2000
Copyright ? 2002 John Wiley & Sons, Ltd. Accepted March 2001



178 S. MURRAY

estimates, sometimes weighted, during the study period. Murray [4] recently extended YLS
tests to accommodate paired censored survival data in the case of a single analysis. Since
integrated Kaplan–Meier curves correspond to the sample mean in the absence of censoring,
YLS tests constructed with correlated Kaplan–Meier curves are the closest relatives to the
paired t-test in the censored survival setting. YLS tests have been frequently lauded as an
alternative to the logrank (LR) test, particularly attractive when hazards are not proportional
in nature, and are straightforward to communicate to audiences with an emphasis in clinical
rather than statistical training. For instance, in collaborating with diabetic retinopathy investi-
gators in studying paired censored time to vision loss, YLS methods provide point estimates
and conHdence intervals on the average extended time of vision for eyes on the superior
intervention during the study period.

The Early Treatment Diabetic Retinopathy Study (ETDRS) Research Group collected in-
formation on severe vision loss in patients suited to this purpose, where severe visual loss
was deHned as visual acuity less than 5=200 at two consecutive visits. This group enrolled
3711 patients with mild-to-severe non-proliferative or early proliferative diabetic retinopathy
in both eyes from April 1980 to July 1985 [5; 6]. One eye of each patient was randomized
to early photocoagulation and the other to deferral of photocoagulation until such time when
high-risk proliferative retinopathy was detected. Because patients were recruited and followed
in the ETDRS over a period of nine years, ethical considerations required periodic monitoring
of accumulating time-to-event data in order to ensure timely detection of treatment beneHts or
detriments among the study participants. The ETDRS therefore would prepare reports at least
twice a year for a Data Monitoring Committee that would subsequently use the information
in determining whether the trial should end early or be continued. Hence appropriate YLS
analysis methods require correct handling of censoring, pairing and sequential monitoring is-
sues with respect to the data. Principles of group sequential monitoring outlined by Pocock
[7], O’Brien and Fleming [8] and Lan and DeMets [9] set the standard for extending YLS
methods to paired censored survival data monitored in the ETDRS trial.

So far little group sequential methodology has been developed for use in the paired censored
survival data setting as in the ETDRS. Chang et al. [10] considered sequential methods for
frailty models assuming common pair entry times. Murray [11] developed methods for group
sequential monitoring of paired weighted LR tests that allowed entry times to vary within
the correlated pairs. Other authors have studied sequential designs for independent treatment
groups where multiple correlated censored survival outcomes are monitored. For instance,
Lin [12] devised a non-parametric weighted linear rank statistic for monitoring correlated
non-identically distributed outcome types subject to censoring across two independent groups,
while Muñoz et al. [13] proposed parametric models for sequentially monitoring correlated
pairs of similar outcome types subject to censoring across independent groups. However, group
sequential development of the YLS method for matched pair experiments with censored data
is currently unavailable for studies designed similarly to the ETDRS.

This research makes available methods for sequential analysis of paired YLS tests. As in all
group sequential methods, the key to the sequential monitoring lies in understanding the joint
distribution of the repeated statistical tests. Section 2 describes the paired YLS test in the case
where a single analysis takes place and the joint distribution of these tests at di3erent analysis
times. Results from this section reveal that the dependent nature of the paired outcomes
belies any possibility of an independent increments covariance structure of the repeated tests.
Indications for how to use the joint distribution to produce stopping boundaries are also
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given in this section. Simulations verifying the operating characteristics of the recommended
sequential monitoring procedure are given in Section 3. Comparisons are made with sequential
monitoring procedures that do not account for the dependent structure of the paired censored
time-to-event outcomes. In Section 4, an example relating to the ETDRS study is given. A
discussion follows in Section 5.

2. JOINT DISTRIBUTION OF PAIRED YLS STATISTICS

To understand concepts relating to sequential theory in the setting of dependent time-to-event
outcomes being compared across time, an explanation of notation is required. Let g=1; 2
denote treatment group and i=1; : : : ; n denote either an individual who experiences both treat-
ments, as in the previously mentioned ETDRS example, or potentially a matched pair whose
members are randomized to receive opposing treatment regimens, as in a study on siblings.
These n individuals or n matched pairs enter the trial at times Egi, for i=1; : : : ; n and g = 1; 2
during the accrual period. In many cases E1i =E2i, referring to the single entry time of an
individual denoted by i, otherwise E1i and E2i denote potentially di3erent entry times. Entry
times are assumed to be identically distributed within treatment group g with Eg1i1 independent
of Eg2i2 for i1 �= i2. Each individual or matched pair denoted by i has two correlated survival
times Tgi; g=1; 2 measured from the time of entry. For instance in the ETDRS, T1i and
T2i measure time from randomization to an objective measure of severe vision loss for eyes
randomized to deferred and early photocoagulation, respectively, within an individual. Time-
to-event outcomes for each individual or matched pair that have not occurred prior to the
time of analysis are censored. For instance, if the data were analysed at calendar time t, one
would censor outcomes where Tgi¿t−Egi. The notation Vgi, g=1; 2, i=1; : : : ; n, will be used
to refer to the potential censoring times due to random loss to follow-up. Aside from potential
dependence allowed between E1i and E2i, between T1i and T2i, and between V1i and V2i, it is
assumed that Egi, Vgi and Tgi are independent for all g=1; 2 and i=1; : : : ; n. If the data were
analysed at calendar time t, then the observable random variables for treatment group g would
be {Xgi(t);Ogi(t)}, for all i=1; : : : ; n such that Egi6t, where Xgi(t)=min(Tgi; Vgi; t − Egi) is
the observed time on study at analysis time t and Ogi(t)= I{Tgi6min(t−Egi; Vgi)} denotes the
failure indicator at calendar time t. Indices referring to calendar time measured from the start
of the study, and indices referring to time measured from a patient’s entry into the study will
frequently be used in combination. Hence note that the index ‘t’ will index calendar time of
an analysis, and the index ‘x’ will index time from entry into the study, commonly referred
to as study time.

DeHne the total sample size enrolled at calendar time t in group g as ng(t)=
∑n

i=1 I(Egi6t).
In order to keep track of the number of correlated entered pairs across treatment groups
g1; g2 and calendar times t1; t2 we deHne ng1g2 (t1; t2)=

∑n
i=1 I(Eg1i6t1; Eg2i6t2). Note that when

pairs of dependent outcomes are attributed to an individual, one will often have n1(t)= n2(t)
= n12(t; t). If at the Hnal analysis time all treatment pairs have been entered, one will have
n1(t)= n2(t)= n12(t; t)= n. However this method also allows for the case where some indi-
vidual pair members remain unentered at the time of the Hnal analysis, as long as the number
of complete pairs entered is approaching inHnity.

For each treatment group g and calendar analysis time t, deHne the number of individuals at
risk at study time x as Yg(t; x)=

∑n
i=1 I{Xgi(t)¿x} and let J (t; x)=1 if Y1(t; x)Y2(t; x)¿0 and
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J (t; x)=0 otherwise. Let n∗(t)= n1(t)n2(t)={n1(t) + n2(t)}. At each analysis time t, consider
a paired YLS test

T(t)= {n∗(t)} 1
2

∫ ∞

0
J (t; u){Ŝ1(t; u)− Ŝ2(t; u)} du (1)

where Ŝg(t; x) is the Kaplan–Meier survival estimate for the true survival at study time x; Sg(x),
using information available for all individuals entered in group g at analysis time t, regardless
of whether their correlated counterpart has entered the study or not. The remainder of this
section describes results on variability of this statistic when it is sequentially monitored and
methods for Hnding statistical signiHcance cutpoints that will protect the overall type I error
rate of the trial. Some readers may choose to avoid notational deHnitions relating to the
covariance structure of the sequentially monitored statistics by skipping ahead to the last
paragraph of this section.

The variability of this statistic at a single analysis time requires notation relating to joint
and conditional hazards of the correlated endpoints. It will later be convenient to allow for the
correlated random variables of interest in the following deHnitions to have di3erent amounts
of calendar time follow-up according to their use at analysis times t1 and t2. DeHnitions
appropriate for a single analysis time would use t1 = t2 = t. Also, to reduce notation, the index
i referring to the individual or matched pair will be suppressed in the following deHnitions of
joint and conditional terms. DeHne �g1g2{(t1; x1); (t2; x2)}= limO x1 ;O x2→0 P(x16Xg1 (t1)¡x1 +
Ox1; x26Xg2 (t2)¡x2 + Ox2; Og1 (t1)=1; Og2 (t2)=1|Xg1 (t1)¿x1; Xg2 (t2)¿x2)=(Ox1Ox2) to
be a joint hazard function for the correlated endpoints in treatment groups g1 �= g2 at study
times x1 and x2 where outcomes related to g1 are subject to data available at calendar time t1
and outcomes related to g2 are subject to data available at calendar time t2, (06x16t1; 06x26t2).
Also deHne the conditional hazard function �g1|g2{(t1; x1)|(t2; x2)}= limO x1→0 P(x16Xg1 (t1)¡
x1 +Ox1;Og1 (t1)=1|Xg1 (t1)¿x1; Xg2 (t2)¿x2)=Ox1, which may be interpreted as the hazard of
failure for treatment group g1 at study time x1 where again outcomes related to g1 are subject
to data available at calendar time t1 and outcomes related to g2 are subject to data available
at calendar time t2 and where the risk set is restricted to those patients with Xg1 (t1)¿x1
and Xg2 (t2)¿x2, (06x16t1; 06x26t2). Also deHne the marginal hazard for treatment group
g at calendar time t and study time x, 06x6t, to be �g(t; x)= limO x→0 P(x6Xg(t)¡x +
Ox;Og(t)=1|Xg(t)¿x)=(Ox), which under the random censorship assumptions previously
described reduces to the true hazard of Tg, �g(x), and is not dependent on analysis time t. Let

Bg1g2{(t1; x1); (t2; x2)}=
P(Xg1 (t1)¿x1; Xg2 (t2)¿x2|Eg16t1; Eg26t2)

P(Xg1 (t1)¿x1|Eg16t1)P(Xg2 (t2)¿x2|Eg26t2)

DeHne

Gg1g2{(t1; x1); (t2; x2)}= Bg1g2{(t1; x1); (t2; x2)}[�g1g2{(t1; x1); (t2; x2)}
−�g1|g2{(t1; x1)|(t2; x2)}�g2 (x2)− �g2|g1{(t2; x2)|(t1; x1)}�g1 (x1)

+�g1 (x1)�g2 (x2)]

Also, to reduce notation, deHne A(t; x)=
∫∞
x p(t; u)S(u) du, where p(t; x)= I [P{X1(t)¿x}

×P{X2(t)¿x}¿0]. In the case where a single analysis occurs at analysis time t, the
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asymptotic variance of T(t) is

�2(t) =
2∑

g=1

�1(t)�2(t)
�g(t)

[∫ ∞

0

{Ag(t; u)}2�g(u)
P(Xg(t)¿u|Eg6t)

du
]

−�(t)
∫ ∞

0

∫ ∞

0
A1(t; u)A2(t; v)G12{(t; u); (t; v)} dv du

where �g(t)= lim{n1(t); n2(t)→∞} ng(t)={n1(t) + n2(t)} is the probability at calendar time t of
being entered into treatment group g with estimate �̂g(t)= ng(t)={n1(t) + n2(t)} and �(t)
= lim{n12(t; t)→∞} 2n12(t; t)={n1(t)+n2(t)} is the sampling proportion of dependent observations
in the two treatment groups at calendar time t with estimate �̂(t)=2n12(t; t)={n1(t) + n2(t)}.
Pooled and unpooled estimation procedures for �2(t) are given in the Appendix. In many
cases where individuals are entered into the study and immediately given the two competing
treatments as in the ETDRS example, �g(t)=0:5 and �(t)=1. In cases where matched pairs
have di3erent random entry times into the trial there may be a subset of individual pair
members with an unentered counterpart at the time of analysis t and �(t) can be interpreted
as a3ecting the degree to which the Hnal term of �2(t) deviates from the usual variance
under independent treatment groups. Also note that when censored time-to-event pairs are
truly independent in nature, �2(t) will correspond to the usual variance described by Pepe
and Fleming under independent treatment groups.

Further notation is required to describe the covariance of T(t1) and T(t2), where without
loss of generality this paper will assume t16t2. Let Hg(t; x)=P(Eg6t − x; Vg¿x|Eg6t) be
the censoring survival distribution among individuals in treatment group g entered by calen-
dar time t. DeHne �g(t1|t2)= lim{ng(t1)→∞} ng(t1)=ng(t2) as the probability of entry in group
g by t1 given entry in group g by t2 with estimate �̂g(t1|t2)=ng(t1)=ng(t2). Let �g1g2 (t1; t2)=
lim{ng1g2 (t1 ; t2)→∞} 2ng1g2 (t1; t2)={ng1 (t1) + ng2 (t2)} be the sampling proportion of dependent ob-
servations in treatment group g1 at analysis time t1 and treatment group g2 at analysis time t2
with estimate �̂g1g2 (t1; t2) = 2ng1g2 (t1; t2)={ng1 (t1)+ng2 (t2)}. Let �g1g2 (t1; t2)= lim{ng1(t1); ng2(t2)→∞}
ng1 (t1)={ng1 (t1) + ng2 (t2)} be the sampling proportion of observations available at analysis
time t1 from treatment group g1 among the total number of observations available for treat-
ment group g1 at analysis time t1 and for treatment group g2 at analysis time t2 with es-
timate �̂g1g2 (t1; t2) = ng1 (t1)={ng1 (t1) + ng2 (t2)}. DeHne  g1g2 (t1; t2)=

1
2{�3−g1 (t1)�3−g2 (t2)}1=2

�g1g2 (t1; t2)([�g1g2 (t1; t2)={1 − �g1g2 (t1; t2)}]1=2 + [�g2g1 (t2; t1)={1 − �g2g1 (t2; t1)}]1=2). An estimator,
 ̂ g1g2 (t1; t2), for  g1g2 (t1; t2) is constructed easily from the estimates of its components.

Finally, the covariance of T(t1) and T(t2) is

�(t1; t2) =
2∑

g=1
{�3−g(t1)�3−g(t2)�g(t1|t2)}1=2

×
∫ ∞

0
Ag(t1; u)Ag(t2; u){Sg(u)Hg(t2; u)}−1�g(u) du

−
2∑

g=1
 g(3−g)(t1; t2)

∫ ∞

0

∫ ∞

0
Ag(t1; u)A3−g(t2; v)Gg(3−g){(t1; u); (t2; v)} dv du
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as shown in the Appendix where pooled and unpooled estimates for �(t1; t2) are also lo-
cated. Note that when ng(t1)= ng(t2)= ngg(t1; t2);  gg(t1; t2) reduces to �3−g(t1)=�3−g(t2) and
�g(t1|t2) becomes one. If in addition t1 = t2 = t, �(t1; t2) reduces to �2(t). In general the covari-
ance between T(t1) and T(t2) does not reduce to the variance at the earlier interim analysis.
The joint distribution of T(t1) and T(t2) does not have an independent increments structure.
This di3ers somewhat from the independent treatment group case, where deHning J (t; x) terms
to be equivalent at all analysis times t would result in an independent increments structure.

To calculate sequential boundaries in this non-independent increments case, one may use
Monte Carlo numerical integration techniques in relation to the joint distribution of the test
statistics at the various analysis times. First a suitable spending function is selected such
as the O’Brien–Fleming (OF) styled spending function !OF(vj)=2 − 2S(z!=2=

√vj), where vj
corresponds to some surrogate for the proportion of information collected at the jth interim
analysis time. The surrogate for the proportion of information collected may be chosen to
reTect the percentage of calendar time elapsed toward the planned length of the study or may
be chosen as the percentage of observed events at the analysis time of those required by the
end of the study to achieve the designed power. Both of these choices would be known at the
design stage of a clinical trial and either would be appropriate in terms of protecting type I
error of the trial. Next the covariance structure between the current and all previous T(t) test
statistics calculated during the course of the trial using the observed data is estimated. At the
jth analysis time boundary cutpoints, c1; : : : ; cj, must be chosen so that

P(|T(t1)|¡c1; : : : ; |T(tj−1)|¡cj−1; |T(tj)|¿cj)

= P(|T(tj)|¿cj
∣∣ |T(t1)|¡c1; : : : ; |T(tj−1)|¡cj−1)P(|T(t1)|¡c1; : : : ; |T(tj−1)|¡cj−1)

= !OF(vj)− !OF(vj−1)

the type I error to be spent at the jth analysis time. Multivariate mean zero normal random
variables with the observed covariance structure are simulated and used to estimate appropriate
cut-o3 points for the statistics at the di3erent analysis times. The process is recursive in
nature. For instance after determining c1; : : : ; cj−1, one may easily use the multivariate normal
replicates to estimate P(|T(t1)|¡c1; : : : ; |T(tj−1)|¡cj−1) and the boundary cj may be found
by considering the tails of the marginal distribution corresponding to the jth analysis time
among multivariate replicates that did not surpass cutpoints at previous analysis times. An
example using ETDRS data in Section 4 provides additional instruction on how these simulated
boundaries are constructed.

3. SIMULATION RESULTS

In order to verify size of the proposed sequential monitoring strategy, 1000 Monte Carlo
simulations under the null hypothesis of no treatment di3erence were conducted using 150
failure time pairs generated from the bivariate log-normal distribution, where correlations
examined between the two failure times on the log scale were {0 per cent, 30 per cent,
60 per cent, 90 per cent}. Log scale means and variances were 0.3 and 1, respectively, for
each of the two treatment group failure times. Common and independent entry-time scenarios
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Table I. Size and power results for paired and unpaired tests.

Entry-time correlation Event-time correlation (log scale)
0% 30% 60% 90%

Size results Paired YLS 1 0.046 0.045 0.048 0.040
0 0.055 0.043 0.039 0.046

YLS 1 0.043 0.026 0.005 0.000
0 0.057 0.022 0.003 0.000

Power results Paired YLS 1 0.361 0.464 0.691 0.995
0 0.373 0.473 0.663 0.997

YLS 1 0.368 0.329 0.321 0.179
0 0.375 0.322 0.314 0.172

A total of 1000 Monte Carlo simulations with 150 censored failure time pairs were generated.
Empirical variance and covariance estimates for the test statistics over 1000 simulations corresponded closely with
the average closed form variance and covariance estimates.

for pair members were simulated using the Uniform(0, 1) distribution. Interim analyses were
conducted at years 3, 4 and 5 using calendar time as a surrogate for statistical information
in the O’Brien–Fleming spending function with an overall type I error of 0.05. Observed
paired and unpaired YLS test sizes in increasing order of correlation using pooled estimates
for variances and covariances are located in the upper panel of Table I. Similar results were
observed using unpooled variance and covariance estimates. Sizes corresponding to the paired
tests have appropriate type I error levels for all degrees of correlation, while unpaired tests
become increasingly conservative as underlying correlation in the survival times grows. Entry-
time correlation appears to have little bearing on the performance of the sequentially monitored
tests.

To study operating characteristics under an alternative hypothesis, 150 failure time pairs
were generated from the bivariate log-normal distribution with log scale means of (0.5, 0.3)
with variability parameters unchanged from the simulations described above. Results for paired
and unpaired tests are located in the lower panel of Table I using the O’Brien–Fleming spend-
ing function and pooled variance and covariance estimates. Note that in all simulations con-
ducted under the alternative hypothesis, the marginal distributions of the two groups under
comparison remain unchanged. Monitoring strategies that take into account the paired corre-
lation structure increase in power with growing correlation in survival times for comparable
group marginal distributions. In contrast, the usual sequential monitoring strategy that does
not take into account dependence between paired survival outcomes loses substantial power
as correlation in paired survival times increases. These unattractive power and size results
related to unpaired tests are likely an artefact of the two estimated survival curves tending to
vary in tandem in the presence of positive correlation and give evidence that accounting for
the dependent structure of the data is a crucial step in the group sequential analysis.

4. EXAMPLE

Recall the Early Treatment Diabetic Retinopathy Study (ETDRS) described in the introduc-
tion, which enrolled 3711 patients with mild-to-severe non-proliferative or early proliferative
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Table II. ETDRS observed YLS and integrated hazard di3erences with corresponding
critical values for paired and unpaired analyses.

Analysis Spent Observed integrated Paired LR LR Observed Paired YLS YLS
error hazard di3erence boundary boundary YLS boundary boundary

1 2.85×10−5 0.010 0.024 0.028 14.70 31.35 34.01
2 1.42×10−4 0.014 0.023 0.028 21.42 30.04 41.11
3 5.74×10−4 0.021 0.023 0.029 31.46 36.00 44.11
4 1.18×10−3 0.024 0.025 0.030 33.56 38.25 45.39
5 1.31×10−3 0.022 0.025 0.030 31.65 39.16 49.50
6 2.34×10−3 0.023 0.025 0.031 38.14 41.21 53.03
7 1.33×10−3 0.021 0.025 0.032 41.34 42.86 54.79
8∗ 2.27×10−3 0.026 0.025 0.031 52.95 47.06 57.94
9 8.29×10−4 0.027 0.026 0.032 59.92 51.86 64.56

∗Null hypothesis rejected using paired boundaries at this analysis time.

diabetic retinopathy in both eyes and randomized one eye of each patient to early photo-
coagulation and the other to deferral of photocoagulation until a later time when high-risk
proliferative retinopathy was detected. The major endpoint of interest was time to severe
visual loss. The Data Monitoring Committee prepared interim reports approximately twice
a year using statistical methods of comparison which did not take into account the pairing
of eyes on study. The Hrst interim analysis took place when 50 events had occurred across
the two comparison groups. A statistically signiHcant result during monitoring was deHned as
a test statistic with corresponding p-value less than 0.01. The Data Monitoring Committee,
which did not have access to methodology for sequentially monitoring paired censored sur-
vival data, nevertheless recognized the statistical issues relating to the correlated structure of
the data. Some exploratory analysis on their part suggested ‘that not taking pairing into ac-
count led to conservative tests (reference [5], p. 749)’. However, with their large sample size
they were still able to detect a longer time to sight deterioration with early photocoagulation.

As an example of the proposed analysis methods which take into account the natural pairing
of the data, the ETDRS study is revisited. To make this example more interesting, the analysis
is restricted to those 999 patients (1998 eyes) who entered the study prior to 15 February
1983 and who were simultaneously taking a placebo pill as part of a separate randomization,
reducing by nearly 75 per cent the sample size of the original ETDRS study. Following the
example of the ETDRS study, the Hrst analysis will take place using data that would have
been available on 8 April 1985, when 50 events had been observed, and continue twice a
year until 8 April 1989 for a total of nine interim analyses. However, this example will use
a more conservative type I error than the original study. After nine analyses, the following
strategy will have merely a 1 per cent type I error overall instead of the originally planned
1 per cent error per interim analysis. An O’Brien–Fleming spending function will be employed
where the ratio of deaths observed by the interim analysis compared to the total deaths on 8
April 1989 is used as a surrogate for the proportion of information collected. Note that in a
prospective clinical trial, one would estimate the total number of deaths required for a well
powered design at the last analysis time in this computation.

Results in Table II include interim analysis number, type I error spent at each analysis
time, observed integrated hazard di3erences corresponding to a LR test analysis approach, the
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average extended days of sight observed in the early photocoagulation treatment arm during
the study period ({n∗(t)}−1=2T) and sequential boundaries corresponding to paired and un-
paired YLS and LR tests at the nine analysis times. Paired and unpaired LR boundaries were
calculated as in Murray [11]. To determine appropriate sequential boundary cutpoints for the
YLS analyses, Monte Carlo numerical integration strategies were employed in relation to the
joint distribution of the test statistics at the nine interim analyses. First a covariance matrix
corresponding to these observed integrated survival di3erences was constructed using pooled
formulae outlined in the Appendix. Multivariate mean zero normal random variables with the
observed covariance structure were then simulated. At the jth analysis time, j=1; : : : ; 9, bound-
ary cutpoints c1; : : : ; cj were chosen so that P(|T(t1)|¡c1; : : : ; |T(tj−1)|¡cj−1; |T(tj)|¿cj) was
equal to the type I error to be spent at the jth analysis time. SpeciHcally, the Hrst cutpoint, c1,
identiHes the value which gives 2:85× 10−5 type I error in the tails of the marginal normal
distribution corresponding to the Hrst analysis time, so that P(|T(t1)|¿c1)=2:85× 10−5. The
Monte Carlo results gave c1 = 31:35 when monitoring with the paired YLS statistic. The sec-
ond cutpoint, c2, was chosen so that P(|T(t1)|¡31:35; |T(t2)|¿c2)=P(|T(t2)|¿c2

∣∣ |T(t1)|
¡31:35)P(|T(t1)|¡31:35) was equal to 1:42× 10−4. Hence the value of c2 = 30:04 was found
by considering the tails of the marginal normal distribution corresponding to the second anal-
ysis time in multivariate normal replicates that did not surpass the Hrst cutpoint at the Hrst
analysis time in combination with the Monte Carlo estimate of P(|T(t1)|¡31:35). Similarly
the value of c3 = 36:00 was determined by considering the tails of the marginal normal dis-
tribution corresponding to the third analysis time among multivariate normal replicates that
did not surpass cutpoints at previous analysis times in combination with the Monte Carlo
estimate of P(|T(t1)|¡31:35; |T(t2)|¡30:04), and so on. In studying the various sequential
boundaries in Table II, the null hypothesis was rejected at the 0.01 level at the eighth analysis
time using either the paired YLS or the paired LR test. At this analysis 52.95 extra days of
sight were observed on average in the Hrst 8.47 years of observation in the early photocoag-
ulation group (95 per cent conHdence interval 19.36, 86.54 extra days of sight), although this
estimate and corresponding conHdence interval are slightly inTated due to the nature of the
sequential stopping rule. Neither of the monitoring strategies that ignore the correlated nature
of the pairs was able to achieve statistical signiHcance in this smaller data set.

5. DISCUSSION

This research presents closed form asymptotic distributions of years of life saved tests for
use with paired censored survival data and makes available new group sequential monitoring
procedures related to these statistics. In studying the joint structure of the recommended test
statistics computed over time, asymptotic closed form variances and covariances of the test
statistics are provided. Based on these closed form quantities, pooled and unpooled variance
and covariance estimates are proposed that, in combination with the recommended monitoring
procedure, perform very well towards the goal of protecting the overall type I error whether
one or multiple analyses are performed.

Methods in this research can also easily accommodate tests based on integrated weighted
di3erences in survival by including these weighting functions within the J (t; x) component of
the tests described herein. Theoretical development remains the same as long as the weighting
function converges in probability at all study times, x. If weighting is desired to capture early
survival di3erences with higher probability, for instance, a Hxed weighting function with higher
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weights at the earlier study times could capture this e3ectively. Users are cautioned about
selecting weights that depend on the censoring mechanism, since at each analysis time the
degree of censoring will change and a3ect the interpretation of the test statistic. This would
result in the trial design depending on changing alternatives across analysis times, t. The
interpretation issue cited here does not play a role in the sequential analyses of weighted LR
style tests, since weights in that setting are designed to emphasize areas where proportional
hazards are measured more accurately. Hence the interpretation of sequentially computed
weighted logrank statistics remains similar in the case of proportional hazards as the weights
change from analysis to analysis.

Currently many clinical trials that monitor paired survival endpoints, such as the ETDRS,
employ study designs based on independent samples. Also, because methods based on in-
dependent samples are readily available for monitoring purposes, the temptation is to use
already available methods while acknowledging their conservativeness. This research demon-
strates that taking advantage of the positive correlation structure in the paired outcomes gives
large beneHts in terms of both type I error and power. Simulations in Section 3 also indicate
that for paired censored survival data structures, power under the alternative hypothesis might
not even match the power aimed for in design when methods for independent samples are
used both in design and analysis stages of clinical research. This is a cause for concern in
current practice with this data structure that the proposed methods eliminate very nicely.

APPENDIX

A1. Covariance of T(t1) and T(t2)

For each treatment group g and calendar analysis time t, deHne the number of events oc-
curring no later than study time x as Ng(t; x)=

∑n
i=1 I{Xgi(t)6x;Ogi(t)=1} for 06x6t and

let Mg(t; x)=Ng(t; x) −
∫ x
0 �g(u)Yg(t; u) du. Consider T(t), which after an application of the

martingale central limit theorem is asymptotically equivalent in distribution to Z1(t) − Z2(t)
under the null hypothesis of no treatment di3erence, where

Zg(t)= {n∗(t)}1=2
∫ ∞

0
p(t; u)Sg(u)

∫ u

0
[nP{Xg(t)¿x}]−1 dMg(t; x) du:

The covariance of interest, cov{T(t1);T(t2)}; becomes

∑2

g=1
cov{Zg(t1); Zg(t2)} −

∑2

g=1
cov{Zg(t1); Z3−g(t2)}:

A result from Murray and Tsiatis [1] gives that Zg(t1) and Zg(t2) are asymptotically jointly
normal mean zero random variables with cov{Zg(t1); Zg(t2)}= {�3−g(t1)�3−g(t2)�g(t1|t2)}1=2 ×∫∞
0 Ag(t1; u)Ag(t2; u){Sg(u)Hg(t2; u)}−1�g(u) du. If our treatment groups were independent, then

this last result would give us all needed information to identify the joint distribution of T(t1)
and T(t2). In fact, under the assumption of independent treatment groups and J (t1; u)= J (t2; u)
for all t1; t2 one would have an independent increments setting. However, one also needs
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to identify cov{Zg1 (t1); Zg2 (t2)} for g1 �= g2. In this case an application of the multivariate
central limit theorem gives the result

cov{Zg1 (t1); Zg2 (t2)}=  g1g2 (t1; t2)
∫ ∞

0

∫ ∞

0
Ag1 (t1; u)Ag2 (t2; v)Gg1g2{(t1; u); (t2; v)} dv du:

So

�(t1; t2)≈
∑2

g=1
{�3−g(t1)�3−g(t2)�g(t1|t2)}1=2

×
∫ ∞

0
Ag(t1; u)Ag(t2; u){Sg(u)Hg(t2; u)}−1�g(u) du

−
∑2

g=1
 g(3−g)(t1; t2)

∫ ∞

0

∫ ∞

0
Ag(t1; u)A3−g(t2; v)

×Gg(3−g){(t1; u); (t2; v)} dv du

becomes the asymptotic covariance for T(t1) and T(t2). Taking t1 = t2 = t provides �2(t), the
variance of T(t) in the case of a single analysis as found in Murray [4].

A2. Estimation of variances and covariances in this paper

All asymptotic closed form variance and covariance terms in this paper are easily estimated.
However, additional notation is required. First note that in estimating joint and conditional
quantities in relation to group g1 at time t1 and group g2 at time t2, attention is restricted to
those k =1; : : : ; ng1g2 (t1; t2) correlated pairs where study entry has occurred for both members
of the pair at their respective analysis times. In estimating marginal quantities in relation to
group g at time t, all individual pair members entered into group g before time t will be
considered regardless of whether their correlated counterpart has been entered into the study.

Let Yg1g2{(t1; x1); (t2; x2)}=
∑ng1g2 (t1 ; t2)

k=1 I(Xg1k(t1)¿x1; Xg2k(t2)¿x2) count the number of cor-
related pairs where the pair member in group g1 at analysis time t1 is still at risk at
study time x1 and the pair member in group g2 at analysis time t2 is still at risk at study
time x2. Also, let dNg1g2{(t1; x1); (t2; x2)}=

∑ng1g2 (t1 ; t2)
k=1 I(x16Xg1k(t1)¡x1 + Ox1; x26Xg2k(t2)¡

x2+Ox2;Og1k(t1)=1;Og2k(t2)=1) count the number of correlated pairs where the pair mem-
ber in group g1 at analysis time t1 fails at study time x1 and the pair member in group g2 at
analysis time t2 fails at study time x2. Let dNg1|g2{(t1; x1)|(t2; x2)}=

∑ng1g2 (t1 ; t2)
k=1 I(x16Xg1k(t1)

¡x1 + Ox1; Xg2k(t2)¿x2;Og1k(t1)=1) count the number of correlated pairs where the pair
member in group g1 at analysis time t1 had been at risk until failing at study time x1 and the
pair member in group g2 at analysis time t2 remains at risk at study time x2. An unpooled
estimate for Gg1g2{(t1; x1); (t2; x2)} dx1 dx2 becomes

Ĝg1g2{(t1; x1); (t2; x2)}=
ng1 (t1)ng2 (t2)
ng1g2 (t1; t2)

Yg1g2{(t1; x1); (t2; x2)}
Yg1 (t1; x1)Yg2 (t2; x2)

[
dNg1g2{(t1; x1); (t2; x2)}
Yg1g2{(t1; x1); (t2; x2)}
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−dNg1|g2{(t1; x1)|(t2; x2)}dNg2 (t2; x2)
Yg1g2{(t1; x1); (t2; x2)}Yg2 (t2; x2)

−dNg2|g1{(t2; x2)|(t1; x1)}dNg1 (t2; x1)
Yg1g2{(t1; x1); (t2; x2)}Yg1 (t2; x1)

+
dNg1 (t2; x1)dNg2 (t2; x2)
Yg1 (t2; x1)Yg2 (t2; x2)

]

An unpooled estimate for Ag(t; x) is Âg(t; x)=
∫∞
x J (t; u)Ŝg(t; u) du. Hence an unpooled esti-

mate for �2(t) becomes

�̂2(t) =
2∑

g=1

�̂1(t)�̂2(t)
�̂g(t)

[∫ ∞

0
ng(t)

{Âg(t; u)}2 dNg(t; u)
{Yg(t; u)}2

]

−�̂(t)
∫ ∞

0

∫ ∞

0
Â1(t; u)Â2(t; v)Ĝ12{(t; u); (t; v)}

Under the null hypothesis, pooling may be employed in estimating elements of �2(t). Pooling
time-to-event data available from those entered prior to time t from groups g1 and g2, deHne
S̃(t; x) and ˜KM (t; x) as the pooled right-continuous and left-continuous versions of the Kaplan–
Meier estimator of the survivor function, respectively, relating to study time x. DeHne Ĥg(t; x)
as the Kaplan–Meier estimate of the left-continuous version of the censoring survival function
for group g at analysis time t. DeHne Ã(t; x)=

∫∞
0 J (t; u)S̃(t; u) du: Let WY (t; x)=Yg1 (t; x) +

Yg2 (t; x) and WN (t; x)=Ng1 (t; x) + Ng2 (t; x). A pooled estimate for Gg1g2{(t1; x1); (t2; x2)} dx1 dx2
becomes

G̃g1g2{(t1; x1); (t2; x2)}=
Yg1g2{(t1; x1); (t2; x2)}

ng1g2 (t1; t2) ˜KM (t1; x1) ˜KM (t2; x2)Ĥg1 (t1; x1)Ĥg2 (t2; x2)

×
[
dNg1g2{(t1; x1); (t2; x2)}
Yg1g2{(t1; x1); (t2; x2)}

− dNg1|g2{(t1; x1)|(t2; x2)}d WN (t2; x2)

Yg1g2{(t1; x1); (t2; x2)} WY (t2; x2)

−dNg2|g1{(t2; x2)|(t1; x1)}d WN (t2; x1)

Yg1g2{(t1; x1); (t2; x2)} WY (t2; x1)
+

d WN (t2; x1) d WN (t2; x2)
WY (t2; x1) WY (t2; x2)

]

Hence a pooled estimate for �2(t) becomes

�̃2(t) =
2∑

g=1

�̂1(t)�̂2(t)
�̂g(t)

[∫ ∞

0

{Ã(t; u)}2 d WN (t; u)
Ĥg(t; u) ˜KM (t; u) WY (t; u)

]

−�̂(t)
∫ ∞

0

∫ ∞

0
Ã(t; u)Ã(t; v)G̃12{(t; u); (t; v)}

For use in the covariance term, �(t1; t2), deHne Âg(t1; t2; x)=
∫∞
x J (t1; u)Ŝg(t2; u) du and Ãg(t1;

t2; x)=
∫∞
x J (t1; u)S̃g(t2; u) du so that the most updated information available is used in
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estimating S(x) within these terms. An unpooled estimate for �(t1; t2) becomes

�̂(t1; t2) =
2∑

g=1
{�̂3−g(t1)�̂3−g(t2)�̂g(t1|t2)}

1
2

∫ ∞

0
ng(t2)

Âg(t1; t2; u)Âg(t2; t2; u) dNg(t2; u)
{Yg(t2; u)}2

−
2∑

g=1
 ̂ g(3−g)(t1; t2)

∫ ∞

0

∫ ∞

0
Âg(t1; t2; u)Â3−g(t2; t2; v)Ĝg(3−g){(t1; u); (t2; v)}

An estimate that pools data under the null hypothesis would be

�̃(t1; t2) =
2∑

g=1
{�̂3−g(t1)�̂3−g(t2)�̂g(t1|t2)}

1
2

∫ ∞

0

Ã(t1; t2; u)Ã(t2; t2; u) d WN (t2; u)
Ĥg(t2; u) ˜KM (t2; u) WY (t2; u)

−
2∑

g=1
 ̂ g(3−g)(t1; t2)

∫ ∞

0

∫ ∞

0
Ã(t1; t2; u)Ã(t2; t2; v)G̃g(3−g){(t1; u); (t2; v)}
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