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SUMMARY

A basic estimation strategy in sample surveys is to weight units inversely proportional to the probability
of selection and response. Response weights in this method are usually estimated by the inverse of the
sample-weighted response rate in an adjustment cell, that is, the ratio of the sum of the sampling weights
of respondents in a cell to the sum of the sampling weights for respondents and non-respondents in
that cell. We show by simulations that weighting the response rates by the sampling weights to adjust
for design variables is either incorrect or unnecessary. It is incorrect, in the sense of yielding biased
estimates of population quantities, if the design variables are related to survey non-response; it is
unnecessary if the design variables are unrelated to survey non-response. The correct approach is to
model non-response as a function of the adjustment cell and design variables, and to estimate the
response weight as the inverse of the estimated response probability from this model. This approach can
be implemented by creating adjustment cells that include design variables in the cross-classi�cation, if
the number of cells created in this way is not too large. Otherwise, response propensity weighting can
be applied. Copyright ? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Weighting is the standard method of non-response adjustment for surveys subject to unit non-
response, where entire interviews are missing due to non-contact or refusal to answer the
questionnaire. Respondents and non-respondents are classi�ed into adjustment cells based on
covariate information recorded for both groups, and respondents in cell c are weighted by
the inverse of the response rate in cell c. The sampling weight for each respondent is then
multiplied by this non-response weight to obtain a combined weight for subsequent analysis.
Weighting for non-response is a natural extension of weighting for sample selection. The

sampling weight (say �−1i ) of a sampled unit i is the inverse of the probability of selection,
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and can be interpreted as the number of units in the population that unit i is ‘representing’. In
particular suppose yi is the value of a survey variable Y , and T is the population total of Y . In
the absence of non-response a natural estimator of T is the Horvitz–Thompson (HT) estimator
[1]

∑
�−1i yi, where the sum is over sampled units. The HT estimator is an unbiased estimator

of T with respect to the randomization distribution. Although it can have unacceptably high
variance [2], it is a useful all-purpose estimator in large samples.
In the presence of non-response, let �−1i be the sampling weight and wi the non-response

weight for responding unit i. The product �−1i wi can be interpreted as the number of units in
the population represented by unit i. An obvious extension of the HT estimator of T is then

T̂ =
∑
�−1i wiyi (1)

where the sum is over units that are sampled and respond. This estimate is approximately
design unbiased for T , provided the respondents in cell c are a random subsample of the
sampled units in cell c. Since covariate information for unit non-response adjustments is often
limited, this proviso is often a hope rather than an expectation. However, it is often plausible
that unit non-response adjustment at least reduces the bias.
Note that wi is a sample quantity estimated from data, unlike the sample weight �−1i which

is determined by the sample design. This paper concerns the form of wi for unequal probability
samples, more precisely for samples where the sampling weights are not constant within the
adjustment cells. Suppose respondent i falls in adjustment cell c. A naive choice is wi=1=�̂c,
where �̂c is the unweighted response rate

�̂c= rc+=nc+ (2)

and nc+ and rc+ are the number of sampled and responding individuals in cell c. If the sample
weights are not constant within cell c; �̂c is not an unbiased estimate of the population response
rate in cell c (that is, the proportion of the population that would respond if sampled). An
(at least approximately) unbiased estimate of this quantity is the weighted response rate

�̂c=
∑
k∈Rc

�−1k

/∑
k∈Sc

�−1k (3)

where Sc and Rc denote the set of units in cell c that are sampled, and the set that are
sampled and respond, respectively. One might compute the non-response weight wi in (1) as
the inverse of the weighted rate in (3).
Should response rates be weighted, as in equation (3), or not weighted, as in equation (2)?

Platek and Gray [3] discuss both methods, but draw no conclusions about which is to be pre-
ferred in practice. In a review of Census Bureau adjustment procedures, Chapman et al. [4]
state that ‘non-response adjustment factors are usually either the inverse of the survey’s un-
weighted non-response rate, or an analogous ratio based on weighted survey counts’. Practice
appears to favour weighted response rates. A recent enquiry to the list server for the Sur-
vey Research Methods Section of the American Statistical Association suggests that weighted
response rates (3) are routinely used by the major survey research organizations. For exam-
ple, the survey design for the National Health Interview Survey [5] oversamples Black and
Hispanic households relative to other of races within secondary sampling units (SSUs), and
then computes weighted response weights (3) within adjustment cells consisting of SSUs. To
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judge from their description, the non-response weights for the National Crime Survey appear
to be unweighted, but cross-sectional weighting adjustments for the Survey of Income and
Program Participation are currently weighted [6].
We argue in this paper that neither of these approaches is correct. The correct approach

is to use the inverse of the unweighted rate (2), for adjustment cells that condition on both
covariate and design information. In essence, the argument is that: (a) adjustment cells should
be created to be homogeneous with respect to the propensity to respond; (b) if adjustment cells
are created in this way, then weighting the non-response rates is unnecessary and ine�cient,
that is, it adds variance to estimates; and (c) if adjustment cells are created that are not
homogeneous with respect to the propensity to respond, then weighting the response rates does
not yield unbiased estimates of the means of population outcomes, even though the weighted
response rates are unbiased estimates of the population response rates within each adjustment
cell. Given (c), the right approach is not to weight the non-response rates, but rather to create
adjustment cells based on a classi�cation of the observed variables and the survey design
variables, to control for association between survey strati�ers and non-response. Section 2
provides simulations in support of these statements. On the other hand, joint strati�cation on
the adjustment cell variable and Z , the survey design variables, may achieve reduced non-
response bias at the expense of increased variance, if the resulting adjustment cells are too
sparse; approaches to that problem are discussed in Section 3.

2. SIMULATION STUDY

A simulation study was conducted to provide more insights into the variance and bias of
estimators (2), (3) and alternatives, under a variety of population structures and non-response
mechanisms. Categorical variables were simulated to avoid the need for distributional assump-
tions such as normality.

2.1. Description of the population

A population of size N =10000 was generated on a binary strati�er Z , observed for all
units of the population, a binary adjustment cell variable X observed for the sample, and a
binary survey outcome Y observed only for unit respondents. Also let S denote the sampling
indicator, observed for all units in the population, and R the response indicator, observed
for all units in the sample. The joint distribution of these variables, say [Z; X; Y; S; R], can be
factorized as follows:

[Z; X; Y; S; R]= [Z; X ][Y |Z; X ][S|Z; X; Y ][R|Z; X; Y; S]
The distributions on the right side are then de�ned as follows:

(i) Distribution of Z and X. The joint distribution of [Z; X ] was multinomial, with
pr(Z =X =0)=0:3, pr(Z =0; X =1)=0:4, pr(Z =1; X =0)=0:2 and pr(Z =X =1)=
0:1, yielding the population counts in Table I.

(ii) Distribution of Y given X; Z . Values of the survey variable Y were generated according
to the logistic model

logit P(Y =1|X; Z)=0:5 + �X (X − �X ) + �Z(Z − �Z) + �XZ(X − �X )(Z − �Z) (4)
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Table I. Population counts of X and Z .

Z =0 Z =1

X =0 3064 2079
X =1 3931 926

Table II. Models for Y given X , Z .

Model �X �Z �XZ

1. [X Z]Y 2 2 2
2. [X + Z]Y 2 2 0
3. [X ]Y 2 0 0
4. [Z]Y 0 2 0
5. [�]Y 0 0 0

for �ve choices of �=(�X ; �Z ; �XZ) chosen to re�ect di�erent relationships between Y
and X and Z . These choices are displayed in Table II, using conventional generalized
linear model notation. Here the additive logistic model is labelled [X + Z]Y , and sets
the interaction �XZ to zero, whereas the model [X Z]Y sets this interaction equal to
2. Models where Y depend on X only, Z only or neither X nor Z are denoted by
[X ]Y ; [Z]Y and [�]Y , respectively.

(iii) Distribution of S given Z, X and Y. The sample cases were assumed to be selected
from the population using strati�ed random sampling, so S is independent of X and Y
given Z , that is [S|Z; X; Y ]= [S|Z]. The probabilities of selection were �0 = 262=6995
(about 0.04) when Z =0 and �1 = 50=3005 (about 0.02) when Z =1.

(iv) Distribution of R given Z; X; Y and S. Since the response mechanism is assumed
ignorable and the selection is by strati�ed random sampling, [R|Z; X; Y; S]= [R|Z; X ].
The latter is generated by a logistic model

logit P(R=1|X; Z)=0:5 + �X (X − �X ) + �Z(Z − �Z) + �X Z(X − �X )(Z − �Z) (5)

where �=(�X ; �Z ; �XZ) takes the same values found in Table II, with � replaced by
�. We also ran the simulation with a negative interaction term, but the results were
similar. As for the distribution of Y given X and Z , this yields �ve models for the
distribution of R given X and Z . For example, [X + Z]R refers to R being additively
dependent on X and Z .

There were thus a total of 5×5=25 combinations of population structures and non-response
mechanisms in the simulation study. A total of 1000 replicate data sets were generated for
each of the 25 combinations. Table III displays the form of nine estimators, computed for
each data set, of the overall mean �Y =N−1∑

j

∑
k Njk �Yjk , where Njk and �Yjk are the number of

population units and the population mean, respectively, with Z = j; X = k. The �rst estimator
is the weighted response rate estimator (3) based on adjustment cells X , labelled wrr(x),
and the second estimator is the analogous unweighted response estimator (2), labelled urr(x).
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Table III. Estimators of mean of Y .

Response weightAssumed model Estimator Weight Response rate

1. wrr(x)

∑
x

∑
z w

∗
xzrxz �yxz∑

x

∑
z w

∗
xzrxz

w∗
xz =

(N+z=n+z)(r=N )

�̂∗
x

�̂∗
x =

∑
z(rxz=�z)∑
z(nxz=�z)

2. urr(x)

∑
x

∑
z wxzrxz �yxz∑

x

∑
z wxzrxz

wxz =
(N+z=n+z)(r=N )

�̂x
�̂x =

rx+
nx+

3. ml(xz)=urr(xz) [X Z]Y
∑

x

∑
z w

′
xzrxz �yxz∑

x

∑
z w

′
xzrxz

w′
xz =

(N+z=n+z)(r=N )

�̂xz
�̂xz =

rxz
nxz

4. ml(x) [X ]Y
∑

x w
∗
x �yx∑

x w
∗
x

w∗
x =

∑
z w

′
xzrxz

5. ml(z) [Z]Y
∑
z

Nz
N
�yz

6. ml(null) [�]Y
∑
z

rz
r
�yz w∗

x =
∑
z
w′
xzrxz

7. ml(x + z) [X + Z]Y
∑

x

∑
z w

′
xzrxz(�̂ + �̂1x + �̂2z)∑
x

∑
z w

′
xzrxz

8. urr(x + z) [X Z]Y
∑

x

∑
z w

(u)
xz rxz �yxz∑

x

∑
z w

(u)
xz rxz

w(u)xz =
(N+z=n+z)(r=N )

�̂(u)xz
�̂(u)xz from unweighted

additive logistic model

9. wrr(x + z) [X Z]Y
∑

x

∑
z w

(w)
xz rxz �yxz∑

x

∑
z w

(w)
xz rxz

w(w)xz =
(N+z=n+z)(r=N )

�̂(w)xz
�̂(w)xz from weighted

additive logistic model

The next �ve estimators are maximum likelihood (ML) for the assumed models relating Y
to X and Z listed in the second column of Table III. These estimates all have the form
Ŷ=

∑
j

∑
k P̂jk Ŷjk , where P̂jk =(Nj+=N )(njk=nj+) is the ML estimate of the proportion of the

population with Z = j; X = k, and:

1. If the model for Y is [X Z]Y , then Ŷjk = �yjk .
2. If the model for Y is [X +Z]Y , then Ŷjk = �̂+ �̂1j+ �̂2k , predicted values from an additive
logistic model �tted to the respondent data.

3. If the model for Y is [X ]Y , then Ŷjk = �y+k .
4. If the model for Y is [Z]Y , then Ŷjk = �yj+.
5. If the model for Y is [�]Y , then Ŷjk = �y++.

It is interesting to note that neither of the weighting class estimators urr(x) and wrr(x) are
ML for any of the models used to generate the data in this simulation study. On the other
hand, the estimator that weights by the response rates in cells based on the classi�cation
by Z and X is ML for the saturated model [X Z]Y ; this estimator is denoted as urr(xz) in
Table III. The last two estimators in Table III, wrr(x + z) and urr(x + z), both obtain the
estimate the mean of Y in cell jk as Ŷjk = �yjk . These estimators involve response rates that
are predictions from an additive logistic model for R on X and Z , where for urr(x + z)
the cases in the logistic regression are weighted equally, and for wrr(x + z) the cases are
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weighted by the inverse of the probability of selection. These methods are closely related to
the response propensity strati�cation discussed in Section 3.
Table IV shows the average root mean square error (RMSE) of the nine estimators in

Table III over the 1000 replicate data sets, a measure that takes into account both precision
and bias. Asymptotic properties of ML lead us to believe that the ML estimator for a particular
assumed model will have close to the lowest RMSE when the assumed model is the same
as the model used to generate the data. Table V displays the average bias over the 1000
replicates, de�ned to be the average of the di�erence of the estimator before deletion of cases
due to non-response and the estimator based on respondents alone.
Table VI shows for selected pairwise comparisons whether di�erences in performance

between the estimates are statistically signi�cant. The table displays

�d=(1=1000)
1000∑
i= 1
di; where di= |�BDi − �̂1i| − |�BDi − �̂2i|

�BDi is the mean before deletion of cases due to non-response for the ith replicate, and �̂1i
and �̂2i are pairs of estimates of the mean of Y as found in the �rst row of Table VI. A
negative value indicates the �rst estimator �̂1i does better than �̂2i, whereas a positive value
indicates �̂2i does better. The standard error of �d is computed as the standard deviation of the
individual di’s divided by

√
1000, and di�erences that are statistically signi�cant from zero

based on a t-test are asterisked (∗=P¡0:05; ∗∗=P¡0:01).
A crude summary of the relative performance of the methods is the RMSE averaged over

all problems, shown in the last row of Table IV. Note that the best methods all stratify on
both X and Z , and have similar average RMSE:

urr(xz)=382; ml(x + z)=380; wrr(x + z)=383; urr(x + z)=381

The methods that stratify on X but not Z are much worse than these methods in overall
RMSE:

urr(x)=471; wrr(x)=471; ml(x)=443

with the slightly better performance of ml(x) re�ecting gains in e�ciency when the model is
true. The methods that stratify on Z but not X are worst of all in overall RMSE:

ml(z)=507; ml(null)=528

although as expected these methods show some gains of e�ciency in populations where Y
does not depend on X .
As expected, the ML estimate for the model used to generate the data is always best or

close to best in these simulations. The estimate for the additive model [X+Z]Y is theoretically
biased when the data-generating model includes the XZ interaction, but in these simulations
the bias for the overall mean of Y is modest.
The unweighted response weight estimator urr(x) is biased and performs poorly when both

Y and R depend on Z , since in these cases the strati�cation on Z cannot be ignored. Note,
however, that weighting the response weights, as in wrr(x), does not generally correct the bias
of urr(x) in these situations: wrr(x) performs very similarly to urr(x), and in fact as we have
seen its average RMSE over all problems is the same. Two interesting cases where wrr(x)
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does improve on urr(x) are where R depends on both X and Z and Y depends on X but not
Z (speci�cally the models [X ]Y ; [X Z]R and [X ]Y ; [X +Z]R), in rows 11 and 12 of the tables).
In these cases, weighting the response rates yields unbiased response rate estimates in the
cells de�ned by X , and the respondent mean of Y in these cells is unbiased since Y depends
only on X . However, the gain in weighting the response rates in these cases is relatively
minor, and (as might be predicted) ml(x) is superior to either method in these cases. Also,
the practical importance of these cases is debatable: Y is likely to depend on Z as well as
X , since the point of stratifying on Z is to exploit the relationship between Y and Z . The
estimator urr(xz) that strati�es on both X and Z is robust under all of the models, and does
much better overall than either urr(x) or wrr(x).
The estimators that base the estimated response rates on an additive logistic model, namely

wrr(x + z) and urr(x + z), perform well, though neither are ML for any of the generating
models. Unlike wrr(x) and urr(x), wrr(x+ z) and urr(x+ z) both take the design variable into
account by obtaining separate estimates of the response rate for cells that stratify both on X
and Z . Their performance is similar to ml(x + z) and urr(xz), with wrr(x + z) doing slightly
worse overall. Weighting the logistic regressions does not appear to o�er any advantage here.

3. GENERAL STRATEGIES FOR CREATING ADJUSTMENT CELLS

For the relatively simple situations simulated in Section 2, with just two strata and two values
of X , adjustment cells can be created based on the joint distribution of Z and X . In more
realistic settings, the cross-classi�cation of the survey design variables and observed survey
variables can yield too many adjustment cells, some of which may contain sampled cases but
no respondents. For example, in the Health Interview Survey [5], weighted response weights
are calculated within the second-stage sampling unit (SSU), a variable that has many levels.
Joint classi�cation by Z and X would correspond to stratifying households within the SSU
according to race, which would yield many small adjustment cells, including perhaps some
with no respondents. Thus a strategy is needed for reducing the number of adjustment cells.
Two such strategies are discussed in this section.
Let D denote the complete set of variables recorded for both respondents and non-

respondents, including design variables and any survey variables measured for both groups.
(For unit non-response survey variables are usually entirely absent for non-respondents, but
in panel surveys variables from earlier surveys may be available.) We say that non-response
is ignorable if the distribution of the incomplete survey variables is the same for respondents
and non-respondents with the same value of D. Formally, if R is an indicator for response or
non-response, Y is the set of survey variables missing for non-respondents, then non-response
is ignorable if

R
∐
Y |D (6)

where
∐
denotes independence. Adjustments for non-ignorable non-response are usually highly

speculative, and all the methods discussed in this paper e�ectively assume that non-response
is ignorable. Thus we assume that (6) holds.
We have noted that adjustment cells de�ned by each distinct value of D may be too

small and yield weights that are unde�ned or too unstable. Thus the problem becomes to
de�ne adjustment cells based on D that remove non-response bias, whilst avoiding sparse
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cells that lead to unstable weights, and resulting estimates with large variance. Two sensible
objectives in de�ning adjustment cells are (a) to choose cells that are homogeneous with
respect to outcome variables Y , and (b) to choose cells that are homogeneous with respect to
the probability of response. Theory supporting both these choices is presented in Little [7],
who considers two methods for creating adjustment cells when D is extensive: (i) predictive
mean strati�cation, motivated by objective (a), groups units according to predicted means of
Y given D, estimated for example by regression of Y on D based on the responding cases;
(ii) response propensity strati�cation, motivated by objective (b), groups units according to
their estimated probabilities of response, computed for example by logistic regression of the
response indicator R on D based on sampled cases. Little [7] showed that if Ŷ (D) denotes
the predicted mean of Y given D, and p̂(D) denotes the predicted probability of response
given D, then (with some additional conditions described in the paper), (6) implies that

Y
∐
R|Ŷ (D) (7)

and

Y
∐
R|p̂(D) (8)

In particular assuming ignorable non-response and ignoring the e�ects of estimating Ŷ (D) and
p̂(D), weighting based on either of these methods of strati�cation removes non-response bias
in estimating population means. Of these two methods, only response propensity strati�cation
also removes bias of estimates of means for subclasses of the population [7]. This theory
supports the idea of basing weights based on a model for the propensity to respond on
D, where the latter includes the design variables that determine the sampling weight. This
approach is closely related to the urr(x + z) method in the simulation study, which was
competitive with the best methods. Weighting the logistic regression by the sampling weight,
as in wrr(x + z), did not o�er any advantage in our simulations, and by analogy with the
simpler case of strati�cation on x alone, we do not expect any advantages of weighting in
more complex situations.
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