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SUMMARY

Times between sequentially ordered events (gap times) are often of interest in biomedical studies.
For example, in a cancer study, the gap times from incidence-to-remission and remission-to-recurrence
may be examined. Such data are usually subject to right censoring, and within-subject failure times
are generally not independent. Statistical challenges in the analysis of the second and subsequent gap
times include induced dependent censoring and non-identi�ability of the marginal distributions. We
propose a non-parametric method for constructing one-sample estimators of conditional gap-time speci�c
survival functions. The estimators are uniformly consistent and, upon standardization, converge weakly
to a zero-mean Gaussian process, with a covariance function which can be consistently estimated.
Simulation studies reveal that the asymptotic approximations are appropriate for �nite samples. Methods
for con�dence bands are provided. The proposed methods are illustrated on a renal failure data set,
where the probabilities of transplant wait-listing and kidney transplantation are of interest. Copyright ?
2004 John Wiley & Sons, Ltd.

KEY WORDS: con�dence bands; cumulative hazard function; empirical processes; induced dependent
censoring; inverse weighting; multivariate survival analysis

1. INTRODUCTION

In biomedical investigations wherein subjects can experience multiple events and where such
events occur in a �xed order, times between consecutive events (hereafter referred to as gap
times) are often of interest. The events of concern may be of the same nature (i.e. recur-
rent events); examples include infections among bone marrow transplant recipients, tumour
metasteses among cancer patients, and hospitalizations in a health service utilization study.
The events may also represent di�erent states of a process, an example being a study of HIV
infection, AIDS onset and death. Such studies are often of a �xed length, resulting in right
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censoring. In the context of biomedical studies, it is not usually reasonable to assume that
events for a given subject are independent. As discussed by several authors [1–4], lack of
within-subject gap time independence results in a form of dependent censoring. For example,
the longer a given individual’s time until �rst event, the greater the probability that the time
between their �rst and second event is censored. This phenomenon has been termed ‘induced
dependent censoring’.
The motivating example for the proposed methods relates to end-stage renal disease, com-

monly referred to as renal failure, an a�iction of increasing concern in North America due
to its mortality and health care cost. Generally, after commencing renal replacement therapy
(RRT), patients who desire and are deemed medically suitable for transplantation are placed
on a transplant waiting list (WL). After being wait-listed, patients are sequentially selected
for kidney transplantation (KT) given the availability of a suitable donor organ. Hence, the
event sequence of interest is RRTI→WL→KT, where RRTI denotes RRT-initiation. Time
until wait-listing and time between wait-listing and transplantation are positively correlated.
Hence, for studies of �xed length, the time between wait-listing and kidney transplantation is
subject to induced dependent censoring. Moreover, the marginal distribution of the time be-
tween wait-listing and transplantation is not identi�able unless the study duration exceeds the
support of the time until WL distribution. For example, in a �ve year study, WL→KT time
is not even partially observed unless time until wait-listing is less than 5 years. Thus, unless
RRTI→WL and WL→KT times are independent, observed and partially observed WL→KT
times must be interpreted as being conditional on time until wait-listing being less than the
study duration. Since observation of the second gap time (WL→KT) is conditional on the
�rst gap time (RRTI→WL) occurring before some speci�c time, the survival function for
the WL→KT gap time is not identi�able (i.e. cannot be estimated using only the observed
data). However, as discussed by Lin et al. [3], we can identify the survival function of the
second gap time, conditional on the �rst gap time falling in some interval contained by the
observation period.
Since the marginal distributions of the second and subsequent gap times are generally

not identi�able in the sequentially ordered multivariate failure time setting, it is desirable
to estimate meaningful and identi�able conditional distributions related to the gap times. As
such, we propose an estimator of a conditional survival function for the second and subsequent
gap times; the estimated distribution is that of the jth gap time, conditional on the (j − 1)th
event occurring prior to some �xed point. For example, in a 5 year study examining the
RRTI→WL→KT sequence, one could estimate the conditional distribution of wait-list to
transplant times, conditional on being wait-listed within 2 years of RRTI; this particular
conditional distribution is identi�able up to 3 years post-wait-listing.
The problem of estimating gap time distributions in the context of correlated ordered fail-

ure time data has received much attention recently. Visser [5] considered non-parametric
estimation in the discrete time setting. Huang and Louis [6] developed general methods for
marked survival data, which could be applied to the analysis of gap times. Wang [2] de-
scribed the issues of induced dependent censoring and identi�ability. Wang and Wells [1]
proposed a product-limit type estimator for the second gap time, while Lin et al. [3] and
very recently van der Laan et al. [7] developed non-parametric estimators of the multivariate
gap time distribution function. Wang and Chang [8] and Peña et al. [9] consider estima-
tion of gap time survival functions when the number of (recurrent) events is considered
random.
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Despite the corresponding theoretical developments, the problems of induced dependent
censoring and, in particular, non-identi�ability are not well known among practitioners. In
certain instances, the identi�ability issue has been avoided by imposing unrealistic and un-
natural assumptions on the censoring mechanism. In other cases, the issue has been ignored or
not described in su�cient detail for most practitioners to readily interpret. Published analyses
which explicitly take account of the key issues in gap time modelling are currently quite sparse.
To �ll this apparent void, in this article, we describe the issues of induced dependent censoring
and identi�ability in detail; propose a computationally simple estimator, as an alternative
to those in the existing literature; propose con�dence bands useful for studying the time
interval of interest simultaneously; and, provide an illustrative real-data example based on
an important health care issue. The proposed estimator is based on an adjusted version of
the Nelson-Aalen [10, 11] cumulative hazard estimator. Adjustment for induced dependent
censoring is accomplished by an inverse weighting technique, similar in spirit to that proposed
by Robins and Rotnitzky [12]. We also present a method for estimating con�dence bands for
the conditional survival function based on a technique analogous to that of Lin et al. [13].
The remainder of this article is organized as follows. In Section 2, we introduce requisite

notation, formalize the statistical issues pertaining to the analysis of times between events, and
present the proposed methods and asymptotic properties of the proposed estimators. Simulation
studies are described in Section 3. In Section 4, the proposed methods are applied to the
analysis of renal failure data. Concluding remarks are contained in Section 5.

2. METHODS

Suppose that there are n subjects under observation and J ordered failure times of interest. For
subject i, let Ti; j denote the total time (i.e. time under observation) of the jth failure. Let Ci
denote censoring time; we make the standard assumption that Ci is independent of the failure
(total) times: {Ti;1; : : : ; Ti; J}. We set �c = supt{P(Ci¿t)¿0}. Let the failure indicators and ob-
served total times be represented by �ij= I(Ti; j¡Ci) and Xi; j=Ti; j ∧Ci, respectively, where
I(A)=1 when the event A occurs and 0 otherwise and a∧ b= min{a; b}. Times between
consecutive events are represented by T̃ij=Ti; j − Ti; j−1, where Ti;0 ≡ 0, with corresponding
observed gap times X̃ij= T̃ij ∧ C̃ij, gap censoring times C̃ij=Ci − Xi;j−1 and risk set indica-
tors Yij(s)= I(X̃ij¿s). The underlying counting processes are given by: N ∗

ij (t)= I(T̃ij6t)=∫ t
0 dN

∗
ij (s), with their observed counterparts Nij(t)= I(X̃ij6t;�ij=1)=

∫ t
0 dNij(s).

Of interest are the gap-time-speci�c survival functions, P(T̃ij¿t), and the �rst concern
is identi�ability. For T̃i1 =Ti;1, we have the familiar constraint that we can only estimate
P(T̃i1¿t) for t ∈ [0; �c]. For j¿2, P(T̃ij¿t) is generally not identi�able for t¿0 unless the
support of Ti; j−1 is contained by the [0; �c] interval. The challenge then is to �nd a quantity
which is both interpretable and of general interest to investigators, and which is estimable. For
j¿2, we propose estimating the conditional survival function, Sj(t; tj−1)≡P(T̃ij¿t|Ti; j−16
tj−1), which is identi�able for t ∈ [0; �j], with tj−1 + �j6�c. Typically, in the interests of
maximizing the use of available data, one would choose {tj−1; �j} pairs such that tj−1 +
�j= �c for j=1; : : : ; J , with t0 = 0. We propose estimating Sj(t; tj−1) through its corresponding
conditional cumulative hazard function, �j(t; tj−1), where Sj(t; tj−1)= e−�j(t;tj−1). Note that the
estimated distribution functions corresponding to our estimators are not subject to negative
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mass, which is a problem with many survival function estimators that depend on estimation
of the joint survival function.
The next task is to deal with the induced dependent censoring, which arises from the fact

that C̃ij, the censoring time associated with the jth gap time, is functionally related to previous
event times. For example, the greater the value of Ti;1, the greater the probability that T̃i2 is
censored, unless Ti1 and T̃i2 are independent. Thus, among the second gap times which are
observed, there will be a disproportionate number of shorter times, relative to the setting
where censoring was not present, indicating that standard methods of estimating the survival
function would be biased.
Since Ti;1 is not subject to induced dependent censoring, we can estimate S1(t) through

Ŝ1:n(t)= e−�̂1:n(t), where �̂1:n(t) is the familiar Nelson–Aalen cumulative hazard estimator,

�̂1:n(t)= n−1 n∑
i=1

∫ t

0

Ni1(ds)
R1(s)

where R1(s)= n−1∑n
i=1 Yi1(s). It has been shown that (i) �̂1:n(t) converges almost surely to

�1(t) uniformly in t ∈ [0; �c] (ii) n1=2(�̂1:n(t) − �1(t)) converges to a zero-mean normal dis-
tribution for �xed t ∈ [0; �c] (iii) {n1=2(�̂1:n(t) − �1(t)); t ∈ [0; �c]} converges weakly to a
zero-mean Gaussian process. Since the Nelson–Aalen estimator is inappropriate when cen-
soring is dependent, another estimator of �j(t; tj−1) is required for j¿2. Since there are no
issues of identi�ability or induced dependent censoring for j=1 (as there are no preceding
failure times), we focus on the second and subsequent gap times for the remainder of this
article.
If there were no censoring, such that all J event times were observed for every subject,

then the cumulative hazard for (T̃ij|Tj−16tj−1) could be estimated by

�̂∗
j:n(t)= n

−1 n∑
i=1

∫ t

0

N ∗
ij (ds; tj−1)
R∗
j (s)

(1)

where R∗
j (s)= n

−1∑n
i=1 I(T̃ij¿s; Ti;j−16tj−1) and N ∗

ij (s; tj−1)= I(T̃ij6s; Ti; j−16tj−1). Set
G(t)=P(Ci¿t) and note that:

E[G(s+ Ti; j−1)−I(j¿2)Nij(ds; tj−1)|Ti; j−16tj−1] = E[N ∗
ij (ds; tj−1)|Ti; j−16tj−1]

E[G(s+ Ti; j−1)−I(j¿2)Yij(s; tj−1)|Ti;j−16tj−1] = E[I(T̃ij¿s)|Ti; j−16tj−1]

where Nij(s; tj−1)= I(X̃ij6s, �ij=1, Ti; j−16tj−1) and Yij(s; tj−1)= I(X̃ij¿s, Ti; j−16tj−1).
Both of the immediately preceding equalities can be shown using conditional expectations.
By replacing potentially unobservable random variables in (1) with consistent estimators of
quantities with the same conditional expectation, we arrive at the proposed estimators:

�̂Gj:n(t; tj−1)= n
−1 n∑
i=1

∫ t

0

Ŵij(s)
RGj (s)

Nij(ds; tj−1) (2)

where Wij(s)=Yij(s; tj−1)G(s + Ti;j−1)−I(j¿2), Ŵij(s)=Yij(s; tj−1)Ĝn(s + Ti; j−1)−I(j¿2), Ĝn(t)
is the Kaplan–Meier [14] estimator of G(t) based on {Xi; J ; 1 − �iJ}ni=1, and RGj (s)=
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n−1∑n
i=1 Ŵij(s). The conditional survival function can then be estimated by Ŝ

G
j:n(t; tj−1)=

e−�̂
G
j:n(t;tj−1) for t ∈ [0; �j]. The conditional survival function estimator is bounded by 0 and 1

and is monotone in t, for t ∈ [0; �j]. Note that ŜGj:n(t; tj−1) need not be monotone in t1. For
example, if S2(t; t1) is estimated for multiple values of t1, the ordering of the conditional
survival functions at equal values of t, based on di�erent values of t1, will depend on the
nature of the correlation between Ti;1 and T̃i2.
We now list the essential asymptotic results pertaining to the proposed methods, with proofs

outlined in the Appendix. We assume that the observable data, {X̃ij;�ij}Jj=1 for i=1; : : : ; n,
arise from an independently and identically distributed sample. We de�ne Mij(t; tj−1)=Nij
(t; tj−1)−

∫ t
0 Yij(s; tj−1)�j(ds; tj−1), and the following quantities pertaining to the censoring dis-

tribution: NCi (t)= I(Xi; J6t;�iJ =0), Yi(s)= I(Xi; J¿s), MC
i (t)=N

C
i (t)− ∫ t0 Yi(s)�C(ds), and

RC(s)= n−1∑n
i=1 Yi(s). First, we consider the limiting properties of �̂

G
j:n(t; tj−1).

It can be shown using results from empirical processes that �̂Gj:n(t; tj−1) converges almost
surely to �j(t; tj−1) uniformly in t ∈ [0; �j], and n1=2{�̂Gj:n(t; tj−1)−�j(t; tj−1)} converges weakly
to a zero-mean Gaussian process with a covariance function which can be consistently esti-
mated by: �̂j:n(s; t; tj−1)= n−1∑n

i=1 �̂ij(s)�̂ij(t), where

�̂ij(t)=
∫ t

0

Ŵij(s)
RGj (s)

M̂ ij(ds; tj−1) + I(j¿2)
∫ �

0

q̂j:n(s; t)
RC(s)

M̂C
i (ds) (3)

with

q̂j:n(s; t)= n
−1 n∑

‘=1

∫ t

0

I(s6r + T‘j−1)
RGj (r)

Ŵ‘j(r)M̂ ‘j(dr; tj−1) (4)

M̂ i; j(t; tj−1)=Nij(t; tj−1) − ∫ t
0 Yij(s; tj−1)�̂

G
j:n(ds; tj−1), M̂

C
i (t)=N

C
i (t) − ∫ t

0 Yi(s)�̂
C
n (ds) and

�̂Cn (t) is the Nelson–Aalen estimator of �
C(t). The essence of the proof of the normality

result is expressing n1=2{�̂Gj:n(t; tj−1)− �j(t; tj−1)} asymptotically as a normalized sum of in-
dependent and identically distributed random variates; an outline is provided in the Appendix.
The normality result can be used to construct con�dence intervals and regions for sets

of points. However, it is often of interest to study the behaviour of T̃ij across all t ∈ [0; �j]
simultaneously, and it can be shown that a 100(1 − �)% con�dence band for Sj(t; tj−1) is
given by

exp

{
− exp

{
±n−1=2 �̂j:n(t; t; tj−1)

1=2

�̂Gj:n(t; tj−1)
�∗
j;�

}}

where �∗
j;� is the quantity satisfying:

P

(
sup
t∈[0;�j]

|�̂∗
j:n(t)|¿�∗

j;�

)
= �
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with �̂∗
j:n(t)= n

−1=2�̂j:n(t; t; tj−1)−1=2
∑n

i=1 Zi�̂ij(t), and {Zi}ni=1 are independent standard normal
variates such that Zi ⊥ �̂ij(t). To operationalize this result, the observed data are held �xed, a
large number of {Zi}ni=1 are generated, and the appropriate quantile is estimated empirically.
Justi�cation for this procedure rests on the concept of conditional weak convergence [15], as
outlined in the Appendix.

3. SIMULATION STUDY

Simulation studies were conducted to assess the �nite sample properties of the proposed
estimators. First, for each subject, Qi was generated from the Positive Stable distribution [16]
with Laplace transform E[e−tQi ]= exp{−t�}, using methods described by Chambers et al.
[17]. Next, J =2 gap times were generated through the conditional distribution P(T̃ij¿t|Qi)=
exp{−Qi�jt}, which implies the following survival functions:

P(Ti;1¿t) = exp{−(�1t)�}

P(T̃i2¿t|Ti16t1) = exp{−(�2t)�} − exp{−(�2t + �1t1)�}
1− exp{−(�1t1)�}

We chose �=1; 0:75; 0:5, corresponding to Kendall’s Tau (Ti;1; T̃i2) rank correlation, 1 − �,
of 0, 0.25 and 0.5, respectively. The hazard function for the �rst failure time was �xed at
�1(t)=0:5, while that for T̃i2 was set to �2(t)=0:25; 0:5; 0:75. Censoring times followed the
Uniform (0,10) distribution, mimicking a study of duration 10 with recruitment distributed
randomly across the observation period. The proportion censored ranged from 20 to 40 per
cent. We chose t1 = 4 (hence, �2 = 6) and t1 = 6 (�2 = 4). Simulated samples were of size
n=100 and 200. One thousand simulations were performed for each data con�guration.
In Table I, the bias (denoted by b(·)) of the proposed conditional survival function es-

timator is examined for t1 = 4. In all cases examined, ŜG2:n(t; t1) is approximately unbiased.
Similar results are found in Table II, where t1 = 6. The �nite-sample accuracy of the asymp-
totic distributional approximation for the proposed estimators is evaluated in Table III (t1 = 4)
and Table IV (t1 = 6) using the same set of data con�gurations as Tables I–II. Generally, the
average estimated standard error, denoted by ASEG2:n, very closely approximated the empir-
ical standard deviation, ESDG2:n, with empirical coverage probabilities for the survival func-
tion close to the nominal level of 0.95. Note that con�dence intervals in Tables III and IV
were based on the assumption that log(�̂G2:n(t; t1)) was normally distributed. Hence, point-wise
95 per cent con�dence intervals for log(�2(t; t1)) were computed through the Delta-method
[18] as

log(�̂G2:n(t; t1))± 1:96× n−1=2 �̂2:n(t; t; t1)
1=2

�̂G2:n(t; t1)

This transformation resulted in a noteworthy improvement in empirical coverage probability,
relative to the interval resulting from the assumption that n1=2{�̂G2:n(t; t1)−�2(t; t1)} itself was
normally distributed (data not shown).
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Table I. Simulation Results: Bias, denoted by b(·), of proposed survival function estimator for T̃i2.
Gap times were generated such that P(T̃ij¿t|Qi)= exp{−Qi�jt}, with Qi generated from Positive
Stable distribution with Laplace transform E[e−tQi ]= exp{−t�}. One thousand replicates were

simulated per data con�guration.

t1 = 4, n=100 t1 = 4, n=200

�2(t) � t S2(t; t1) ŜG2:n(t; t1) b(ŜG2:n(t; t1)) ŜG2:n(t; t1) b(ŜG2:n(t; t1))

0.25 1.00 1.0 0.779 0.778 0.000 0.778 −0:001
2.0 0.607 0.605 −0:002 0.604 −0:002
3.0 0.472 0.471 −0:001 0.471 −0:002

0.75 1.0 0.667 0.666 −0:001 0.666 −0:001
2.0 0.510 0.510 0.000 0.508 −0:002
3.0 0.404 0.403 −0:001 0.403 0.000

0.50 1.0 0.507 0.505 −0:001 0.507 0.000
2.0 0.380 0.378 −0:002 0.381 0.001
3.0 0.304 0.307 0.003 0.306 0.002

0.50 1.00 1.0 0.607 0.607 0.000 0.606 0.000
2.0 0.368 0.372 0.004 0.367 −0:001
3.0 0.223 0.225 0.002 0.223 0.000

0.75 1.0 0.510 0.509 −0:001 0.510 0.000
2.0 0.326 0.324 −0:002 0.327 0.001
3.0 0.222 0.222 0.000 0.221 −0:001

0.50 1.0 0.380 0.380 0.000 0.380 0.001
2.0 0.252 0.253 0.001 0.255 0.003
3.0 0.185 0.197 0.012 0.187 0.002

0.75 1.00 1.0 0.472 0.474 0.001 0.474 0.001
2.0 0.223 0.224 0.001 0.224 0.001
3.0 0.105 0.115 0.010 0.106 0.001

0.75 1.0 0.404 0.406 0.002 0.403 −0:001
2.0 0.222 0.222 0.000 0.220 −0:001
3.0 0.132 0.140 0.008 0.131 −0:001

0.50 1.0 0.304 0.303 −0:001 0.304 0.000
2.0 0.185 0.187 0.002 0.184 0.000
3.0 0.127 0.142 0.015 0.128 0.001

4. APPLICATION

We applied the proposed methods to a study of renal replacement therapy (RRT) patients
using data obtained from the multiple organ retrieval and exchange (MORE) programme of
Ontario. Patients (n=5356) included those who underwent RRT initiation (RRTI) in Ontario
between 1 January 1990 and 31 December 1994. Each patient’s follow-up began at RRTI, and
two gap times were of interest: time from RRTI to transplant wait-listing (WL), time from
WL to kidney transplantation (KT). Patients were followed until the earliest of the date of
transplant, death, loss to follow-up or the conclusion of the observation period (31 December
1994). In total, 1095 patients were wait-listed for transplantation, 517 of whom received a
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Table II. Simulation Results: Bias, denoted by b(·), of proposed survival function estimator for T̃i2.
Gap times were generated such that P(T̃i; j¿t|Qi)= exp{−Qi�jt}, with Qi generated from Positive
Stable distribution with Laplace transform E[e−tQi ]= exp{−t�}. One thousand replicates were

simulated per data con�guration.

t1 = 6, n=100 t1 = 6, n=200

�2(t) � t S2(t; t1) ŜG2:n(t; t1) b(ŜG2:n(t; t1)) ŜG2:n(t; t1) b(ŜG2:n(t; t1))

0.25 1.00 1.0 0.779 0.778 −0:001 0.778 −0:001
2.0 0.607 0.607 0.000 0.605 −0:001
3.0 0.472 0.475 0.003 0.473 0.001

0.75 1.0 0.683 0.686 0.003 0.682 −0:001
2.0 0.528 0.531 0.003 0.528 −0:001
3.0 0.422 0.431 0.009 0.422 0.000

0.50 1.0 0.537 0.535 −0:002 0.535 −0:001
2.0 0.412 0.411 −0:001 0.410 −0:002
3.0 0.336 0.347 0.011 0.335 −0:001

0.50 1.00 1.0 0.607 0.608 0.001 0.605 −0:001
2.0 0.368 0.366 −0:002 0.367 −0:001
3.0 0.223 0.225 0.002 0.220 −0:003

0.75 1.0 0.528 0.526 −0:002 0.528 −0:001
2.0 0.344 0.342 −0:002 0.343 −0:001
3.0 0.237 0.245 0.009 0.238 0.002

0.50 1.0 0.412 0.415 0.003 0.411 −0:001
2.0 0.283 0.286 0.003 0.280 −0:002
3.0 0.211 0.228 0.017 0.214 0.002

0.75 1.00 1.0 0.472 0.472 0.000 0.473 0.001
2.0 0.223 0.224 0.001 0.223 0.000
3.0 0.105 0.117 0.012 0.107 0.002

0.75 1.0 0.422 0.424 0.002 0.422 0.000
2.0 0.237 0.238 0.001 0.234 −0:003
3.0 0.143 0.157 0.014 0.143 0.000

0.50 1.0 0.336 0.333 −0:002 0.336 0.000
2.0 0.211 0.213 0.001 0.211 0.000
3.0 0.148 0.169 0.021 0.153 0.005

renal transplant; 1547 patients died, and 26 were lost to follow-up. Our objective was to
provide an overall estimate of the probability of (i) being wait-listed and (ii) receiving a
kidney transplant among patients placed on the wait-list within a certain number of years of
RRTI.
It is unrealistic to assume that a patient’s RRTI→WL and WL→KT times are independent.

Longer time between RRTI and wait-listing is positively associated with longer time between
wait-listing and transplantation, as certain common factors in�uence both gap times. Due
to the lack of statistical independence between the RRTI→WL and WL→KT gap times,
the WL→KT gap time is subject to induced dependent censoring; i.e. greater time until
WL implies greater probability that the WT→KT time is censored. Moreover, the marginal
probability that a wait-listed patient is transplanted is not identi�able.
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Table III. Simulation Results: Accuracy of asymptotic distributional approximations for proposed
survival function estimator for T̃i2. Gap times were generated such that P(T̃ij¿t|Qi)= exp{−Qi�jt},
with Qi generated from Positive Stable distribution with Laplace transform E[e−tQi ]= exp{−t�}.
ASE denotes average approximated standard error, ESD denotes empirical standard deviation, CP

denotes empirical 95 per cent coverage probability, based on 1000 simulations.

t1 = 4, n=100 t1 = 4, n=200

�2(t) � t ASEG2:n ESDG2:n CPG2:n ASEG2:n ESDG2:n CPG2:n

0.25 1.00 1.0 0.063 0.065 0.952 0.045 0.047 0.938
2.0 0.100 0.104 0.943 0.071 0.073 0.944
3.0 0.137 0.146 0.945 0.098 0.098 0.957

0.75 1.0 0.084 0.087 0.945 0.060 0.059 0.959
2.0 0.121 0.125 0.946 0.087 0.088 0.951
3.0 0.158 0.165 0.935 0.112 0.114 0.949

0.50 1.0 0.119 0.123 0.942 0.084 0.084 0.953
2.0 0.160 0.169 0.945 0.113 0.117 0.946
3.0 0.195 0.201 0.950 0.140 0.146 0.943

0.50 1.00 1.0 0.096 0.101 0.937 0.068 0.070 0.947
2.0 0.161 0.166 0.945 0.116 0.118 0.952
3.0 0.241 0.240 0.965 0.174 0.181 0.945

0.75 1.0 0.118 0.119 0.955 0.084 0.083 0.957
2.0 0.181 0.188 0.942 0.128 0.129 0.952
3.0 0.245 0.253 0.955 0.177 0.181 0.944

0.50 1.0 0.155 0.165 0.928 0.110 0.115 0.941
2.0 0.217 0.232 0.943 0.155 0.156 0.947
3.0 0.263 0.262 0.945 0.199 0.203 0.950

0.75 1.00 1.0 0.126 0.124 0.963 0.090 0.088 0.958
2.0 0.231 0.250 0.942 0.166 0.175 0.933
3.0 0.352 0.330 0.949 0.271 0.274 0.946

0.75 1.0 0.146 0.150 0.952 0.104 0.108 0.942
2.0 0.235 0.246 0.949 0.170 0.173 0.957
3.0 0.322 0.316 0.943 0.245 0.256 0.942

0.50 1.0 0.185 0.189 0.942 0.132 0.139 0.942
2.0 0.265 0.274 0.945 0.193 0.203 0.940
3.0 0.320 0.305 0.936 0.251 0.259 0.942

In this analysis, we seek to estimate S1(t), the marginal survival function for wait-listing,
and S2(t; t1), the conditional survival function for transplantation given wait-listing within t1
years. Regarding S2(t; t1), we must choose t1, respecting that �2 = � − t1, where �=5 years.
We can select several t1’s, such that an array of di�erent conditional survival functions are
estimated. Or, a particular choice of t1 may be suggested by the data at hand. For example, if it
is found that the Ŝ1(t) function �attens out at t∗, then estimation of S2(t; t∗) may be appealing.
A balance will need to be struck with respect to the competing objectives of having �2 such
that the Ŝ2(t; t1) curve extends across a su�ciently long interval, and choosing t1 large enough
that a su�cient number of patients are included in the estimation of Ŝ2(t; t1). Alternatively,
an option is to merely set t2 = �=2.
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Table IV. Simulation Results: Accuracy of asymptotic distributional approximations for proposed sur-
vival function estimator for T̃i2. Gap times were generated such that P(T̃i; j¿t|Qi)= exp{−Qi�jt}, with
Qi generated from Positive Stable distribution with Laplace transform E[e−tQi ]= exp{−t�}. ASE denotes
average approximated standard error, ESD denotes empirical standard deviation, CP denotes empirical

95 per cent coverage probability, based on 1000 simulations.

t1 = 6, n=100 t1 = 6, n=200

�2(t) � t ASEG2:n ESDG2:n CPG2:n ASEG2:n ESDG2:n CPG2:n

0.25 1.00 1.0 0.062 0.065 0.949 0.044 0.045 0.942
2.0 0.098 0.101 0.949 0.070 0.073 0.942
3.0 0.135 0.137 0.942 0.097 0.100 0.945

0.75 1.0 0.077 0.080 0.951 0.056 0.058 0.939
2.0 0.113 0.119 0.952 0.082 0.083 0.955
3.0 0.146 0.150 0.953 0.107 0.110 0.948

0.50 1.0 0.109 0.113 0.938 0.077 0.080 0.939
2.0 0.146 0.155 0.936 0.105 0.111 0.945
3.0 0.175 0.184 0.932 0.129 0.138 0.942

0.50 1.00 1.0 0.094 0.096 0.942 0.068 0.067 0.952
2.0 0.161 0.168 0.950 0.115 0.118 0.950
3.0 0.236 0.251 0.938 0.174 0.181 0.950

0.75 1.0 0.111 0.114 0.945 0.079 0.081 0.942
2.0 0.171 0.180 0.944 0.122 0.130 0.936
3.0 0.226 0.225 0.955 0.168 0.176 0.939

0.50 1.0 0.141 0.146 0.936 0.101 0.111 0.926
2.0 0.198 0.215 0.932 0.144 0.159 0.918
3.0 0.239 0.252 0.925 0.182 0.194 0.928

0.75 1.00 1.0 0.124 0.123 0.959 0.088 0.087 0.948
2.0 0.227 0.238 0.949 0.164 0.162 0.954
3.0 0.341 0.323 0.944 0.265 0.270 0.946

0.75 1.0 0.137 0.143 0.947 0.098 0.101 0.943
2.0 0.223 0.245 0.928 0.162 0.169 0.946
3.0 0.299 0.303 0.938 0.233 0.249 0.932

0.50 1.0 0.170 0.178 0.938 0.120 0.124 0.944
2.0 0.243 0.263 0.938 0.176 0.181 0.943
3.0 0.286 0.278 0.940 0.226 0.231 0.947

Table V lists estimates of F1(t)≡ 1 − S1(t), the probability of being wait-listed within t
years. Wait-list probability appears to plateau 2–3 years after RRTI. Also listed in Table V
are estimates of F2(t; t1)≡ 1−S2(t; t1), the probability of receiving a transplant, within t years,
given wait-listing occurred within t1 years, for various values of t1. The dependence between
Ti;1 and T̃i;2 is demonstrated by the discrepancies in the F̂G2:n(t; t1) by t1. It appears that greater
RRTI→WL times are associated with greater WL→KT times.
In Figure 1, we display point estimates and 95% con�dence bands for F1(t) (left panel) and

F2(t; t1 = 2) (right panel). Given that wait-listing was within 2 years of RRTI, the estimated
median time until transplant is 3 years after being wait-listed. From the corresponding plot,
it is apparent that transplant probability continues to increase steadily along t ∈ [0; 3]. This
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Table V. Estimated probability of being wait-listed within t years, F̂1:n(t);
and probability of receiving a kidney transplant within t years of be-
ing wait-listed, given that the patient was wait-listed within t1 years,
F̂G2:n(t; t1). Based on n=5356 patients initiating renal replacement therapy

during 1990–1994 in Ontario, Canada.

F̂G2:n(t; t1)

t F̂1:n(t) t1 = 1 t1 = 2 t1 = 3

0.5 0.07 0.05 0.04 0.03
1.0 0.16 0.17 0.12 0.11
1.5 0.22 0.30 0.23 0.21
2.0 0.25 0.38 0.33 0.29
2.5 0.26 0.47 0.40 —
3.0 0.27 0.54 0.50 —
3.5 0.29 0.63 — —
4.0 0.30 0.70 — —
4.5 0.30 — — —
5.0 0.30 — — —
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Figure 1. Left panel: Probability of being wait-listed within t years, and 95 per cent con�dence bands.
Right panel: Probability of receiving a transplant within t years (and 95 per cent con�dence bands),
for t ∈ [0; 3], given that the patient was wait-listed within 2 years. Based on n=5356 patients initiating

renal replacement therapy during 1990–1994 in Ontario, Canada.
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indicates that, although most patients who are wait-listed do so in the �rst 2–3 years post-
therapy initiation, time until transplant may be considerably longer than 3 years.

5. DISCUSSION

We propose a method for estimating conditional survival functions through their corresponding
cumulative hazard functions for the times between consecutive events in sequentially ordered
failure time data. The asymptotic distribution of the estimators is derived. Through simulation,
the asymptotic approximations appear to be appropriate for �nite samples. A method for
computing simultaneous con�dence bands is provided. We applied the proposed methods to
a renal failure data set to estimate the probability of being wait-listed and the probability of
being transplanted among patients wait-listed within various time intervals.
In the absence of within-subject gap time independence, the two main challenges facing

estimation of gap time distribution functions are induced dependent censoring and identi�a-
bility for the second and subsequent gap times. Our method, like those of Wang and Wells
[1] and Lin et al. [3], essentially adjusts for induced dependent censoring by weighting risk
set contributions by the inverse of the probability of remaining uncensored, similar in spirit to
Robins and Rotnitzky [12]. The estimator of Wang and Wells takes a product-integral form,
and has a very complicated covariance structure; the authors recommend using the bootstrap
method to obtain standard errors. In addition, Wang and Wells condition on [Ti1¿t1], while
our proposed method conditions on [Ti16t1]. Lin et al. estimate the joint distribution function
using an empirical mean-type estimator which has a closed-form covariance structure. Van
der Laan et al. [7] recently proposed locally e�cient estimators which can accommodate cen-
soring which is dependent on the total times and covariates. Our estimators di�er from those
of Lin et al. [3] and van der Laan et al. [7] in that the conditional survival function is esti-
mated directly through a cumulative hazard estimator, rather than through a joint distribution
function estimator. An advantage of the proposed techniques, compared to existing methods,
is the ease of computing standard errors, which may be important to many practitioners. The
formulae are simpler to compute than those of previous methods which derive conditional
survival function estimators from the estimated joint and marginal distributions. In addition,
none of the previous methods provide techniques for obtaining con�dence bands.
With respect to identi�ability, for the jth gap time (j¿2), our method conditions on the (j−

1)th event time having occurred in the [0; tj−1] interval. This could be viewed as a limitation,
in the sense that the marginal distribution may be of greater interest. However, in terms of
interpretation, such conditioning may often make the survival estimators more meaningful to
investigators, particularly when the conditioning serves to focus consideration on the subjects
of primary interest. For instance, in the renal failure example, it could be argued that subjects
not wait-listed in the �rst 2 years are extremely poor candidates for transplantation, and
therefore should not be aggregated with patients with shorter wait-list times in an analysis of
WL→KT times. Depending on the length of follow-up and distribution of the total times, it
may be possible to choose the tj−1’s at points after which the marginal distribution functions
of the Ti; j−1’s level o�. Relating back to the renal failure data, the probability of wait-listing
had tapered-o� by the 2 year mark, indicating that little was sacri�ced by not considering the
small fraction of patients wait-listed after the 2 year point.
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It is often of interest to compare gap time distributions among groups of subjects. Lin
and Ying [19] have proposed a family of non-parametric two-sample tests for di�erences in
gap time distributions. Huang [4] proposed a two-sample inference procedure for the gap
time setting and recently developed corresponding regression methods [20], both based on
the accelerated failure time model. Extension of the methods in this article to the regression
setting will be communicated in a separate report.

APPENDIX

To prove asymptotic normality of the proposed estimator, we begin by de�ning the functional:

‖Hj:n(t)‖= sup
t∈[0;�j]

|Hj:n(t)|

for some function H . We set �j:n(t)= {�̂Gj:n(t; tj−1)− �j(t; tj−1)}=�j1:n(t) + �j2:n(t), where:

�j1:n(t) = n−1 n∑
i=1

∫ t

0

Wij(s)
RGj (s)

Mij(ds; tj−1) (5)

�j2:n(t) = n−1 n∑
i=1

∫ t

0

1
RGj (s)

{Ŵi; j(s)−Wij(s)}Mij(ds; tj−1) (6)

By the Triangle Inequality, ‖�j:n(t)‖6‖�j1:n(t)‖+ ‖�j2:n(t)‖. Combining the Uniform Strong
Law of Large Numbers [21] and Lemma 1 of Lin et al. [22], ‖n−1∑n

i=1

∫ t
0 Wij(s){RGj (s)−1 −

rj(s)−1}Mij(ds; tj−1)‖ a:s:→ 0, where rj(s)= limn→∞ RGj (s). Therefore, �j1:n(t)= n
−1∑n

i=1

∫ t
0

Wij(s)rj(s)−1Mij(ds; tj−1) + o(1), which converges almost surely to 0 uniformly in
t ∈ [0; �j] by the USLLN. Using results in Fleming and Harrington [23], followed by the
Functional Delta Method [24], it can be shown that:

n1=2{Ŵij(s)−Wij(s)}= I(j¿2)Wij(s)n−1=2 n∑
‘=1

∫ s+Ti; j−1

0

MC
‘ (dr)
RC(r)

+ op(1) (7)

Combining (6) and (7) yields:

�j2:n(t)= I(j¿2)n−1 n∑
i=1

∫ �

0

qj:n(s; t)
RC(s)

MC
i (ds) + op(n

−1=2)

where:

qj:n(s; t)= n−1 n∑
‘=1

∫ t

0

I(s6r + T‘;j−1)
RGj (r)

W‘j(r)M‘j(dr; tj−1)

Again combining the USLLN with Lemma 1 from Lin et al. [22], ‖n−1∑n
i=1

∫ t
0{qj:n(s; t)

RC(s)−1−qj(s; t)rC(s)−1}MC
i (ds)‖ a:s:→ 0; where rC(s)=E[Yi(s)] and qj(s; t)= limn→∞ qj:n(s; t).

Since MC
i (t) is a martingale with respect to the �ltration F

C
i (t)=�{Yi(s); NCi (s−) : s∈ [0; t]},
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‖�j2:n(t)‖ a:s:→ 0 by standard Martingale theory [25]. Hence ‖�j:n(t)‖ converges almost surely to
0 as n→ ∞. With respect to the �nite-dimensional distributions, it can be shown using the the-
ory of empirical processes [22, 26] that ‖n−1=2∑n

i=1

∫ t
0 Wij(s){RGj (s)−1−rj(s)−1}Mij(ds; tj−1)‖=

op(1).
Therefore,

n1=2�j1:n(t)= n−1=2 n∑
i=1

∫ t

0
Wij(s)rj(s)−1Mij(ds; tj−1) + op(1)

Furthermore, we can show using empirical process results that

n−1=2∑n
i=1

∫ t

0
{qj:n(s; t)RC(s)−1 − qj(s; t)rC(s)−1}MC

i (ds)= op(1);

to obtain:

n1=2�j2:n(t)= I(j¿2)n−1=2 n∑
i=1

∫ �

0

qj(s; t)
rC(s)

MC
i (ds) + op(1)

since qj:n(s; t)
a:s:→ qj(s; t) for s∈ [0; �j] and RC(s) a:s:→ rC(s) for s∈ [0; �c] by the USLLN. There-

fore, n1=2�j:n(t)= n−1=2∑n
i=1 �ij(t) + op(1), with:

�ij(t)=
∫ t

0

Wij(s)
rj(s)

Mij(ds; tj−1) + I(j¿2)
∫ �

0

qj(s; t)
rC(s)

MC
i (ds)

where �1j(t); : : : ; �nj(t) are asymptotically independent and identically distributed mean-zero
random variates. The �nite-dimensional distributions of n1=2�j:n(t) converge to that of a
zero-mean normal variate by the multivariate central limit theorem. To complete the weak
convergence proof, we demonstrate tightness of n1=2�j:n(t), which follows from tightness of
n1=2�j1:n(t) and n1=2�j2:n(t) separately. Tightness of n1=2�j1:n(t) follows from that of each
summand in (5), and n1=2

∫ t
0 Wij(s)rj(s)

−1Mij(ds; tj−1) is tight since it is manageable [21];
manageability follows from the fact that each term is expressible as a product of monotone
functions [22, 26]. Since n1=2�j2:n(t) is an FC(t)-martingale asymptotically, it is asymptotically
tight [25]. Hence, n1=2�j:n(t) is asymptotically tight, and converges weakly to a zero-mean
Gaussian process with covariance function E[�1j(s)�1j(t)], by the Functional Central Limit
Theorem [21].
To justify the proposed con�dence bands, we begin with the result that n1=2�j:n(t)= n−1=2∑n
i=1 �ij(t) + op(1). Applying the Functional Delta Method,

n1=2{log �̂Gj:n(t; tj−1)− log �j(t; tj−1)}= n−1=2�j(t; tj−1)−1
n∑
i=1
�ij(t) + op(1)

After standardizing and applying a variance-stabilizing transform,

�j:n(t)≡ n1=2 �j(t; tj−1)
�j(t; tj−1)1=2

{log �̂Gj:n(t; tj−1)− log �j(t; tj−1)}

= n−1=2�j(t; tj−1)−1=2
n∑
i=1
�ij(t) + op(1)
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Set �̂j:n(t)= n−1=2�̂j:n(t; t; tj−1)−1=2
∑n

i=1 �̂ij(t), where �̂ij(t) is given in (3), and note that
‖�̂j:n(t)− �j:n(t)‖ a:s:→ 0 using the USLLN along with continuity arguments. Now, set:

�̂∗
j:n(t)= n

−1=2�̂j:n(t; t; tj−1)−1=2
n∑
i=1
Zi�̂ij(t)

where Zi ∼ N(0; 1) and the {Zi}ni=1 are distributed independently of the observed data. By
the Multiplier Central Limit Theorem [15], the limiting distribution of ‖�̂∗

j:n(t)‖ is the same
as the unconditional limiting distribution of ‖�̂j:n(t)‖. Therefore, computing the empirical
quantile �∗

j;� such that P(‖�̂∗
j:n(t)‖¿�∗

j;�)= � and inverting the resulting con�dence band for
n1=2�j(t; tj−1) log �j(t; tj−1)�j(t; t; tj−1)−1=2 yields a 100(1 − �) per cent con�dence band for
�j(t; tj−1), which can then be transformed to produce a con�dence band for Sj(t; tj−1).
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